Special Issue on “Advanced Combustion and Combustion Diagnostic Techniques”
1. Introduction
2. Advanced Combustion in Engines
3. Combustion Optimization by Artificial Intelligence
4. New Concepts for Combustion Technology
5. Combustion Diagnostic Technology
Funding
Conflicts of Interest
References
- Oh, J.; Noh, K.; Lee, C. A Theoretical Study on the Thermodynamic Cycle of Concept Engine with Miller Cycle. Processes 2021, 9, 1051. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, M.; Cui, Y.; Ming, Z.; Wang, T.; Zhang, C.; Ampah, J.D.; Jin, C.; Huang, H.; Liu, H. Effects of Methanol Application on Carbon Emissions and Pollutant Emissions Using a Passenger Vehicle. Processes 2022, 10, 525. [Google Scholar] [CrossRef]
- Yang, R.; Yan, Y.; Sun, X.; Wang, Q.; Zhang, Y.; Fu, J.; Liu, Z. An Artificial Neural Network Model to Predict Efficiency and Emissions of a Gasoline Engine. Processes 2022, 10, 204. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Chen, X.; Yan, Y.; Yang, R.; Liu, Z.; Fu, J. The Prediction of Spark-Ignition Engine Performance and Emissions Based on the SVR Algorithm. Processes 2022, 10, 312. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, H.; Xie, F.; Ma, T.; Qian, X. Combustion Regime Identification in Turbulent Non-Premixed Flames with Principal Component Analysis, Clustering and Back-Propagation Neural Network. Processes 2022, 10, 1653. [Google Scholar] [CrossRef]
- Wang, C.; Tang, G.; Yan, H.; Li, L.; Yan, X.; Li, Z.; Lou, C. Investigation of Thermal Radiation from Soot Particles and Gases in Oxy-Combustion Counter-Flow Flames. Processes 2021, 9, 1756. [Google Scholar] [CrossRef]
- Nilsson, E.J.K.; Hurtig, T.; Ehn, A.; Fureby, C. Laminar Burning Velocity of Lean Methane/Air Flames under Pulsed Microwave Irradiation. Processes 2021, 9, 2076. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.; Feng, S.; Yan, Y. Influence of Porous Media Aperture Arrangement on CH4/Air Combustion Characteristics in Micro Combustor. Processes 2021, 9, 1747. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.; Feng, S.; Yan, Y. Numerical Study on the Characteristics of Methane Hedging Combustion in a Heat Cycle Porous Media Burner. Processes 2021, 9, 1733. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; He, Y.; Huang, J.; Cen, K. Interactive Effects in Two-Droplets Combustion of RP-3 Kerosene under Sub-Atmospheric Pressure. Processes 2021, 9, 1229. [Google Scholar] [CrossRef]
- Thongsri, J.; Srathonghuam, K.; Boonpan, A. Gas Flow and Ablation of 122 mm Supersonic Rocket Nozzle Investigated by Conjugate Heat Transfer Analysis. Processes 2022, 10, 1823. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, M.; Wang, Y.; Li, S.; Huang, X.; Xu, J.; Pan, S. Combustion of Laser-Induced Individual Magnesium Microparticles under Natural Convection. Processes 2021, 9, 1276. [Google Scholar] [CrossRef]
- Li, M.; Gu, J.; Zhang, D.; Gao, Q.; Li, B. Equivalence Ratio Measurements in CH4/Air Gases Based on the Spatial Distribution of the Emission Intensity of Femtosecond Laser-Induced Filament. Processes 2021, 9, 2022. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Y.; He, Y.; Zhu, Y.; Wang, Z. Review of Development and Comparison of Surface Thermometry Methods in Combustion Environments: Principles, Current State of the Art, and Applications. Processes 2022, 10, 2528. [Google Scholar] [CrossRef]
- Yang, L.; Weng, W.; Zhu, Y.; He, Y.; Wang, Z.; Li, Z. Investigation of Hydrogen Content and Dilution Effect on Syngas/Air Premixed Turbulent Flame Using OH Planar Laser-Induced Fluorescence. Processes 2021, 9, 1894. [Google Scholar] [CrossRef]
- Weng, W.; Aldén, M.; Li, Z. Simultaneous Quantitative Detection of HCN and C2H2 in Combustion Environment Using TDLAS. Processes 2021, 9, 2033. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z. Special Issue on “Advanced Combustion and Combustion Diagnostic Techniques”. Processes 2023, 11, 1174. https://doi.org/10.3390/pr11041174
Wang Z. Special Issue on “Advanced Combustion and Combustion Diagnostic Techniques”. Processes. 2023; 11(4):1174. https://doi.org/10.3390/pr11041174
Chicago/Turabian StyleWang, Zhihua. 2023. "Special Issue on “Advanced Combustion and Combustion Diagnostic Techniques”" Processes 11, no. 4: 1174. https://doi.org/10.3390/pr11041174
APA StyleWang, Z. (2023). Special Issue on “Advanced Combustion and Combustion Diagnostic Techniques”. Processes, 11(4), 1174. https://doi.org/10.3390/pr11041174