Effect of Environmental Conditions on Strontium Adsorption by Red Soil Colloids in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sampling and Colloid Extraction
2.3. Inorganic Colloid
2.4. Batch Adsorption Experiments
2.5. Characterization
3. Results and Discussion
3.1. The Properties of Soil Colloid
3.2. Colloid Dosage
3.3. Effect of pH
3.4. Effect of Ionic Strength
3.5. Effect of Initial Sr2+ Concentration
3.6. Effect of Organic Matter
3.7. Sorption Kinetic
3.8. Adsorption Thermodynamics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sasaki, T.; Matoba, D.; Dohi, T.; Fujiwara, K.; Kobayashi, T.; Iijima, K. Vertical distribution of 90Sr and 137Cs in soils near the Fukushima Daiichi nuclear power station. J. Radioanal. Nucl. Chem. 2020, 326, 303–314. [Google Scholar] [CrossRef]
- Shao, Y.; Yang, G.; Tazoe, H.; Ma, L.; Yamada, M.; Xu, D. A review of measurement methodologies and their applications to environmental 90Sr. J. Environ. Radioact. 2018, 192, 323–333. [Google Scholar] [CrossRef]
- Dulanská, S.; Coha, I.; Silliková, V.; Goneková, Z.; Horváthová, B.; Nodilo, M.; Grahek, Z. Sequential determination of 90Sr and 210Pb in bone samples using molecular recognition technology product AnaLig® Sr-01. Microchem. J. 2020, 157, 105123. [Google Scholar] [CrossRef]
- Deng, F.; Lin, F. Measurement of 90Sr in Marine Biological Samples. Molecules 2022, 27, 3730. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Ding, C.; Yu, G.; Chen, Z. Determination of 90Sr in different matrices via ion-exchange chromatography and LSC. J. Radioanal. Nucl. Chem. 2022, 331, 3269–3274. [Google Scholar] [CrossRef]
- Zhong, N.; Li, L.; Yang, X.; Zhao, Y. Analytical Methods for the Determination of 90Sr and 239,240Pu in Environmental Samples. Molecules 2022, 27, 1912. [Google Scholar] [CrossRef]
- Mamikhin, S.; Lipatov, D.; Manakhov, D.; Paramonova, T.; Stolbova, V.; Shcheglov, A. Adaptive capability of the vert_mig algorithm to simulate vertical migration of radionuclides in soils. Mosc. Univ. Soil Sci. Bull. 2018, 73, 11–17. [Google Scholar] [CrossRef]
- Marchesani, G.; Trotta, G.; De Felice, P.; Marchesani, G.; Bortone, N.; Damiano, R.; Nicolini, M.; Accettulli, R.; Chiaravalle, A.E. Fast and Sensitive Radiochemical Method for Sr-90 Determination in Food and Feed by Chromatographic Extraction and Liquid Scintillation Counting. Food Anal. Method 2022, 15, 1521–1534. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Flury, M.; Zou, H. Freeze-thaw cycles lead to enhanced colloid-facilitated Pb transport in a Chernozem soil. J. Contam. Hydrol. 2022, 251, 104093. [Google Scholar] [CrossRef]
- Zhao, Y.; Shao, Z.; Chen, C.; Hu, J.; Chen, H. Effect of environmental conditions on the adsorption behavior of Sr (II) by na-rectorite. Appl. Clay Sci. 2014, 87, 1–6. [Google Scholar] [CrossRef]
- Albarran, N.; Missana, T.; García-Gutiérrez, M.; Alonso, U.; Mingarro, M. Strontium migration in a crystalline medium: Effects of the presence of bentonite colloids. J. Contam. Hydrol. 2011, 122, 76–85. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, H.; Lee, C.; Luo, M.; Hua, R.; Liu, W.; Kong, J.; Hu, Y. Difusion behavior of Se(IV) in Tamusu clayrock core by through-difusion method. J. Radioanal. Nucl. Chem. 2021, 329, 149–158. [Google Scholar] [CrossRef]
- Wang, C.; Myshkin, V.F.; Khan, V.A.; Panamareva, A.N. A review of the migration of radioactive elements in clay minerals in the context of nuclear waste storage. J. Radioanal. Nucl. Chem. 2022, 331, 3401–3426. [Google Scholar] [CrossRef]
- Amayri, S.; Fröhlich, D.R.; Kaplan, U.; Trautmann, N.; Reich, T. Distribution coefficients for the sorption of Th, U, Np, Pu, and Am on Opalinus Clay. Radiochim. Acta 2016, 104, 33–40. [Google Scholar] [CrossRef]
- Singh, B.; Tomar, R.; Kumar, S.; Kar, A.; Tomar, B.; Ramanathan, S.; Manchanda, V. Role of the humic acid for sorption of radionuclides by synthesized titania. Radiochim. Acta 2014, 102, 255–261. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Du, J.; Tan, X.; Xu, D.; Yu, S. Effect of pH and aging time on the kinetic dissociation of 243Am (III) from humic acid-coated γ-Al2O3: A chelating resin exchange study. Environ. Sci. Technol. 2005, 39, 7084–7088. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Maity, S.; Bhalke, S.; Pandit, G.; Puranik, V.; Kushwaha, H. Thermodynamic and kinetic investigations of uranium adsorption on soil. J. Radioanal. Nucl. Chem. 2012, 294, 97–102. [Google Scholar] [CrossRef]
- Xia, L.; Huang, X.; Cao, C.C. Sorption and mechanism of aqueous U(VI) onto red soil-colloid. Energy Sci. Tech. 2013, 47, 1692–1699. [Google Scholar]
- Jiang, W.; Li, Z.; Xie, H.; Ouyang, K.; Yuan, H.; Duan, L. Land use change impacts on red slate soil aggregates and associated organic carbon in diverse soil layers in subtropical China. Sci. Total Environ. 2023, 856, 159194. [Google Scholar] [CrossRef]
- Leão, T.P.; Barros Guimarães, T.L.; de Figueiredo, C.C.; Galba Busato, J.; Sato Breyer, H. On critical coagulation concentration theory and grain size analysis of oxisols. Soil Sci. Soc. Am. J. 2013, 77, 1955–1964. [Google Scholar] [CrossRef]
- Mikutta, R.; Kleber, M.; Kaiser, K.; Jahn, R. Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci. Soc. Am. J. 2005, 69, 120–135. [Google Scholar] [CrossRef]
- Romero, A.; Santos, A.; Cordero, T.; Rodríguez-Mirasol, J.; Rosas, J.M.; Vicente, F. Soil remediation by Fenton-like process: Phenol removal and soil organic matter modification. Chem. Eng. J. 2011, 170, 36–43. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Z.; Zheng, L.; Zhou, L.; Chai, Z.; Wang, X.; Shi, W. Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: Insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chem. Eng. J. 2017, 328, 1066–1074. [Google Scholar] [CrossRef]
- Du, Y.; Yin, Z.; Wu, H.; Li, P.; Qi, W.; Wu, W. Sorption of U (VI) on magnetic illite: Effects of pH, ions, humic substances and temperature. J. Radioanal. Nucl. Chem. 2015, 304, 793–804. [Google Scholar] [CrossRef]
- Guimaraes, V.; Azenha, M.; Rocha, F.; Silva, F.; Bobos, I. Batch and flow-through continuous stirred reactor experiments of Sr2+ adsorption onto smectite: Influence of pH, concentration and ionic strength. J. Radioanal. Nucl. Chem. 2012, 303, 2243–2255. [Google Scholar]
- Ji, G.; Xu, M.; Wen, S.; Wang, B.; Zhang, L.; Liu, L. Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types. J. Appl. Eco. 2015, 26, 2639–2645. [Google Scholar]
- Hu, J.; Chen, C.; Sheng, G.; Li, J.; Chen, Y.; Wang, X. Adsorption of Sr (II) and Eu (III) on Na-rectorite: Effect of pH, ionic strength, concentration and modelling. Radiochim. Acta 2010, 98, 421–429. [Google Scholar] [CrossRef]
- Hongxia, Z.; Xiaoyun, W.; Honghong, L.; Tianshe, T.; Wangsuo, W. Adsorption behavior of Th (IV) onto illite: Effect of contact time, pH value, ionic strength, humic acid and temperature. Appl. Clay Sci. 2016, 127, 35–43. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, J.; Cheng, S. Magnetic composite of Fe3O4 and activated carbon as a adsorbent for separation of trace Sr (II) from radioactive wastewater. J. Radioanal. Nucl. Chem. 2015, 303, 2371–2377. [Google Scholar] [CrossRef]
- Chen, L.; Dong, Y. Sorption of 63Ni (II) to montmorillonite as a function of pH, ionic strength, foreign ions and humic substances. J. Radioanal. Nucl. Chem. 2013, 295, 2117–2123. [Google Scholar] [CrossRef]
- Yan, D.; Zuo, R.; Ding, K.; Wang, T.; Fan, L.; He, Y.; Jiang, X. Influencing factors of 90Sr adsorption onto granite fracture filling material in a high-level radioactive waste disposal site. J. Radioanal. Nucl. Chem. 2022, 331, 2679–2688. [Google Scholar] [CrossRef]
- Guedes, R.S.; Fernandes, A.R.; Souza, E.S.d.; Silva, J.R.R.e. Maximum phosphorus adsorption capacity adjusted to isotherm models in representative soils of eastern amazon. Commun. Soil Sci. Plant Anal. 2015, 46, 2615–2627. [Google Scholar] [CrossRef]
- Bassey, U.; Suleiman, M.; Ochigbo, S.; Ndamitso, M.; Daniel, E.; Otolo, S.; Chukwudi, A. Adsorption isotherm, kinetics and thermodynamics study of cr (vi) ions onto modified activated carbon from endocarp of Canarium schweinfurthii. Int. Res. J. Pure Appl. Chem. 2015, 6, 46–55. [Google Scholar] [CrossRef]
- Peng, X.; Yan, X.; Zhou, H.; Zhang, Y.; Sun, H. Assessing the contributions of sesquioxides and soil organic matter to aggregation in an ultisol under long-term fertilization. Soil Tillage Res. 2015, 146, 89–98. [Google Scholar] [CrossRef]
- Sun, C.; Liu, J.; Wang, Y.; Zheng, N.; Wu, X.; Liu, Q. Effect of long-term cultivation on soil organic carbon fractions and metal distribution in humic and fulvic acid in black soil, Northeast China. Soil Res. 2012, 50, 562–569. [Google Scholar] [CrossRef]
- Zhao, D.; Yang, S.; Chen, S.; Guo, Z.; Yang, X. Effect of pH, ionic strength and humic substances on the adsorption of Uranium (VI) onto Na-rectorite. J. Radioanal. Nucl. Chem. 2011, 287, 557–565. [Google Scholar] [CrossRef]
- Tangestani, F.; Rashidi, A.; Mallah, M.-H. The kinetic study of cesium, strontium, and rubidium Radionuclide’s adsorption from synthetic and natural wastes via the mag-molecular process. Water Air Soil Pollut. 2017, 228, 1–13. [Google Scholar] [CrossRef]
- Deepthi Rani, R.; Sasidhar, P. Sorption of cesium on clay colloids: Kinetic and thermodynamic studies. Aquat. Geochem. 2012, 18, 281–296. [Google Scholar] [CrossRef]
- Mosquera-Vivas, C.S.; Obregon-Neira, N.; Celis-Ossa, R.E.; Guerrero-Dallos, J.A.; González-Murillo, C.A. Degradation and thermodynamic adsorption process of carbofuran and oxadicyl in a colombian agricultural soil profile. Agron. Colomb. 2016, 34, 92–100. [Google Scholar] [CrossRef]
- Li, C.; Wang, S.; Ji, F.; Zhang, J.; Wang, L. Thermodynamics of Cu2+ adsorption on soil humin. Int. J. Environ. Res. 2015, 9, 43–52. [Google Scholar]
- He, Y.; Chen, Y.G.; Ye, W.M. Equilibrium, kinetic, and thermodynamic studies of adsorption of Sr(II) from aqueous solution onto GMZ bentonite. Environ. Earth Sci. 2016, 75, 807–817. [Google Scholar] [CrossRef]
Soil | TN | TS | TC | SiO2 | Al2O3 | Fe2O3 | CaO |
---|---|---|---|---|---|---|---|
% | 0.30 | 0.03 | 2.87 | 53.15 | 30.92 | 11.95 | 0.49 |
Langmuir | Freundlich | ||||
---|---|---|---|---|---|
Qm (mg·g−1) | b (L·mol−1) | R2 | KF (mol1−n·Lng−1) | n | R2 |
11.27 | 29.40 | 0.9346 | 1.32 | 3.30 | 0.9062 |
First-Order Kinetic | Second-Order Kinetic | ||||
---|---|---|---|---|---|
Qm (mg·g−1) | K1 (min−1) | R2 | Qm (mg·g−1) | K2 (g·min1·mg−1) | R2 |
5.24 | 0.58 | 0.9579 | 5.63 | 0.40 | 0.9918 |
Temperature (K) | ΔG (KJ·mol−1) | ΔS0 (KJ·(mol·K)−1) | ΔH0 (KJ·mol−1) |
---|---|---|---|
293 | −8.96 | 0.1130 | 24 |
298 | −9.53 | ||
303 | −10.09 | ||
318 | −11.78 | ||
328 | −12.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Zhao, Y.; Luo, M.; Zhao, G.; Xu, D.; Liu, Z.; Ma, L. Effect of Environmental Conditions on Strontium Adsorption by Red Soil Colloids in Southern China. Processes 2023, 11, 379. https://doi.org/10.3390/pr11020379
Shao Y, Zhao Y, Luo M, Zhao G, Xu D, Liu Z, Ma L. Effect of Environmental Conditions on Strontium Adsorption by Red Soil Colloids in Southern China. Processes. 2023; 11(2):379. https://doi.org/10.3390/pr11020379
Chicago/Turabian StyleShao, Yang, Yuanyuan Zhao, Min Luo, Guifang Zhao, Diandou Xu, Zhiming Liu, and Lingling Ma. 2023. "Effect of Environmental Conditions on Strontium Adsorption by Red Soil Colloids in Southern China" Processes 11, no. 2: 379. https://doi.org/10.3390/pr11020379
APA StyleShao, Y., Zhao, Y., Luo, M., Zhao, G., Xu, D., Liu, Z., & Ma, L. (2023). Effect of Environmental Conditions on Strontium Adsorption by Red Soil Colloids in Southern China. Processes, 11(2), 379. https://doi.org/10.3390/pr11020379