A Study on Activity of Coexistent CO Gas during the CO2 Methanation Reaction in Ni-Based Catalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Catalysts
2.2. Experimental Equipment and Activity Test
2.3. Catalyst Characterization
3. Results and Discussion
3.1. Results for CO2 Methanation Catalytic Activity When CO Gas Exists
3.2. The Composition of the Final Outgas through CO & CO2 Methanation
3.3. The Methanation Reaction for an Optimum Production of SNG
3.4. Result of Durability Test & Analysis of Catalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R. Summary for Policymakers. In Global Warming of 1.5 °C.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Martin, P.; Osvaldo, C.; Jean, P.; Paul, V.D.L.; Clair, H. The Fourth Assessment Report Climate Change 2007; Cambridge University Press: Cambridge, UK, 2007; pp. 8–12. [Google Scholar]
- Shin, M.S.; Kim, Y.J.; Lee, Y.G.; Jang, D.S. Numerical study on the co-burning of pulverized coal and stoichiometric mixture gas of hydrogen and oxygen for the reduction of CO2. J. Korea Soc. Waste Manag. 2016, 33, 1–9. [Google Scholar] [CrossRef]
- Climate Change 2014 Synthesis Report, UNEP. 2014. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed on 15 February 2023).
- Kuznecova, I.; Gusca, J. Property based ranking of CO and CO2 methanation catalysts. Environ. Clim. Technol. 2019, 128, 255–260. [Google Scholar]
- Lee, J.H.; Lee, D.W.; Jang, S.G.; Kwak, N.S.; Lee, I.Y.; Jang, K.R.; Choi, J.S.; Shim, J.G. Estimating CO2 emission reduction of non-capture CO2 utilization (NCCU) technology. Korean Chem. Eng. Res. 2015, 53, 590–596. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Hiroshi, M.; Hiroyuki, T.; Koichi, I.; Koyo, N. Computational fluid dynamics simulation of CO2 methanation in a shell-and-tube reactor with multi-region conjugate heat transfer. Chem. Eng. Sci. 2020, 211, 115–276. [Google Scholar]
- Irene, C.M. Carbon Dioxide Methanation for Intensified Reactors. Master’s Dissertation, Aalto University, Espoo, Finland, 2015. [Google Scholar]
- Yamasaki, M.; Habazaki, H.; Yoshida, T.; Akiyama, E.; Kawashima, A.; Asami, K.; Komori, M.; Shimamura, K. Compositional dependence of the CO2 methanation activity of Ni/ZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors. Appl. Catal. A Gen. 1997, 163, 187–197. [Google Scholar] [CrossRef]
- Tada, S.; Shimizu, T.; Kameyama, H.; Haneda, T.; Kikuchi, R. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int. J. Hydrogen Energy 2012, 37, 5527–5531. [Google Scholar] [CrossRef]
- Salvatore, A.; Chalachew, M.; Emanuele, G.; Fabio, D.; Samir, B.; Siglinda, P.; Raffaele, P.; Centi, G. Catalytic Performance of γ-Al2O3–ZrO2–TiO2–CeO2 Composite Oxide Supported Ni-Based Catalysts for CO2 Methanation. Ind. Eng. Chem. Res. 2016, 55, 4451–4460. [Google Scholar]
- Frey, M.; Romero, T.; Roger, A.C.; Edouard, D. Open cell foam catalysts for CO2 methanation: Presentation of coating procedures and in situ exothermicity reaction study by infrared thermography. Catal. Today 2016, 273, 83–90. [Google Scholar] [CrossRef]
- Goodman, D.J. Methanation of Carbon Dioxide. Master’s Dissertation, University of California, Los Angeles, CA, USA, 2013. [Google Scholar]
- Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel, K.; Graf, F.; Bajohr, S. Renewable Power-to-Gas: A Technological and Economic Review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef] [Green Version]
- Thema, M.; Sterner, M.; Lenck, T.; Götz, P. Necessity and Impact of Power-to-gas on Energy Transition in Germany. Energy Procedia 2016, 99, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.J.; Seo, G. Introduction to Catalyst, 4th ed.; Hanrimwon: Thornleigh, Australia, 2002; pp. 217–232. [Google Scholar]
- Li, B.; Maruyama, K.; Nurunnabi, M.; Kunimori, K.; Tomishige, K. Temperature profiles of alumina supported noble metal catalysts in autothermal reforming of methane. Appl. Catal. A Gen. 2004, 275, 157–172. [Google Scholar] [CrossRef]
- Moon, D.H.; Lee, S.M.; Ahn, J.Y.; Nguyen, D.D.; Kim, S.S.; Chang, S.W. New Ni-based quaternary disk-shaped catalysts for low-temperature CO2 methanation: Fabrication, characterization, and performance. J. Environ. Manag. 2018, 218, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.; Luisa, F.; Stefan, K. A Short Review on Ni-Catalyzed Methanation of CO2: Reaction Mechanism, Catalyst Deactivation, Dynamic Operation. Chem. Ing. Tech. 2021, 93, 1526–1536. [Google Scholar]
- Ahn, J.Y.; Chang, S.W.; Lee, S.M.; Kim, S.S.; Chung, W.J.; Lee, J.C.; Cho, Y.J.; Shin, K.S.; Moon. D., H.; Nguyen, D.D. Developing Ni-based honeycomb-type catalysts using different binary oxide- supported species for synergistically enhanced CO2 methanation activity. Fuel 2019, 250, 277–284. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Ro, Y.H.; Chang, S.W. A Study on Optimal Conditions for Organic Matter Reduction and Hydrogen Production Using Electrolysis Process. J. Trans. Korean Hydrog. New Energy Soc. 2020, 31, 546–552. [Google Scholar] [CrossRef]
- David, M.M.; Laura, B.V.; Jesús, M.R.; José, F.C. A study of deactivation by H2S and regeneration of a Ni catalyst supported on Al2O3, during methanation of CO2. Effect of the promoters Co, Cr, Fe and Mo. RSC Adv. 2020, 10, 16551–16564. [Google Scholar]
- Neubert, M.; Treiber, P.; Krier, C.; Hackel, M.; Hellriegel, T.; Dillig, M.; Karl, J. Influence of hydrocarbons and thiophene on catalytic fixed bed methanation. Fuel 2017, 207, 253–261. [Google Scholar] [CrossRef]
- Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation-From fundamentals to current projects. Fuel 2016, 166, 276–296. [Google Scholar] [CrossRef]
- Selina, N.; Udo, A.; Sebastian, D.; Marco, K. Recent Advances in Catalysis for Methanation of CO2 from Biogas. J. Catal. 2022, 12, 374. [Google Scholar]
- Witte, J.; Calbry-Muzyka, A.; Wieseler, T.; Hottinger, P.; Biollaz, S.M.; Schildhauer, T.J. Demonstrating direct methanation of real biogas in a fluidised bed reactor. J. Appl. Energy 2019, 240, 359–371. [Google Scholar] [CrossRef]
- Yokomizo, G.H.; Bell, A.T. Isotopic tracer and NMR studies of carbonaceous species present during CO hydrogenation over RuTiO2. J. Catal. 1989, 119, 467–482. [Google Scholar] [CrossRef]
- Agnelli, M.; Kolb, M.; Mirodatos, C. CO Hydrogenation on a nickel catalyst: 1. Kinetics and modeling of a low-temperature sintering process. J. Catal. 1994, 148, 9–21. [Google Scholar] [CrossRef]
- Agnelli, M.; Swaan, H.M.; Marquez-Alvarez; Martin, G.A.; Mirodatos, C. CO hydrogenation on a nickel catalyst: II. A mechanistic study by transient kinetics and infrared Journal Pre-proof spectroscopy. J. Catal. 1998, 175, 117–128. [Google Scholar] [CrossRef]
- Kiewidt, L.; Thoming, J. Predicting optimal temperature profiles in single-stage fixed-bed reactors for CO2-methanation. Chem. Eng. Sci. 2015, 132, 59–71. [Google Scholar] [CrossRef]
- Stangeland, K.; Kalai, D.; Li, H.; Yu, Z. CO2 Methanation: The Effect of Catalysts and Reaction Condition. Energy Procedia 2017, 105, 2022–2027. [Google Scholar] [CrossRef]
- Xu, S.; Chansai, S.; Xu, S.; Stere, C.; Jiao, Y.; Yang, S.; Hardacre, C.; Fan, X. CO Poisoning of Ru Catalysts in CO2 Hydrogenation under Thermal and Plasma Conditions: A Combined Kinetic and Diffuse Reflectance Infrared Fourier Transform Spectroscopy−Mass Spectrometry Study. ACS Catal. 2020, 10, 12828–12840. [Google Scholar] [CrossRef]
- Schmider, D.; Maier, L.; Detuschmann, O. Reaction Kinetics of CO and CO2 Methanation over Nickel. IEC Res. 2021, 60, 5792–5805. [Google Scholar] [CrossRef]
- Burger, T.; Donaubauer, P.; Hinrichsen, O. On the kinetics of the co-methanation of CO and CO2 on a co-precipitated Ni-Al catalyst. Appl. Catal. B Environ. 2021, 282, 119408. [Google Scholar] [CrossRef]
- Jan, K.; Tilman, J.S.; Serge, M.A.B. Production of synthetic natural gas (SNG) from coal and dry biomass—A technology review from 1950 to 2009. Fuel 2010, 89, 1763–1783. [Google Scholar]
- Lu, X.; Gu, F.; Liu, Q.; Gao, J.; Liu, Y.; Li, H.; Jia, L.; Xu, G.; Zhong, Z.; Su, F. VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation. Fuel Process. Technol. 2015, 135, 34–46. [Google Scholar] [CrossRef]
By-Product Gases | Biogases | |||||
---|---|---|---|---|---|---|
*COG | **LDG | ***BFG | Sewage Sludge | Livestock Manure | Food Waste | |
H2 | 10–56.4% | 0–4% | 0.2–3.2% | |||
CO2 | 3–9% | 20–22% | 20–23.2% | 30–40% | 25–35% | 20–35% |
CO | 8.4–16% | 64–65% | 20–23% | |||
N2 | 2–20% | 17–22% | 45.6–54% | |||
CH4 | 36–37% | 55–65% | 60–70% | 60–75% | ||
C2H4 | 3% | |||||
O2 | 0.3% | |||||
H2O | 3–5% | 3–5% | 3–5% | |||
Impurities | H2S Siloxane | H2S Siloxane | H2S Siloxane |
Name | a | b | c | d |
---|---|---|---|---|
Experiment conditions | with CO 0% | with CO 5% | with CO 10% | with CO 15% |
Element | a | b | c | d |
---|---|---|---|---|
C | 13.03 | 14.8 | 11.31 | 13.11 |
O | 10.88 | 10.4 | 10.29 | 11.26 |
Ni | 54.99 | 55.96 | 53.91 | 53.77 |
Zr | 4.8 | 6.16 | 6.27 | 6.09 |
Ce | 16.3 | 12.78 | 18.22 | 15.77 |
Total atom (%) | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.; Chung, W. A Study on Activity of Coexistent CO Gas during the CO2 Methanation Reaction in Ni-Based Catalyst. Processes 2023, 11, 628. https://doi.org/10.3390/pr11020628
Ahn J, Chung W. A Study on Activity of Coexistent CO Gas during the CO2 Methanation Reaction in Ni-Based Catalyst. Processes. 2023; 11(2):628. https://doi.org/10.3390/pr11020628
Chicago/Turabian StyleAhn, Jeongyoon, and Woojin Chung. 2023. "A Study on Activity of Coexistent CO Gas during the CO2 Methanation Reaction in Ni-Based Catalyst" Processes 11, no. 2: 628. https://doi.org/10.3390/pr11020628
APA StyleAhn, J., & Chung, W. (2023). A Study on Activity of Coexistent CO Gas during the CO2 Methanation Reaction in Ni-Based Catalyst. Processes, 11(2), 628. https://doi.org/10.3390/pr11020628