The Effects of Oven Dehydration on Bioactive Compounds, Antioxidant Activity, Fatty Acids and Mineral Contents of Strawberry Tree Fruit
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Methods
2.2.1. Heat Treatment
2.2.2. Moisture Content
2.2.3. Total Oil Content
2.2.4. Carotenoid Content
2.2.5. Tannin Content
2.2.6. Extraction Procedure
2.2.7. Total Phenolic Content
2.2.8. Total Flavonoid Content
2.2.9. Antioxidant Activity
2.2.10. Determination of Phenolic Compounds
2.2.11. Fatty Acid Composition
2.2.12. Mineral Content
2.3. Statistical Analyses
3. Results and Discussion
3.1. Chemical Characteristics, Bioactive Compounds and Antioxidant Activity of Dried Strawberry Tree Fruit
3.2. The Phenolic Constituents of Untreated (Control) and Dehydrated Sandal Strawberry Fruit
3.3. Fatty Acid Compositions of the Oils of the Untreated (Control) and Heat-Treated Sandal Strawberry Tree Fruit
3.4. The Mineral Content of Untreated (Control) and Dehydrated Sandal Strawberry Tree Fruit
3.5. Principal Component Analysis (PCA) of Untreated (Control) and Dehydrated Sandal Strawberry Tree Fruit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özcan, M.M.; Haciseferog¢ullari, H. The strawberry (Arbutus unedo L.) fruits: Chemical composition, physical properties and mineral contents. J. Food Eng. 2007, 78, 1022–1028. [Google Scholar] [CrossRef]
- Serçe, S.; Özgen, M.; Torun, A.A.; Ercişli, S. Chemical composition, antioxidant activities and total phenolic content of Arbutus andrachne L. (Fam. Ericaceae) (The Greek Strawberry Tree) fruits from Turkey. J. Food Comp. 2010, 23, 619–623. [Google Scholar] [CrossRef]
- El Haouari, M.; Assem, N.; Changan, S.; Kumar, M.; Dastan, S.D.; Rajkovic, J.; Taheri, Y.; Sharifi-Rad, J. An Insight into Phytochemical, Pharmacological, and Nutritional Properties of Arbutus unedo L. from Morocco. Evid.-Based Complement. Altern. Med. 2021, 2021, 1794621. [Google Scholar] [CrossRef]
- Anjos, O.; Canas, S.; Gonçalves, J.C.; Caldeira, I. Development of a Spirit Drink Produced with Strawberry Tree (Arbutus unedo L.) Fruit and Honey. Beverages 2020, 6, 38. [Google Scholar] [CrossRef]
- Torres, J.A.; Valle, F.; Pinto, C.; Garcia-Fuentes, A.; Salazar, C.; Cano, E. Arbutus unedo L. communities in southern Iberian Peninsula mountains. Plant Ecol. 2002, 160, 207–223. [Google Scholar] [CrossRef]
- Oliveira, I.; Baptista, P.; Bento, A.; Pereira, J.A. Arbutus unedo L. and its benefits on human health. J. Food Nutr. Res. 2011, 50, 73–85. [Google Scholar]
- Kim, T.L. Arbutus unedo. In Edible Medicinal and Noin-Medicinal Plants; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2012; Volume 2, pp. 444–451. [Google Scholar]
- Ruiz-Rodriguez, B.M.; Morales, P.; Fernandez-Ruiz, V.; Sanchez-Mata, M.C.; Camara, M.; Diez-Marques, C.; Pardo-de-Santayana, M.; Molina, M.; Tardio, J. Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Res. Int. 2011, 44, 1244–1253. [Google Scholar] [CrossRef]
- Vidrih, R.; Hribar, J.; Prgomet, Ž.; Ulrich, N.P. The physico-chemical properties of strawberry tree (Arbutus unedo L.) fruits. Croat. J. Food Sci. Technol. 2013, 5, 29–33. [Google Scholar]
- Ayaz, F.A.; Kucukislamoglu, M.; Reunanen, M. Sugar, nonvolatile and phenolic acids composition of strawberry tree (Arbutus unedo L. Var. Ellipsoidea) fruits. J. Food Comp. Anal. 2000, 13, 171–177. [Google Scholar] [CrossRef]
- Alarcão-e-Silva, M.L.C.M.M.; Leitão, A.E.B.; Azinheira, H.G.; Leitão, M.C.A. The Arbutus berry: Studies on its color and chemical characteristics at two mature stages. J. Food Compos. Anal. 2001, 14, 27–35. [Google Scholar] [CrossRef]
- Soufleros, Ç.E.H.; Mygdalia, S.A.; Natskoulis, P. Production process and characterization of the traditional Greek fruit distillate ‘Koumaro’ by aromatic and mineral composition. J. Food Compos. Anal. 2005, 18, 699–716. [Google Scholar] [CrossRef]
- Tounsia, A.A.; Moussa, A.; Salem, B. Physico-Chemical Characterization of Arbutus unedo L. From kabylian Region (Northern Algeria). Biomed J. Sci. Technol. Res. 2017, 1, 2009–2010. [Google Scholar] [CrossRef]
- Laouicha, S.; Senator, A.; Kherbache, K.; Bouriche, H. Total phenolic contents and antioxidant properties of algerian Arbutus unedo L. extracts. J. Drug Deliv. 2020, 10, 159–168. [Google Scholar] [CrossRef]
- Fortalezas, S.; Tavares, L.; Pimpao, R.; Tyagi, M.; Pontes, V.; Alves, P.M.; McDougall, G.; Stewart, D.; Ferreira, R.B.; Santos, C.N. Antioxidant properties and neuroprotective capacity of strawberry tree fruit (Arbutus unedo). Nutrients 2010, 2, 214. [Google Scholar] [CrossRef] [PubMed]
- El-Hilaly, J.; Hmammouchi, M.; Lyoussi, B. Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco). J. Ethnopharmacol. 2003, 86, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Mrabti, H.N.; El Abbes Faouzi, M.; Mayuk, F.M. Arbutus unedo L., (Ericaceae) inhibits intestinal glucose absorption and improves glucose tolerance in rodents. J. Ethnopharmacol. 2019, 235, 385–391. [Google Scholar] [CrossRef]
- El Cadi, H.; El Cadi, A.; Kounnoun, A. Wild strawberry (Arbutus unedo): Phytochemical screening and antioxidant properties of fruits collected in northern Morocco. Arab. J. Chem. 2020, 13, 6299–6311. [Google Scholar] [CrossRef]
- Rosenberg, U.; Bogl, W. Microwave thawing, drying and baking in the food industry. Food Technol. 1987, 41, 85–91. [Google Scholar]
- Kim, I.H.; Kim, C.J.; You, J.M.; Lee, K.W.; Kim, C.T.; Chung, S.H.; Tae, B.S. Effect of roasting temperature and time on the chemical composition of rice germ oil. J. Am. Oil Chem. Soc. 2002, 79, 413–418. [Google Scholar] [CrossRef]
- Rizki, H.; Kzaiber, F.; Elharfi, M.; Ennahli, S.; Hanine, H. Effects of roasting temperature and time on the physicochemical properties of sesame (Sesamum indicum L.) seeds. Int. J. Innov. Appl. Stud. 2015, 11, 148–156. [Google Scholar]
- Ahmed, I.A.M.; Uslu, N.; Özcan, M.M.; Al Juhaimi, F.; Ghafoor, G.; Babiker, E.E.; Osman, M.A.; Alqah, H.A.S. Effect of conventional oven roasting treatment on the physicochemical quality attributes of sesame seeds obtained from different locations. Food Chem. 2021, 338, 128109. [Google Scholar] [CrossRef]
- Silva da Rocha, A.; Rocha, E.K.; Alves, L.M.; Amaral de Moraes, B.; Carvalho de Castro, T.; Albarello, N.; Simoes-Gurgel, C. Production and optimization through elicitation of carotenoid pigments in the in vitro cultures of Cleome rosea Vahl (Cleomaceae). J. Plant Biochem. Biotechnol. 2013, 24, 105–113. [Google Scholar] [CrossRef]
- Atanassova, M.; Christova-Bagdassarian, V. Determination of tannins content by titrimetric method for comparison of different plant species. J. Univ. Chem. Technol. Metall. 2009, 44, 413–415. [Google Scholar]
- Mraihi, F.; Journi, M.; Chérif, J.K.; Sokmen, M.; Sokmen, A.; Trabelsi-Ayadi, M. Phenolic contents and antioxidant potential of Crataegus fruits grown in Tunisia as determined by DPPH, FRAP, and β-Carotene/Linoleic Acid Assay. J. Chem. 2013, 2013, 378264. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, K.W.; Park, J.B.; Lee, H.J.; Hwang, I.K. Variation in major antioxidants and total antioxidant activity of Yuzu (Citrusjunos SiebexTanaka) during maturation and between cultivars. J. Agric. Food Chem. 2004, 52, 5907–5913. [Google Scholar] [CrossRef]
- Hogan, S.; Zhang, L.; Li, J.; Zoecklein, B.; Zhou, K. Antioxidant properties and bioactive components of Norton (Vitis aestivalis) and Cabernet Franc (Vitis vinifera) wine grapes. LWT Food Sci. Technol. 2009, 42, 1269–1274. [Google Scholar] [CrossRef]
- Lee, S.K.; Mbwambo, Z.H.; Chung, H.S.; Luyengi, L.; Games, E.J.C.; Mehta, R.G. Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen. 1998, 1, 35–46. [Google Scholar] [CrossRef]
- Method ISO 5509; Animal and Vegetable Fats and Oils Preperation of Methyl Esters of Fatty Acids. ISO-International Organization for Standardization: Geneve, Switzerland, 1978; pp. 1–6.
- Skujins, S. Handbook for ICP-AES (Varıan-Vista), A Short Guide to Vista Series ICP-AES Operation; Varian International AG: Zug, Switzerland, 1998. [Google Scholar]
- Zitouni, H.; Hssaini, L.; Messaoudi, Z.; Ourradi, H.; Viuda-Martos, M.; Hernandez, F.; Ercişli, S.; Hanina, H. Phytochemical components and bioactivity assessment among twelve strawberry (Arbutus unedo L.) genotypes growing in Morocco using chemometrics. Foods 2020, 910, 1345. [Google Scholar] [CrossRef]
- Bouyahya, A.; El Moussaoui, N.; Abrini, J.; Bakri, Y.; Dakka, N. Determination of phenolic contents, antioxidant and antibacterial activities of strawberry tree (Arbutus unedo L.) leaf extracts. Br. Biotechnol. J. 2016, 14, 1–10. [Google Scholar] [CrossRef]
- Yıldız, E. Arbutus unedo L. Meyvesinin Bileşimi ve Antioksidan Özelliklerinin Belirlenmesi (The Composition and Antioxıdant Characteristics of Arbutus unedo L.); Uludag University Graduate School of Natural and Applied Sciences Department of Food Engineering: Bursa, Turkey, 2014; p. 100. [Google Scholar]
- Pimpão, R.C.; Dew, T.; Oliveira, P.B.; Williamson, G.; Ferreira, R.B.; Santos, C.N. Analysis of phenolic compounds in Portuguese wild and commercial berries after multienzyme hydrolysis. J. Agric. Food Chem. 2013, 61, 4053–4062. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Morais, J.S.; Ferreira, I.C.F.R. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxdant properties. Food Chem. 2010, 120, 247–254. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Fernández-Ruiz, V.; Sánchez-Mata, M.C.; Câmara, M.; Morales, R.; Tardio, J. Wild edible fruits as a potential source of phytochemicals with capacity to inhibit lipid peroxidation. Eur. J. Lipid Sci. Technol. 2013, 115, 176–185. [Google Scholar] [CrossRef]
Process | Moisture Content (%) | Oil Content (%) | Carotenoid Content (μg/g) | Tannin Content (%) |
---|---|---|---|---|
Control | 51.51 ± 0.89 a* | 0.40 ± 0.00 c | 4.34 ± 0.05 b | 5.13 ± 0.03 b |
70 °C | 26.83 ± 0.32 b** | 2.00 ± 0.00 a | 5.43 ± 0.07 a | 6.37 ± 0.01 a |
120 °C | 13.23 ± 0.82 c | 1.34 ± 0.01 b | 4.20 ± 0.05 c | 6.37 ± 0.02 a |
Process | Total phenolic content (mg/100 g) | Total flavonoid content (mg/100 g) | Antioxidant activity (mmol/kg) | |
Control | 665.13 ± 15.20 a | 592.91 ± 15.56 c | 7.30 ± 0.01 a | |
70 °C | 509.62 ± 13.40 b | 717.95 ± 25.50 b | 4.92 ± 0.00 b | |
120 °C | 444.16 ± 19.27 c | 788.71 ± 23.79 a | 4.10 ± 0.01 c |
Phenolic Compounds (mg/100 g) | Control | 70 °C | 120 °C |
---|---|---|---|
Gallic acid | 25.63 ± 0.48 c* | 26.46 ± 2.42 a | 26.26 ± 0.31 b |
3,4-Dihydroxybenzoic acid | 12.62 ± 0.59 c** | 22.09 ± 3.73 a | 18.23 ± 0.73 b |
Catechin | 64.02 ± 2.72 c | 92.23 ± 1.05 a | 72.26 ± 2.72 b |
Caffeic acid | 6.20 ± 0.44 b | 10.23 ± 2.17 a | 4.78 ± 1.26 c |
Syringic acid | 5.74 ± 1.53 b | 7.22 ± 2.51 a | 5.00 ± 1.57 c |
Rutin | 28.58 ± 3.57 b | 49.28 ± 2.43 a | 23.82 ± 4.94 c |
p-Coumaric acid | 2.14 ± 0.93 a | 2.05 ± 0.48 b | 1.51 ± 0.26 c |
Ferulic acid | 0.91 ± 0.43 c | 1.70 ± 0.07 b | 5.01 ± 1.41 a |
Resveratrol | 0.07 ± 0.05 c | 0.27 ± 0.12 a | 0.20 ± 0.16 b |
Quercetin | 0.39 ± 0.10 c | 1.05 ± 0.41 a | 0.45 ± 0.24 b |
Cinnamic acid | 0.02 ± 0.00 b | 0.03 ± 0.00 a | 0.02 ± 0.00 b |
Kaempferol | 0.11 ± 0.03 a | 0.09 ± 0.01 b | 0.08 ± 0.01 c |
Fatty Acids (%) | Control | 70 °C | 120 °C |
---|---|---|---|
Palmitic | 11.91 ± 0.02 c* | 20.65 ± 0.11 b | 20.88 ± 0.02 a |
Stearic | 3.73 ± 0.07 c** | 4.54 ± 0.02 b | 6.32 ± 0.10 a |
Oleic | 27.64 ± 0.06 c | 39.56 ± 0.01 b | 42.17 ± 1.10 a |
Linoleic | 28.56 ± 0.08 a | 23.67 ± 0.10 b | 8.73 ± 0.05 c |
Linolenic | 28.16 ± 0.22 a | 11.57 ± 0.20 c | 21.89 ± 1.18 b |
P | K | Ca | Mg | S | Na | Fe | Cu | Mn | Zn | B | |
---|---|---|---|---|---|---|---|---|---|---|---|
Control | 483.12 ± 17.28 c* | 4877.42 ± 47.65 c | 2143.81 ± 26.75 c | 474.52 ± 9.28 c | 196.84 ± 5.63 c | 56.82 ± 1.28 b | 14.01 ± 1.21 b | 0.96 ± 0.12 c | 2.48 ± 0.65 c | 7.84 ± 0.98 a | 3.40 ± 1.75 c |
70 °C | 702.84 ± 32.14 a** | 6291.51 ± 29.87 b | 3362.18 ± 12.57 a | 786.65 ± 7.62 a | 274.78 ± 10.23 a | 56.34 ± 3.75 c | 15.20 ± 1.18 a | 1.96 ± 0.18 b | 6.35 ± 0.89 a | 5.91 ± 1.08 b | 4.88 ± 1.19 b |
120 °C | 565.99 ± 23.09 b | 6568.76 ± 11.56 a | 2361.36 ± 25.71 b | 596.07 ± 11.39 b | 266.68 ± 8.75 b | 57.75 ± 8.97 a | 12.80 ± 2.76 c | 4.91 ± 0.23 a | 4.52 ± 0.44 b | 5.87 ± 1.23 c | 4.91 ± 1.05 a |
PC1 | PC2 | |
---|---|---|
Eigenvalue | 7.825 | 4.175 |
Variability (%) | 65.206 | 34.794 |
Cumulative % | 65.206 | 100.000 |
Correlation | ||
Gallic | 0.801 | −0.599 |
Dihyd | 0.897 | −0.443 |
Catechin | 0.993 | −0.116 |
Caffeic | 0.911 | 0.413 |
Syringic | 0.875 | 0.484 |
Rutin | 0.939 | 0.341 |
Coumaric | 0.218 | 0.976 |
Ferulic | −0.169 | −0.986 |
Resveratrol | 0.866 | −0.500 |
Quercetin | 0.996 | 0.089 |
Cinnamic | 0.985 | 0.171 |
Kaempferol | −0.354 | 0.935 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özcan, M.M.; Uslu, N. The Effects of Oven Dehydration on Bioactive Compounds, Antioxidant Activity, Fatty Acids and Mineral Contents of Strawberry Tree Fruit. Processes 2023, 11, 541. https://doi.org/10.3390/pr11020541
Özcan MM, Uslu N. The Effects of Oven Dehydration on Bioactive Compounds, Antioxidant Activity, Fatty Acids and Mineral Contents of Strawberry Tree Fruit. Processes. 2023; 11(2):541. https://doi.org/10.3390/pr11020541
Chicago/Turabian StyleÖzcan, Mehmet Musa, and Nurhan Uslu. 2023. "The Effects of Oven Dehydration on Bioactive Compounds, Antioxidant Activity, Fatty Acids and Mineral Contents of Strawberry Tree Fruit" Processes 11, no. 2: 541. https://doi.org/10.3390/pr11020541
APA StyleÖzcan, M. M., & Uslu, N. (2023). The Effects of Oven Dehydration on Bioactive Compounds, Antioxidant Activity, Fatty Acids and Mineral Contents of Strawberry Tree Fruit. Processes, 11(2), 541. https://doi.org/10.3390/pr11020541