Cellulose Acetate Membranes: Fouling Types and Antifouling Strategies—A Brief Review
Abstract
:1. Introduction
2. CA Membranes, among Other Polymeric Membranes
3. CA Membranes: Types and Applications
3.1. Cellulose Acetate MF Membrane
3.2. Cellulose Acetate UF Membrane
- The casting solution is mixed until it becomes homogenous.
- The solution is degassed to clear any air bubbles before casting. The solution is then cast, and following that, the evaporation time during membrane formation spans from 2 sec to 120 sec.
- A deionized water bath is gradually filled with the cast film.
3.3. Cellulose Acetate NF Membrane
3.4. Cellulose Acetate RO Membrane
3.5. Cellulose Acetate FO Membrane
4. Cellulose Acetate (CA) Membrane Fouling
4.1. Types of CA Membrane Fouling Based on Foulant Types
4.1.1. Organic Fouling
4.1.2. Inorganic (Scaling) Fouling
4.1.3. Particulate/Colloidal Fouling
4.1.4. Biological Fouling (Biofouling)
4.2. CA Fouling Influencing Factors
5. Cellulose Acetate (CA) Membranes Antifouling Strategies
5.1. Feed Solution Pretreatment
5.2. Cleaning of the Membrane Surface
5.3. Surface Modification
5.3.1. Surface Chemistry Modification Using Nanoparticles (NPS)
Metal-Based Nanoparticles
Metal Oxide-Based Nanoparticles
Metal-Organic Frameworks (MOFs)
Clay-Based Nanoparticles
Carbon-Based
Others
5.3.2. Surface Chemistry Modification Using Polymer Reaction
5.3.3. Surface Grafting
5.3.4. Surface Topography
5.4. Surface Coating
6. Conclusions and Future Prospective
- Feed solution pretreatment, which can be achieved physically or chemically.
- Cleaning of the membrane surface, which can be achieved physically, chemically, or biologically.
- Surface modification can be achieved either by using nanoparticles (metal or metal oxide-based, clay-based, or carbon-based nanoparticles) or by using polymer reactions, or through surface grafting or surface topography.
- Surface coating.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AgNPs | Silver Nanoparticles |
BSA | Bovine Serum Albumin |
CA | Cellulose Acetate |
CAB | Cellulose Acetate Butyrate |
CA-g-(GMA-g-PEG) | CA-graft-(glycidylmethacrylate-g-polyethylene glycol) |
CAP | Cellulose Acetate Propionate |
CA-RO | Cellulose Acetate Reverse Osmosis |
CA-TiO2 | CA and titanium oxide |
CA-UF | Cellulose Acetate Ultrafiltration |
CDA | Cellulose Diacetate- |
CNCs | Cellulose Nanocrystals |
CNF | Cellulose Nanofibers |
DA | Dopamine |
DMA | N, N-Dimethylacetamide |
DMAc | Cellulose Triacetate Forward Osmosis |
DMF | N,N-Dimethyl Formamide |
DS | Degree of Substitution |
ePAN | Electrospun Polyacrylonitrile |
EPS | Extracellular Polymetric Substance |
FO | Forward Osmosis |
GO | Graphene oxide |
GO-Ag | Graphene Oxide-Silver |
GVL | γ-Valerolactone |
MAC | Methyl Acetate |
2ME-THF | Methyltetrahydrofuran |
MF | Microfiltration membrane |
MOFs | Metal Organic Frameworks |
NF | Nanofiltration |
NMP | 1–Methyl–2–Pyrrolidone |
NOM | Natural Organic Matter |
NPs | Nanoparticles |
OSN | Organic Solvent Nanofiltration |
PA | Polyamide |
PDA | Polydopamine |
PDA/SBMA | Polydopamine-Sulfobetaine Methacrylate |
PE | Polyethylene |
PEDOT | Poly(3,4-Ethylene Dioxythiophene) |
PES | Polyethersulfone |
PP | Polypropylene |
PSF | Polysulfone |
PVA | Polyvinyl Alcohol |
PVDF | Polyvinylidene Fluoride |
PVP | Polyvinylpyrrolidone |
RO | Reverse Osmosis |
SiO2NPs | Silicon Oxide Nanoparticles |
SMM | Surface Modifying Macromolecule |
TEMPO | 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl |
TFC | Thin Film Composite |
TiO2NPs | Titanium Oxide Nanoparticles |
TOC | Total organic carbon |
References
- Risch, S.J. Food Packaging History and Innovations. J. Agric. Food Chem. 2009, 57, 8089–8092. [Google Scholar] [CrossRef]
- Luckachan, G.E.; Pillai, C.K.S. Biodegradable Polymers-A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011, 19, 637–676. [Google Scholar] [CrossRef]
- Yokesahachart, C.; Yoksan, R. Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydr. Polym. 2011, 83, 22–31. [Google Scholar] [CrossRef]
- Schilling, M.; Bouchard, M.; Khanjian, H.; Learner, T.; Phenix, A.; Rivenc, R. Application of Chemical and Thermal Analysis Methods for Studying Cellulose Ester Plastics. Acc. Chem. Res. 2010, 43, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Thümmler, K.; Volkert, B.; Hettrich, K.; Schmidt, I.; Fischer, K. Properties and Applications of Cellulose Acetate. Macromol. Symp. 2008, 262, 89–96. [Google Scholar] [CrossRef]
- Rimdusit, S.; Jingjid, S.; Damrongsakkul, S.; Tiptipakorn, S.; Takeichi, T. Biodegradability and property characterizations of Methyl Cellulose: Effect of nanocompositing and chemical crosslinking. Carbohydr. Polym. 2008, 72, 444–455. [Google Scholar] [CrossRef]
- Kaur, G.; Grewal, J.; Jyoti, K.; Jain, U.K.; Chandra, R.; Madan, J. Chapter 15—Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A.M., Ed.; William Andrew Publishing: Burlington, MA, USA, 2018; pp. 567–626. [Google Scholar] [CrossRef]
- Cobo, F.N.; Faria-Tisher, P.C.S.; Duarte, J.L.; Carvalho, G.M. Preparation and characterization of microporous cellulose acetate films using breath figure method by spin coating technique. Cellulose 2017, 24, 4981–4995. [Google Scholar] [CrossRef]
- Vallejos, M.; Peresin, M.S.; Rojas, O.J. All-Cellulose Composite Fibers Obtained by Electrospinning Dispersions of Cellulose Acetate and Cellulose Nanocrystals. J. Polym. Environ. 2012, 20, 1075–1083. [Google Scholar] [CrossRef]
- K Khoshnevisan, K.; Maleki, H.; Samadian, H.; Shahsavari, S.; Sarrafzadeh, M.H.; Larijani, B.; Dorkoosh, F.A.; Haghpanah, V.; Khorramizadeh, M.R. Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydr. Polym. 2018, 198, 131–141. [Google Scholar] [CrossRef]
- Park, H.-M.; Misra, M.; Drzal, L.T.; Mohanty, A.K. “Green” Nanocomposites from Cellulose Acetate Bioplastic and Clay: Effect of Eco-Friendly Triethyl Citrate Plasticizer. Biomacromolecules 2004, 5, 2281–2288. [Google Scholar] [CrossRef]
- Fei, P.; Liao, L.; Cheng, B.; Song, J. Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application. Anal. Methods 2017, 9, 6194–6201. [Google Scholar] [CrossRef]
- Alammar, A.; Hardian, R.; Szekely, G. Upcycling agricultural waste into membranes: From date seed biomass to oil and solvent-resistant nanofiltration. Green Chem. 2022, 24, 365–374. [Google Scholar] [CrossRef]
- Thi, H.Y.N.; Kim, S.; Nguyen, B.T.D.; Lim, D.; Kumar, S.; Lee, H.; Szekely, G.; Kim, J.F. Closing the Sustainable Life Cycle Loop of Membrane Technology via a Cellulose Biomass Platform. ACS Sustain. Chem. Eng. 2022, 10, 2532–2544. [Google Scholar] [CrossRef]
- El-Ghaffar, M.A.A.; Elawady, M.M.; Rabie, A.M.; Abdelhamid, A.E. Enhancing the RO performance of cellulose acetate membrane using chitosan nanoparticles. J. Polym. Res. 2020, 27, 33. [Google Scholar] [CrossRef]
- Hoenich, N. Cellulose for medical applications: Past, present, and future. Bioresources 2006, 1, 270–280. [Google Scholar] [CrossRef]
- Vatanpour, V.; Yuksekdag, A.; Ağtaş, M.; Mehrabi, M.; Salehi, E.; Castro-Muñoz, R.; Koyuncu, I. Zeolitic imidazolate framework (ZIF-8) modified cellulose acetate NF membranes for potential water treatment application application. Carbohydr. Polym. 2023, 299, 120230. [Google Scholar] [CrossRef]
- Abu-Dalo, M.A.; Al-Rosan, S.A.; Albiss, B.A. Photocatalytic Degradation of Methylene Blue Using Polymeric Membranes Based on Cellulose Acetate Impregnated with ZnO Nanostructures. Polymers 2021, 13, 3451. [Google Scholar] [CrossRef]
- Ounifi, I.; Guesmi, Y.; Ursino, C.; Castro-Muñoz, R.; Agougui, H.; Jabli, M.; Hafiane, A.; Figoli, A.; Ferjani, E. Synthesis and Characterization of a Thin-Film Composite Nanofiltration Membrane Based on Polyamide-Cellulose Acetate: Application for Water Purification. J. Polym. Environ. 2022, 30, 707–718. [Google Scholar] [CrossRef]
- Tashvigh, A.A.; Elshof, M.G.; Benes, N.E. Development of Thin-Film Composite Membranes for Nanofiltration at Extreme pH. ACS Appl. Polym. Mater. 2021, 3, 5912–5919. [Google Scholar] [CrossRef]
- Krishnan, J.N.; Venkatachalam, K.R.; Ghosh, O.; Jhaveri, K.; Palakodeti, A.; Nair, N. Review of Thin Film Nanocomposite Membranes and Their Applications in Desalination. Front. Chem. 2022, 10, 781372. [Google Scholar] [CrossRef]
- Liu, S.; Hu, L.F.; Zhang, W.C.; Ma, H.Y. Cellulose Acetate Reverse Osmosis Membranes for Desalination: A Short Review. Non-Met. Mater. Sci. 2019, 1, 15–25. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A.; et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Daraei, P.; Zinatizadeh, A.A.; Rahimpour, F. Separation of nitrophenols using cellulose acetate nanofiltration membrane: Influence of surfactant additives. Sep. Purif. Technol. 2012, 85, 147–156. [Google Scholar] [CrossRef]
- Barth, C.; Gonçalves, M.; Pires, A.; Roeder, J.; Wolf, B. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. J. Membr. Sci. 2000, 169, 287–299. [Google Scholar] [CrossRef]
- Shibata, T. 5.6 Cellulose acetate in separation technology. Macromol. Symp. 2004, 208, 353–370. [Google Scholar] [CrossRef]
- Sossna, M.; Hollas, M.; Schaper, J.; Scheper, T. Structural development of asymmetric cellulose acetate microfiltration membranes prepared by a single-layer dry-casting method. J. Membr. Sci. 2007, 289, 7–14. [Google Scholar] [CrossRef]
- Yang, S.; Zou, Q.; Wang, T.; Zhang, L. Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane. J. Membr. Sci. 2019, 569, 48–59. [Google Scholar] [CrossRef]
- He, Y.; Li, G.-M.; Wang, H.; Jiang, Z.-W.; Zhao, J.-F.; Su, H.-X.; Huang, Q.-Y. Experimental study on the rejection of salt and dye with cellulose acetate nanofiltration membrane. Festschr. Issue Honor Profr. Yi Hua Ma 2009, 40, 289–295. [Google Scholar] [CrossRef]
- Kimura, S.; Sourirajan, S. Analysis of data in reverse osmosis with porous cellulose acetate membranes used. AIChE J. 1967, 13, 497–503. [Google Scholar] [CrossRef]
- Takao, S.; Rajabzadeh, S.; Otsubo, C.; Hamada, T.; Kato, N.; Nakagawa, K.; Shintani, T.; Matsuyama, H.; Yoshioka, T. Preparation of Microfiltration Hollow Fiber Membranes from Cellulose Triacetate by Thermally Induced Phase Separation. ACS Omega 2022, 7, 33783–33792. [Google Scholar] [CrossRef]
- Redha, Z.M.; Bu-Ali, Q.; Saeed, Y.A.; Ali, A.M. Optimization of the Asymmetric Cellulose Acetate Membrane Synthesis Variables for Porosity and Pure Water Permeation Flux Using Response Surface Methodology: Microfiltration Application. Arab. J. Sci. Eng. 2021, 46, 6593–6607. [Google Scholar] [CrossRef]
- Battirola, L.C.; Andrade, P.F.; Marson, G.V.; Hubinger, M.D.; Gonçalves, M.D.C. Cellulose acetate/cellulose nanofiber membranes for whey and fruit juice microfiltration. Cellulose 2017, 24, 5593–5604. [Google Scholar] [CrossRef]
- Lin, J.; Fu, C.; Zeng, W.; Wang, D.; Huang, F.; Lin, S.; Cao, S.; Chen, L.; Ni, Y.; Huang, L. Regulating the structure of cellulose-based ultrafiltration membrane to improve its performance for water purification. Ind. Crop. Prod. 2023, 192, 116082. [Google Scholar] [CrossRef]
- Lee, H.; Lee, W.; Chung, J.W.; Kwak, S.-Y. Enhanced permeability of cellulose acetate ultrafiltration membrane by incorporation of cellulose graft copolymer. Cellulose 2022, 29, 9753–9775. [Google Scholar] [CrossRef]
- Yang, S.; Tang, R.; Dai, Y.; Wang, T.; Zeng, Z.; Zhang, L. Fabrication of cellulose acetate membrane with advanced ultrafiltration performances and antibacterial properties by blending with HKUST-1@LCNFs. Sep. Purif. Technol. 2021, 279, 119524. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Abdel-Karim, A.; Radwan, E.K.; Sharmoukh, W.; Wassel, A.R.; Bayoumy, A.M.; Ibrahim, M. Experimental and theoretical investigations on fouling resistant cellulose acetate/SiO2 NPs/PEDOT ultrafiltration nanocomposite membranes. J. Clean. Prod. 2021, 324, 129288. [Google Scholar] [CrossRef]
- Vatanpour, V.; Faghani, S.; Keyikoglu, R.; Khataee, A. Enhancing the permeability and antifouling properties of cellulose acetate ultrafiltration membrane by incorporation of ZnO@graphitic carbon nitride nanocomposite. Carbohydr. Polym. 2021, 256, 117413. [Google Scholar] [CrossRef]
- Mahto, A.; Halakarni, M.A.; Maraddi, A.; D’Souza, G.; Samage, A.A.; Thummar, U.G.; Mondal, D.; Nataraj, S. Upcycling cellulose acetate from discarded cigarette butts: Conversion of contaminated microfibers into loose-nanofiltration membranes for selective separation. Desalination 2022, 535, 115807. [Google Scholar] [CrossRef]
- Rasool, M.; Vankelecom, I. γ-Valerolactone as Bio-Based Solvent for Nanofiltration Membrane Preparation. Membranes 2021, 11, 418. [Google Scholar] [CrossRef]
- Rasool, M.A.; Vankelecom, I.F. Preparation of full-bio-based nanofiltration membranes. J. Membr. Sci. 2021, 618, 118674. [Google Scholar] [CrossRef]
- Batool, M.; Shafeeq, A.; Haider, B.; Ahmad, N. TiO2 Nanoparticle Filler-Based Mixed-Matrix PES/CA Nanofiltration Membranes for Enhanced Desalination. Membranes 2021, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Mejia, J.A.A.; Ricci, A.; Figueiredo, A.S.; Versari, A.; Cassano, A.; Parpinello, G.P.; De Pinho, M.N. Recovery of Phenolic Compounds from Red Grape Pomace Extract through Nanofiltration Membranes. Foods 2020, 9, 1649. [Google Scholar] [CrossRef] [PubMed]
- Mansor, E.S.; Abdallah, H.; Shalaby, M.; Shaban, A. Enhancement of reverse osmosis membranes for groundwater purification using cellulose acetate incorporated with ultrathin graphitic carbon nitride nanosheets. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100760. [Google Scholar] [CrossRef]
- Mansor, E.S.; Abdallah, H.; Shaban, A. Development of TiO2/polyvinyl alcohol-cellulose acetate nanocomposite reverse osmosis membrane for groundwater-surface water interfaces purification. Mater. Sci. Eng. B 2023, 289, 116222. [Google Scholar] [CrossRef]
- Koriem, O.A.; Showman, M.S.; El-Shazly, A.H.; Elkady, M.F. Cellulose acetate/polyvinylidene fluoride based mixed matrix membranes impregnated with UiO-66 nano-MOF for reverse osmosis desalination. Cellulose 2023, 30, 413–426. [Google Scholar] [CrossRef]
- Nakao, T.; Goda, S.; Miura, Y.; Yasukawa, M.; Ishibashi, M.; Nakagawa, K.; Shintani, T.; Matsuyama, H.; Yoshioka, T. Development of cellulose triacetate asymmetric hollow fiber membranes with highly enhanced compaction resistance for osmotically assisted reverse osmosis operation applicable to brine concentration. J. Membr. Sci. 2022, 653, 120508. [Google Scholar] [CrossRef]
- Ghaseminezhad, S.M.; Barikani, M.; Salehirad, M. Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination. Compos. Part B Eng. 2019, 161, 320–327. [Google Scholar] [CrossRef]
- Wibisono, Y.; Noviani, V.; Ramadhani, A.T.; Devianto, L.A.; Sulianto, A.A. Eco-friendly forward osmosis membrane manufacturing using dihydrolevoglucosenone. Results Eng. 2022, 16, 100712. [Google Scholar] [CrossRef]
- A Chandran, A.M.; Tayal, E.; Mural, P.K.S. Polycaprolactone-blended cellulose acetate thin-film composite membrane for dairy waste treatment using forward osmosis. Environ. Sci. Pollut. Res. 2022, 29, 86418–86426. [Google Scholar] [CrossRef]
- Jain, H.; Kumar, A.; Verma, A.K.; Wadhwa, S.; Rajput, V.D.; Minkina, T.; Garg, M.C. Treatment of textile industry wastewater by using high-performance forward osmosis membrane tailored with alpha-manganese dioxide nanoparticles for fertigation. Environ. Sci. Pollut. Res. 2022, 29, 80032–80043. [Google Scholar] [CrossRef]
- Jain, H.; Verma, A.K.; Dhupper, R.; Wadhwa, S.; Garg, M.C. Development of CA-TiO2-incorporated thin-film nanocomposite forward osmosis membrane for enhanced water flux and salt rejection. Int. J. Environ. Sci. Technol. 2021, 19, 5387–5400. [Google Scholar] [CrossRef]
- Jain, H.; Kumar, A.; Rajput, V.D.; Minkina, T.; Verma, A.K.; Wadhwa, S.; Dhupper, R.; Garg, M.C.; Joshi, H. Fabrication and characterization of high-performance forward-osmosis membrane by introducing manganese oxide incited graphene quantum dots. J. Environ. Manag. 2022, 305, 114335. [Google Scholar] [CrossRef]
- Li, T.; Cheng, C.; Zhang, K.; Yang, J.; Han, G.; Wang, X.; Wang, Z.; Wang, L. UiO-66-NH2 nanocomposites incorporated cellulose acetate for forward osmosis membranes of high desalination performance. Environ. Technol. 2022, 2022, 2099306. [Google Scholar] [CrossRef]
- Jain, H.; Dhupper, R.; Verma, A.K.; Garg, M.C. Development of titanium dioxide incorporated ultrathin cellulose acetate membrane for enhanced forward osmosis performance. Nanotechnol. Environ. Eng. 2021, 6, 67. [Google Scholar] [CrossRef]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Microfiltration membrane processes: A review of research trends over the past decade. J. Water Process. Eng. 2019, 32, 100941. [Google Scholar] [CrossRef]
- del Pino, M.P.; Durham, B. Wastewater reuse through dual-membrane processes: Opportunities for sustainable water resources. Desalination 1999, 124, 271–277. [Google Scholar] [CrossRef]
- Zizovic, I.; Tyrka, M.; Matyja, K.; Moric, I.; Senerovic, L.; Trusek, A. Functional Modification of Cellulose Acetate Microfiltration Membranes by Supercritical Solvent Impregnation. Molecules 2021, 26, 411. [Google Scholar] [CrossRef]
- Radiman, C.; Widyaningsih, S.; Sugesty, S. New applications of kenaf (Hibiscus cannabinus L.) as microfiltration membranes. J. Membr. Sci. 2008, 315, 141–146. [Google Scholar] [CrossRef]
- Galiano, F.; Briceño, K.; Marino, T.; Molino, A.; Christensen, K.V.; Figoli, A. Advances in biopolymer-based membrane preparation and applications. J. Membr. Sci. 2018, 564, 562–586. [Google Scholar] [CrossRef]
- Bose, J.; Dasgupta, J.; Adhikari, U.; Sikder, J. Tuning permeation characteristics of cellulose acetate membrane embedded with raw and amine-functionalized silicon carbide nanoparticle for oil-water separation. J. Water Process. Eng. 2021, 41, 102019. [Google Scholar] [CrossRef]
- Fazullin, D.D.; Mavrin, G.V. Modification of Microfiltration Membranes with Ultraviolet Radiation to Separate Oil-In-Water Emulsions. Int. J. Eng. Res. Technol. 2020, 13, 3559–3563. [Google Scholar] [CrossRef]
- Chen, Z.; Deng, M.; Chen, Y.; He, G.; Wu, M.; Wang, J. Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. J. Membr. Sci. 2004, 235, 73–86. [Google Scholar] [CrossRef]
- Aliane, A.; Bounatiro, N.; Cherif, A.; Akretche, D. Removal of chromium from aqueous solution by complexation—ultrafiltration using a water-soluble macroligand. Water Res. 2001, 35, 2320–2326. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Su, Y.; Wang, Y.; Ma, X.; Sun, Q.; Jiang, Z. Enhanced permeation performance of cellulose acetate ultrafiltration membrane by incorporation of Pluronic F127. J. Membr. Sci. 2007, 294, 68–74. [Google Scholar] [CrossRef]
- Mu, K.; Zhang, D.; Shao, Z.; Qin, D.; Wang, Y.; Wang, S. Enhanced permeability and antifouling performance of cellulose acetate ultrafiltration membrane assisted by l-DOPA functionalized halloysite nanotubes. Carbohydr. Polym. 2017, 174, 688–696. [Google Scholar] [CrossRef]
- Kutowy, O.; Sourirajan, S. Cellulose acetate ultrafiltration membranes. J. Appl. Polym. Sci. 1975, 19, 1449–1460. [Google Scholar] [CrossRef]
- Sivakumar, M.; Malaisamy, R.; Sajitha, C.; Mohan, D.; Mohan, V.; Rangarajan, R. Preparation and performance of cellulose acetate–polyurethane blend membranes and their applications–II. J. Membr. Sci. 2000, 169, 215–228. [Google Scholar] [CrossRef]
- Sivakumar, M.; Malaisamy, R.; Sajitha, C.; Mohan, D.; Mohan, V.; Rangarajan, R. Ultrafiltration application of cellulose acetate–polyurethane blend membranes. Eur. Polym. J. 1999, 35, 1647–1651. [Google Scholar] [CrossRef]
- Han, B.; Zhang, D.; Shao, Z.; Kong, L.; Lv, S. Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes. Desalination 2013, 311, 80–89. [Google Scholar] [CrossRef]
- Arthanareeswaran, G.; Thanikaivelan, P.; Srinivasn, K.; Mohan, D.; Rajendran, M. Synthesis, characterization and thermal studies on cellulose acetate membranes with additive. Eur. Polym. J. 2004, 40, 2153–2159. [Google Scholar] [CrossRef]
- Haddada, R.; Ferjani, E.; Roudesli, M.S.; Deratani, A. Properties of cellulose acetate nanofiltration membranes. Application to brackish water desalination. Desalination 2004, 167, 403–409. [Google Scholar] [CrossRef]
- Ye, S.H.; Watanabe, J.; Iwasaki, Y.; Ishihara, K. Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system. J. Membr. Sci. 2002, 210, 411–421. [Google Scholar] [CrossRef]
- Kumar, M.; Rao, T.S.; Isloor, A.M.; Ibrahim, G.S.; Inamuddin; Ismail, N.; Ismail, A.F.; Asiri, A.M. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. Int. J. Biol. Macromol. 2019, 129, 715–727. [Google Scholar] [CrossRef]
- Vijayalakshmi, A.; Arockiasamy, D.L.; Nagendran, A.; Mohan, D. Separation of proteins and toxic heavy metal ions from aqueous solution by CA/PC blend ultrafiltration membranes. Sep. Purif. Technol. 2008, 62, 32–38. [Google Scholar] [CrossRef]
- Rajeswari, A.; Vismaiya, S.; Pius, A. Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem. Eng. J. 2017, 313, 928–937. [Google Scholar] [CrossRef]
- De Guzman, M.R.; Andra, C.K.A.; Ang, M.B.M.Y.; Dizon, G.V.C.; Caparanga, A.R.; Huang, S.-H.; Lee, K.-R. Increased performance and antifouling of mixed-matrix membranes of cellulose acetate with hydrophilic nanoparticles of polydopamine-sulfobetaine methacrylate for oil-water separation. J. Membr. Sci. 2021, 620, 118881. [Google Scholar] [CrossRef]
- Nabe, A.; Staude, E.; Belfort, G. Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions. J. Membr. Sci. 1997, 133, 57–72. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, G.; Zhang, H.; Yang, F. Exploration of permeability and antifouling performance on modified cellulose acetate ultrafiltration membrane with cellulose nanocrystals. Carbohydr. Polym. 2017, 174, 190–199. [Google Scholar] [CrossRef]
- Kanagaraj, P.; Nagendran, A.; Rana, D.; Matsuura, T. Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes. Int. J. Biol. Macromol. 2016, 89, 81–88. [Google Scholar] [CrossRef]
- Senthilkumar, S.; Rajesh, S.; Mohan, D.; Soundararajan, P. Preparation, characterization, and performance evaluation of poly (ether-imide) incorporated cellulose acetate ultrafiltration membrane for hemodialysis. Sep. Sci. Technol. 2013, 48, 66–75. [Google Scholar] [CrossRef]
- Ali, M.; Jahan, Z.; Sher, F.; Niazi, M.B.K.; Kakar, S.J.; Gul, S. Nano architectured cues as sustainable membranes for ultrafiltration in blood hemodialysis. Mater. Sci. Eng. C 2021, 128, 112260. [Google Scholar] [CrossRef] [PubMed]
- Van der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol. 2008, 63, 251–263. [Google Scholar] [CrossRef]
- Figoli, A.; Ursino, C.; Santoro, S.; Ounifi, I.; Chekir, J.; Hafiane, A.; Ferjani, E. Cellulose acetate nanofiltration membranes for cadmium remediation. J. Membr. Sci. Res. 2020, 6, 226–234. [Google Scholar]
- Sivakumar, M.; Mohan, D.R.; Rangarajan, R. Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. J. Membr. Sci. 2006, 268, 208–219. [Google Scholar] [CrossRef]
- Shaaban, M.F.; El-Khateeb, M.A.; Saad, M. Water desalination using cellulosic nano-filtration membrane composed of nano-scale polytetraflouroethylene. Egypt. J. Chem. 2019, 62, 15–20. [Google Scholar]
- Yu, S.; Liu, M.; Ma, M.; Qi, M.; Lü, Z.; Gao, C. Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. J. Membr. Sci. 2010, 350, 83–91. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Rajabi, H.; Daraei, P.; Falsafi, M. Effect of fatty acids on the structure and performance of cellulose acetate nanofiltration membranes in retention of nitroaromatic pesticides. Desalination 2012, 301, 26–41. [Google Scholar] [CrossRef]
- Etemadi, H.; Yegani, R.; Seyfollahi, M.; Babaeipour, V. Preparation and performance evaluation of cellulose acetate/nanodiamond nanocomposite membrane in the treatment of pharmaceutical wastewater by membrane bioreactor. Desalin Water Treat 2017, 76, 98–111. [Google Scholar] [CrossRef]
- Choi, J.-H.; Fukushi, K.; Yamamoto, K. A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: The performance of cellulose acetate nanofiltration membranes for long-term operation. Sep. Purif. Technol. 2007, 52, 470–477. [Google Scholar] [CrossRef]
- Cano-Odena, A.; Spilliers, M.; Dedroog, T.; De Grave, K.; Ramon, J.; Vankelecom, I. Optimization of cellulose acetate nanofiltration membranes for micropollutant removal via genetic algorithms and high throughput experimentation. J. Membr. Sci. 2011, 366, 25–32. [Google Scholar] [CrossRef]
- Shenvi, S.S.; Isloor, A.M.; Ismail, A. A review on RO membrane technology: Developments and challenges. Desalination 2015, 368, 10–26. [Google Scholar] [CrossRef]
- Lee, S.; Boo, C.; Elimelech, M.; Hong, S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J. Membr. Sci. 2010, 365, 34–39. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Reid, C.E.; Breton, E.J. Water and ion flow across cellulosic membranes. J. Appl. Polym. Sci. 1959, 1, 133–143. [Google Scholar] [CrossRef]
- Turbak, A.F. (Ed.) Synthetic Membranes: Volume I Desalination; American Chemical Society: Washington, DC, USA, 1981; Volume 153. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef]
- Kunst, B.; Sourirajan, S. Development and performance of some porous cellulose acetate membranes for reverse osmosis desalination. J. Appl. Polym. Sci. 1970, 14, 2559–2568. [Google Scholar] [CrossRef]
- Xu, P.; Na, N. Study on Antibacterial Properties of Cellulose Acetate Seawater Desalination Reverse-Osmosis Membrane with Graphene Oxide. J. Coast. Res. 2020, 105, 246–251. [Google Scholar] [CrossRef]
- Abdellah Ali, S.F.; William, L.A.; Fadl, E.A. Cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate membranes for water desalination applications. Cellulose 2020, 27, 9525–9543. [Google Scholar] [CrossRef]
- Bódalo, A.; Gómez, J.-L.; Gómez, E.G.; León, G.; Tejera, M. Ammonium removal from aqueous solutions by reverse osmosis using cellulose acetate membranes. Desalination 2005, 184, 149–155. [Google Scholar] [CrossRef]
- Fujioka, T.; Khan, S.J.; McDonald, J.A.; Nghiem, L.D. Rejection of trace organic chemicals by a hollow fibre cellulose triacetate reverse osmosis membrane. Reverse Osmosis 2015, 368, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, W.; Gryta, M. The Application of Cellulose Acetate Membranes for Separation of Fermentation Broths by the Reverse Osmosis: A Feasibility Study. Int. J. Mol. Sci. 2022, 23, 11738. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward osmosis: Where are we now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. Desalination 2020, 485, 114455. [Google Scholar] [CrossRef]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Holloway, R.W.; Childress, A.E.; Dennett, K.E.; Cath, T.Y. Forward osmosis for concentration of anaerobic digester centrate. Water Res. 2007, 41, 4005–4014. [Google Scholar] [CrossRef]
- Sairam, M.; Sereewatthanawut, E.; Li, K.; Bismarck, A.; Livingston, A. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution. Desalination 2011, 273, 299–307. [Google Scholar] [CrossRef]
- Qasim, M.; Darwish, N.A.; Sarp, S.; Hilal, N. Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination 2015, 374, 47–69. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Wang, X.; Cheng, C.; Zhang, K.; Yang, J.; Han, G.; Wang, Z.; Wang, X.; Wang, L. Desalination Characteristics of Cellulose Acetate FO Membrane Incorporated with ZIF-8 Nanoparticles. Membranes 2022, 12, 122. [Google Scholar] [CrossRef]
- Su, J.; Yang, Q.; Teo, J.F.; Chung, T.-S. Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J. Membr. Sci. 2010, 355, 36–44. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; Hou, D.; Bai, Y.; Liu, H. Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis. J. Environ. Sci. 2016, 45, 7–17. [Google Scholar] [CrossRef]
- Alfahel, R.; Azzam, R.S.; Hafiz, M.; Hawari, A.H.; Pandey, R.P.; Mahmoud, K.A.; Hassan, M.K.; Elzatahry, A.A. Fabrication of fouling resistant Ti3C2Tx (MXene)/cellulose acetate nanocomposite membrane for forward osmosis application. J. Water Process. Eng. 2020, 38, 101551. [Google Scholar] [CrossRef]
- Lakra, R.; Balakrishnan, M.; Basu, S. Development of cellulose acetate-chitosan-metal organic framework forward osmosis membrane for recovery of water and nutrients from wastewater. J. Environ. Chem. Eng. 2021, 9, 105882. [Google Scholar] [CrossRef]
- Huck, P.; Sozański, M. Chemical Basis for Water Technology. Earth Syst. Environ. Sci. 2011, 3, 429–469. [Google Scholar] [CrossRef]
- Ehsani, M.; Doan, H.; Lohi, A. A comprehensive review of membrane fouling and cleaning methods with emphasis on ultrasound-assisted fouling control processes. Korean J. Chem. Eng. 2021, 38, 1531–1555. [Google Scholar] [CrossRef]
- Singh, R. Water and Membrane Treatment. In Membrane Technology and Engineering for Water Purification; Elsevier: Amsterdam, The Netherlands, 2015; pp. 81–178. [Google Scholar] [CrossRef]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Du, X.; Shi, Y.; Jegatheesan, V.; Haq, I.U. A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. Membranes 2020, 10, 24. [Google Scholar] [CrossRef]
- Etemadi, H.; Yegani, R.; Seyfollahi, M.; Rabiee, M. Synthesis, characterization, and anti-fouling properties of cellulose acetate/polyethylene glycol-grafted nanodiamond nanocomposite membranes for humic acid removal from contaminated water. Iran. Polym. J. 2018, 27, 381–393. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Y.-N.; Wei, J.; Tang, C.Y. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules. Water Res. 2013, 47, 1867–1874. [Google Scholar] [CrossRef]
- Chiao, Y.-H.; Nakagawa, K.; Matsuba, M.; Okamoto, M.; Shintani, T.; Sasaki, Y.; Yoshioka, T.; Kamio, E.; Wickramasinghe, S.R.; Matsuyama, H. Comparison of Fouling Behavior in Cellulose Triacetate Membranes Applied in Forward and Reverse Osmosis. Ind. Eng. Chem. Res. 2022, 61, 15345–15354. [Google Scholar] [CrossRef]
- Doan, H.; Lohi, A. Fouling in Membrane Filtration and Remediation Methods. In Mass Transfer—Advances in Sustainable Energy and Environment Oriented Numerical Modeling; Nakajima, H., Ed.; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Taniguchi, M.; Kilduff, J.E.; Belfort, G. Modes of Natural Organic Matter Fouling during Ultrafiltration. Environ. Sci. Technol. 2003, 37, 1676–1683. [Google Scholar] [CrossRef]
- A Zularisam, A.; Ismail, A.; Salim, R. Behaviours of natural organic matter in membrane filtration for surface water treatment—A review. Desalination 2006, 194, 211–231. [Google Scholar] [CrossRef]
- Chennamsetty, R.; Escobar, I. Effect of Ion Beam Irradiation on Two Nanofiltration Water Treatment Membranes. Sep. Sci. Technol. 2008, 43, 4009–4029. [Google Scholar] [CrossRef]
- Gullinkala, T.; Escobar, I. Study of the hydrophilic-enhanced ultrafiltration membrane. Environ. Prog. 2008, 27, 210–217. [Google Scholar] [CrossRef]
- Guo, W.; Ngo, H.-H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef]
- García, A.; Rodríguez, B.; Giraldo, H.; Quintero, Y.; Quezada, R.; Hassan, N.; Estay, H. Copper-modified polymeric membranes for water treatment: A comprehensive review. Membranes 2021, 11, 93. [Google Scholar] [CrossRef]
- Jiang, S.-X.; Li, Y.-N.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef]
- Sprick, C.G. Functionalization of Silver Nanoparticles on Membranes and its Influence on Biofouling. Master’s Thesis, University of Kentucky, Lexington, Kentucky, 2017. [Google Scholar] [CrossRef]
- Ismail, A.F.; Khulbe, K.C.; Matsuura, T. RO Membrane Fouling. In Reverse Osmosis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 189–220. [Google Scholar] [CrossRef]
- Ong, C.S.; Goh, P.; Lau, W.; Misdan, N.; Ismail, A. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination 2016, 393, 2–15. [Google Scholar] [CrossRef]
- Tang, C.Y.; Chong, T.; Fane, A.G. Colloidal interactions and fouling of NF and RO membranes: A review. Adv. Colloid Interface Sci. 2011, 164, 126–143. [Google Scholar] [CrossRef]
- Liao, B.Q.; Bagley, D.; Kraemer, H.E.; Leppard, G.G.; Liss, S.N. A Review of Biofouling and its Control in Membrane Separation Bioreactors. Water Environ. Res. 2004, 76, 425–436. [Google Scholar] [CrossRef]
- Puls, J.; Wilson, S.A.; Hölter, D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym. Environ. 2011, 19, 152–165. [Google Scholar] [CrossRef]
- Maddah, H.; Chogle, A. Biofouling in reverse osmosis: Phenomena, monitoring, controlling and remediation. Appl. Water Sci. 2017, 7, 2637–2651. [Google Scholar] [CrossRef]
- Sun, X.; Kanani, D.M.; Ghosh, R. Characterization and theoretical analysis of protein fouling of cellulose acetate membrane during constant flux dead-end microfiltration. J. Membr. Sci. 2008, 320, 372–380. [Google Scholar] [CrossRef]
- Winfield, B. A study of the factors affecting the rate of fouling of reverse osmosis membranes treating secondary sewage effluents. Water Res. 1979, 13, 565–569. [Google Scholar] [CrossRef]
- Hashino, M.; Hirami, K.; Katagiri, T.; Kubota, N.; Ohmukai, Y.; Ishigami, T.; Maruyama, T.; Matsuyama, H. Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling. J. Membr. Sci. 2011, 379, 233–238. [Google Scholar] [CrossRef]
- Fu, X.; Maruyama, T.; Sotani, T.; Matsuyama, H. Effect of surface morphology on membrane fouling by humic acid with the use of cellulose acetate butyrate hollow fiber membranes. J. Membr. Sci. 2008, 320, 483–491. [Google Scholar] [CrossRef]
- Indarti, D.; Ali, B.T.I.; Mulyono, T. Filtration of Protein in Tempe Wastewater Using Cellulose Acetate Membrane. UNEJ E-Proceeding 2017, 282–284. [Google Scholar]
- Schafer, A. Natural Organics Removal Using Membranes; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Elimelech, M. Colloidal Fouling of Reverse Osmosis Membranes: Measurements and Fouling Mechanisms. Environ. Sci. Technol. 1997, 31, 3654–3662. [Google Scholar] [CrossRef]
- Elimelech, M.; Gregory, J.; Jia, X. Particle Deposition and Aggregation: Measurement, Modelling and Simulation; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Koo, J.Y.; Kang, S.P.; Kim, J.E.; Hyung, H.; Kim, Y.H.; Yoon, S.; Kim, S.S. Fouling resistant reverse osmosis membranes. In ACS Annual Meeting; American Water: Camden, NJ, USA, 2002. [Google Scholar]
- Wang, Y.-N.; Järvelä, E.; Wei, J.; Zhang, M.; Kyllönen, H.; Wang, R.; Tang, C.Y. Gypsum scaling and membrane integrity of osmotically driven membranes: The effect of membrane materials and operating conditions. Desalination 2016, 377, 1–10. [Google Scholar] [CrossRef]
- Vrijenhoek, E.M.; Hong, S.; Elimelech, M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 2001, 188, 115–128. [Google Scholar] [CrossRef]
- Khan, B.; Zhan, W.; Lina, C. Cellulose acetate (CA) hybrid membrane prepared by phase inversion method combined with chemical reaction with enhanced permeability and good anti-fouling property. J. Appl. Polym. Sci. 2020, 137, 49556. [Google Scholar] [CrossRef]
- Naseem, S.; Wu, C.-M.; Xu, T.-Z.; Lai, C.-C.; Rwei, S.-P. Oil-Water Separation of Electrospun Cellulose Triacetate Nanofiber Membranes Modified by Electrophoretically Deposited TiO2/Graphene Oxide. Polymers 2018, 10, 746. [Google Scholar] [CrossRef] [PubMed]
- Sjahro, N.; Yunus, R.; Abdullah, L.C.; Rashid, S.A.; Asis, A.J.; Akhlisah, Z.N. Recent advances in the application of cellulose derivatives for removal of contaminants from aquatic environments. Cellulose 2021, 28, 7521–7557. [Google Scholar] [CrossRef]
- Kamide, K.; Saito, M. Cellulose and cellulose derivatives: Recent advances in physical chemistry. Biopolymers 1987, 83, 1–56. [Google Scholar]
- Puleo, A.; Paul, D.; Kelley, S. The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate. J. Membr. Sci. 1989, 47, 301–332. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, X.; White, K.L.; Lin, S.; Wu, H.; Cao, S.; Huang, L.; Chen, L. Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 2016, 23, 811–821. [Google Scholar] [CrossRef]
- Hilal, N.; Ogunbiyi, O.O.; Miles, N.; Nigmatullin, R. Methods Employed for Control of Fouling in MF and UF Membranes: A Comprehensive Review. Sep. Sci. Technol. 2005, 40, 1957–2005. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; He, M.; Su, Y.; Zhao, X.; Elimelech, M.; Jiang, Z. Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X. Membrane cleaning in membrane bioreactors: A review. J. Membr. Sci. 2014, 468, 276–307. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, S.; Oh, Y.; Zhou, Z.; Shin, H.-S.; Chae, S.-R. Fouling in membrane bioreactors: An updated review. Water Res. 2017, 114, 151–180. [Google Scholar] [CrossRef]
- Ostuni, E.; Chapman, R.G.; Holmlin, R.E.; Takayama, S.; Whitesides, G.M. A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir 2001, 17, 5605–5620. [Google Scholar] [CrossRef]
- Kang, G.-D.; Cao, Y.-M. Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res. 2012, 46, 584–600. [Google Scholar] [CrossRef]
- Saraswathi, M.S.S.A.; Rana, D.; Alwarappan, S.; Gowrishankar, S.; Kanimozhi, P.; Nagendran, A. Cellulose acetate ultrafiltration membranes customized with bio-inspired polydopamine coating and in situ immobilization of silver nanoparticles. New J. Chem. 2019, 43, 4216–4225. [Google Scholar] [CrossRef]
- Beisl, S.; Monteiro, S.; Santos, R.; Figueiredo, A.S.; Sánchez-Loredo, M.G.; Lemos, M.A.; Lemos, F.; Minhalma, M.; de Pinho, M.N. Synthesis and bactericide activity of nanofiltration composite membranes–Cellulose acetate/silver nanoparticles and cellulose acetate/silver ion exchanged zeolites. Water Res. 2019, 149, 225–231. [Google Scholar] [CrossRef]
- Sonawane, S.H.; Terrien, A.; Figueiredo, A.S.; Gonçalves, M.C.; De Pinho, M.N. The role of silver nanoparticles on mixed matrix Ag/cellulose acetate asymmetric membranes. Polym. Compos. 2017, 38, 32–39. [Google Scholar] [CrossRef]
- Scheeren, C.W.; Hermes, V.; Bianchi, O.; Hertz, P.; Dias, S.P.; Dupont, J. Antimicrobial membrane cellulose acetate containing ionic liquid and metal nanoparticles. J. Nanosci. Nanotechnol. 2011, 11, 5114–5122. [Google Scholar] [CrossRef]
- Asiri, A.M.; Petrosino, F.; Pugliese, V.; Khan, S.B.; Alamry, K.A.; Alfifi, S.Y.; Marwani, H.M.; Alotaibi, M.M.; Algieri, C.; Chakraborty, S. Synthesis and Characterization of Blended Cellulose Acetate Membranes. Polymers 2022, 14, 4. [Google Scholar] [CrossRef]
- Das, C.; Gebru, K.A. Cellulose Acetate Modified Titanium Dioxide (TiO2) Nanoparticles Electrospun Composite Membranes: Fabrication and Characterization. J. Inst. Eng. India Ser. E 2017, 98, 91–101. [Google Scholar] [CrossRef]
- Kadhom, M.; Al-Furaiji, M.; Salih, S.; Al-Obaidi, M.A.; Abdullah, G.H.; Albayati, N. A review on UiO-66 applications in membrane-based water treatment processes. J. Water Process. Eng. 2023, 51, 103402. [Google Scholar] [CrossRef]
- Vatanpour, V.; Pasaoglu, M.E.; Barzegar, H.; Teber, O.O.; Kaya, R.; Bastug, M.; Khataee, A.; Koyuncu, I. Cellulose acetate in fabrication of polymeric membranes: A review. Chemosphere 2022, 295, 133914. [Google Scholar] [CrossRef]
- Ee, L.Y.; Tan, R.P.W.; Li, S.F.Y. Facile electrospray fabrication of ultralow biofouling cellulose acetate desalination membrane with nanocellulose/UiO66-NH2 fillers. J. Membr. Sci. 2023, 666, 121200. [Google Scholar] [CrossRef]
- Ang, M.; Devanadera, K.; Duena, A.; Luo, Z.-Y.; Chiao, Y.-H.; Millare, J.; Aquino, R.; Huang, S.-H.; Lee, K.-R. Modifying Cellulose Acetate Mixed-Matrix Membranes for Improved Oil–Water Separation: Comparison between Sodium and Organo-Montmorillonite as Particle Additives. Membranes 2021, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.; Hilliou, L.; de Amorim, M.T.P. Fabrication of pristine-multiwalled carbon nanotubes/cellulose acetate composites for removal of methylene blue. Polym. Bull. 2020, 77, 623–653. [Google Scholar] [CrossRef]
- de Faria, A.F.; de Moraes, A.C.M.; Andrade, P.F.; da Silva, D.S.; Gonçalves, M.D.C.; Alves, O.L. Cellulose acetate membrane embedded with graphene oxide-silver nanocomposites and its ability to suppress microbial proliferation. Cellulose 2017, 24, 781–796. [Google Scholar] [CrossRef]
- Shen, S.-S.; Chen, H.; Wang, R.-H.; Ji, W.; Zhang, Y.; Bai, R. Preparation of antifouling cellulose acetate membranes with good hydrophilic and oleophobic surface properties. Mater. Lett. 2019, 252, 1–4. [Google Scholar] [CrossRef]
- Guo, H.; Peng, Y.; Liu, Y.; Wang, Z.; Hu, J.; Liu, J.; Ding, Q.; Gu, J. Development and investigation of novel antifouling cellulose acetate ultrafiltration membrane based on dopamine modification. Int. J. Biol. Macromol. 2020, 160, 652–659. [Google Scholar] [CrossRef]
- Kanagaraj, P.; Neelakandan, S.; Nagendran, A. Preparation, characterization and performance of cellulose acetate ultrafiltration membranes modified by charged surface modifying macromolecule. Korean J. Chem. Eng. 2014, 31, 1057–1064. [Google Scholar] [CrossRef]
- Tyrka, M.; Nowak, M.; Misic, D.; Półbrat, T.; Koter, S.; Trusek, A.; Zizovic, I. Cellulose Acetate Membranes Modification by Aminosilane Grafting in Supercritical Carbon Dioxide towards Antibiofilm Properties. Membranes 2022, 12, 33. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Y.; Zhang, Y.; Tan, L. Improvement of Antibacterial and Antifouling Properties of a Cellulose Acetate Membrane by Surface Grafting Quaternary Ammonium Salt. ACS Appl. Mater. Interfaces 2022, 14, 38358–38369. [Google Scholar] [CrossRef]
- Sagle, A.C.; Van Wagner, E.M.; Ju, H.; McCloskey, B.; Freeman, B.D.; Sharma, M.M. PEG-coated reverse osmosis membranes: Desalination properties and fouling resistance. J. Membr. Sci. 2009, 340, 92–108. [Google Scholar] [CrossRef]
- Elimelech, M.; Zhu, X.; Childress, A.E.; Hong, S. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 1997, 127, 101–109. [Google Scholar] [CrossRef]
- Al-Jeshi, S.; Neville, A. An investigation into the relationship between flux and roughness on RO membranes using scanning probe microscopy. Desalination 2006, 189, 221–228. [Google Scholar] [CrossRef]
- Jayalakshmi, A.; Kim, I.-C.; Kwon, Y.-N. Cellulose acetate graft-(glycidylmethacrylate-g-PEG) for modification of AMC ultrafiltration membranes to mitigate organic fouling. RSC Adv. 2015, 5, 48290–48300. [Google Scholar] [CrossRef]
- Zare, S.; Kargari, A. Membrane properties in membrane distillation. In Emerging Technologies for Sustainable Desalination Handbook; Elsevier: Amsterdam, The Netherlands, 2018; pp. 107–156. [Google Scholar]
- Wang, Y.-N.; Tang, C.Y. Protein fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes—The role of hydrodynamic conditions, solution chemistry, and membrane properties. J. Membr. Sci. 2011, 376, 275–282. [Google Scholar] [CrossRef]
- Maan, A.M.C.; Hofman, A.H.; De Vos, W.M.; Kamperman, M. Recent Developments and Practical Feasibility of Polymer-Based Antifouling Coatings. Adv. Funct. Mater. 2020, 30, 2000936. [Google Scholar] [CrossRef]
- Goetz, L.A.; Jalvo, B.; Rosal, R.; Mathew, A.P. Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J. Membr. Sci. 2016, 510, 238–248. [Google Scholar] [CrossRef]
- Yao, A.; Yan, Y.; Tan, L.; Shi, Y.; Zhou, M.; Zhang, Y.; Zhu, P.; Huang, S. Improvement of filtration and antifouling performance of cellulose acetate membrane reinforced by dopamine modified cellulose nanocrystals. J. Membr. Sci. 2021, 637, 119621. [Google Scholar] [CrossRef]
- Yang, M.; Hadi, P.; Yin, X.; Yu, J.; Huang, X.; Ma, H.; Walker, H.; Hsiao, B.S. Antifouling nanocellulose membranes: How subtle adjustment of surface charge lead to self-cleaning property. J. Membr. Sci. 2021, 618, 118739. [Google Scholar] [CrossRef]
Membrane Type | Membrane Material | Reference | |||
---|---|---|---|---|---|
Polymer | Solvent | Non-Solvent | Additives | ||
MF | Cellulose triacetate- CTA (MW = 405 000), cellulose diacetate-CDA (MW = 219 000), and cellulose acetate propionate—CAP (MW = 189 000) | 2-ethyl-1,3-hexanediol, sulfolane, 1,3-butylene glycol and neopentyl glycol | 1,3-BG for CDA and CTA, water for CAP. | [31] | |
MF | CA with an average molecular weight of 30,000 g/mol | Acetone | Water | CaCO3 as pore template, Glycerin as pore-forming spacer. | [32] |
MF | CA with average molecular weight of 50,000 g/mol | Acetone | Water | Cellulose nanofibers | [33] |
UF | CA (Mn = 30,000) | N, N-dimethylacetamide (DMA)/methyl acetate (MAC) | Water | [34] | |
UF | CA (Mn = 30,000) | N, N-dimethylacetamide (DMA) | Water | oligomeric ε-DL-grafted cellulose copolymer | [35] |
UF | CA (Mn = 30,000) | N, N-dimethyl formamide (DMF) | Water | PEGLignocellulose nanofibrils | [36] |
UF | CA | DMA | Water | Silicon oxide nanoparticles, poly(3,4-ethylene dioxythiophene) | [37] |
UF | CA (Mn = 30,000) | DMF | Water | ZnO-graphitic carbonNitride | [38] |
NF | CA | Acetone and formamide | Water | [39] | |
NF | CA Cellulose triacetate | γ-Valerolactone (GVL) | WaterEthanol | [40] | |
NF | CA (30,000) | glycerol derivatives (triacetin, diacetin, monoacetin or glycerol formal) Methyltetrahydrofuran (2ME-THF) | WaterEthanol | [41] | |
NF | CA (Mw = 102.09 g/mol) Polyethersulfone (MW = 75,000 g/mol) | 1–methyl–2–pyrrolidone (NMP) | Water and isopropanol mixture | PVP (pore former and hydrophilic agent)TiO2 | [42] |
NF | CA | Acetone- formamide-water | Water | Magnesium perchlorate | [43] |
RO | CA (MW100,000) PVA | DMA | Water | Graphitic carbon nitride | [44] |
RO | CA (MW100,000) PVA | DMA | Water | TiO2 | [45] |
RO | CA (100,000) PVDF | Dioxane/ acetone/ acetic acid/ methanol | Water | UiO-66 nano MOF | [46] |
RO | CTA | NMP + ethylene glycol (EG mixture) | Water | [47] | |
RO | CA (30,000) | DMF | Water | Graphene oxide (GO) | [48] |
FO | CA (30,000) and CTA | Cyrene | Water | [49] | |
FO | CA (50,000) Polycaprolactone (80,000) | DMF and acetone | Water | Graphene oxide (GO) | [50] |
FO | CA | NMP | Water | Manganese oxide nanoparticlesPVP | [51] |
FO | CA | NMP | Water | PVPTiO2 | [52] |
FO | CA (30,000) | NMP | Water | PVPManganese oxide incited graphene quantum dots | [53] |
FO | CA | DMA and 1,4-dioxane and PEG-400 | Water | UiO-66-NH2 MOF | [54] |
FO | CA | DMF | Water | TiO2 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Zurayk, R.; Alnairat, N.; Khalaf, A.; Ibrahim, A.A.; Halaweh, G. Cellulose Acetate Membranes: Fouling Types and Antifouling Strategies—A Brief Review. Processes 2023, 11, 489. https://doi.org/10.3390/pr11020489
Abu-Zurayk R, Alnairat N, Khalaf A, Ibrahim AA, Halaweh G. Cellulose Acetate Membranes: Fouling Types and Antifouling Strategies—A Brief Review. Processes. 2023; 11(2):489. https://doi.org/10.3390/pr11020489
Chicago/Turabian StyleAbu-Zurayk, Rund, Nour Alnairat, Aya Khalaf, Abed Alqader Ibrahim, and Ghada Halaweh. 2023. "Cellulose Acetate Membranes: Fouling Types and Antifouling Strategies—A Brief Review" Processes 11, no. 2: 489. https://doi.org/10.3390/pr11020489
APA StyleAbu-Zurayk, R., Alnairat, N., Khalaf, A., Ibrahim, A. A., & Halaweh, G. (2023). Cellulose Acetate Membranes: Fouling Types and Antifouling Strategies—A Brief Review. Processes, 11(2), 489. https://doi.org/10.3390/pr11020489