Poplar Wood Pretreatment Using Deep Eutectic Solvents for Promoting Enzymatic Hydrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of DESs
2.3. Pretreatment Process
2.4. Enzymatic Hydrolysis
2.5. Components Analysis
2.5.1. Determination of Lignin Content
2.5.2. Determination of Cellulose and Hemicellulose Content
2.6. SEM Analysis
2.7. FT-IR Analysis
2.8. XRD Analysis
3. Results and Analysis
3.1. Effect of DES Type on Pretreatment of Poplar Wood
3.2. Influence of Pretreatment Temperature on Pretreatment of Poplar Wood
3.3. Influence of Pretreatment Time on Pretreatment of Poplar Wood
3.4. Comparison of Different Pretreatment Methods
3.5. Structural Characterization of Poplar Wood
3.5.1. XRD
3.5.2. FT-IR
3.5.3. SEM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shang, Z.J. Risk Management Study of HNJY Biomass Cogeneration Project; Shandong University: Jinan, China, 2021. [Google Scholar]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, C.C.; Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energ. Convers. Manag. 2010, 51, 969–982. [Google Scholar] [CrossRef]
- Prasad, S.; Malav, M.K.; Kumar, S.; Singh, A.; Pant, D.; Radhakrishnan, S. Enhancement of bio-ethanol production potential of wheat straw by reducing furfural and 5-hydroxymethylfurfural. Bioresour. Technol. 2018, 4, 50–56. [Google Scholar] [CrossRef]
- Haque, M.A.; Barman, D.N.; Kang, T.H.; Kim, M.K.; Kim, J.; Kim, H.; Yun, H.D. Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time. J. Microbiol. Biotech. 2012, 22, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Te, M.T.D.; Kersten, S.R.; Lange, J.P.; Ruiz, M.P. Cellulosic glycols: An integrated process concept for lignocellulose pretreatment and hydrogenolysis. Biofuels Bioprod. Biorefining 2021, 15, 1725–1736. [Google Scholar]
- Luo, J.; Xu, Y. Comparison of biological and chemical pretreatment on coproduction of pectin and fermentable sugars from apple pomace. Appl. Biochem. Biotech. 2020, 190, 129–137. [Google Scholar] [CrossRef]
- Peleteiro, S.; Rivas, S.; Alonso, J.L.; Santos, V.; Parajo, J.C. Utilization of ionic liquids in lignocellulose biorefineries as agents for separation, derivatization, fractionation, or pretreatment. J. Agric. Food Chem. 2015, 63, 8093–8102. [Google Scholar] [CrossRef]
- Lee, K.M.; Hong, J.Y.; Tey, W.Y. Combination of ultrasonication and deep eutectic solvent in pretreatment of lignocellulosic biomass for enhanced enzymatic saccharification. Cellulose 2021, 28, 1513–1526. [Google Scholar] [CrossRef]
- Sai, Y.W.; Lee, K.M. Enhanced cellulase accessibility using acid-based deep eutectic solvent in pretreatment of empty fruit bunches. Cellulose 2019, 26, 9517–9528. [Google Scholar] [CrossRef]
- Li, L.; Yu, L.; Wu, Z.; Hu, Y. Delignification of poplar wood with lactic acid-based deep eutectic solvents. Wood Res. 2019, 64, 499–514. [Google Scholar]
- Wu, M.; Gong, L.; Ma, C.; He, Y.C. Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresour. Technol. 2021, 340, 125695. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, X.; Ali, M.F.; Abdeltawab, A.A.; Yakout, S.M.; Yu, G. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour. Technol. 2018, 263, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Han, L.; Ma, X.; Sun, X.; Zhao, Z. Enhanced Enzymatic Hydrolysis of Wheat Straw to Improve Reducing Sugar Yield by Novel Method under Mild Conditions. Processes 2023, 11, 898. [Google Scholar] [CrossRef]
- Chen, J.; Ali, M.C.; Liu, R.; Munyemana, J.C.; Li, Z.; Zhai, H.; Qiu, H. Basic deep eutectic solvents as reactant, template and solvents for ultra-fast preparation of transition metal oxide nanomaterials. Chin. Chem. Lett. 2020, 31, 1584–1587. [Google Scholar] [CrossRef]
- Ali, M.C.; Liu, R.; Chen, J.; Cai, T.; Zhang, H.; Li, Z.; Qiu, H. New deep eutectic solvents composed of crown ether, hydroxide and polyethylene glycol for extraction of non-basic N-compounds. Chin. Chem. Lett. 2019, 30, 871–874. [Google Scholar] [CrossRef]
- Li, Y.; Zhuo, J.; Liu, P.; Chen, P.; Hu, H.; Wang, Y.; Zhou, S.; Tu, Y.; Peng, L.; Wang, Y. Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice. Carbohydr. Polym. 2018, 192, 273–281. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D.L.A.P. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Fry, S.C. The Growing Plant Cell Wall: Chemical and Metabolic Analysis; The Blackburn Press: Caldwell, NJ, USA, 1988. [Google Scholar]
- Hossain, M.A.; Rahaman, M.S.; Yelle, D.; Shang, H.; Sun, Z.; Renneckar, S.; Dong, J.; Tulaphol, S.; Sathitsuksanoh, N. Effects of polyol-based deep eutectic solvents on the efficiency of rice straw enzymatic hydrolysis. Ind. Crops Prod. 2021, 167, 113480. [Google Scholar] [CrossRef]
- Mamilla, J.L.K.; Novak, U.; Grilc, M.; Likozar, B. Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals. Biomass Bioenergy 2019, 120, 417–425. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Y.; Abdeltawab, A.A.; Yakout, S.M.; Chen, X.; Yu, G. Cholinium amino acids-glycerol mixtures: New class of solvents for pretreating wheat straw to facilitate enzymatic hydrolysis. Bioresour. Technol. 2017, 245, 625–632. [Google Scholar] [CrossRef]
- Huang, C.; Zhan, Y.; Cheng, J.; Wang, J.; Meng, X.; Zhou, X.; Ragauskas, A.J. Facilitating enzymatic hydrolysis with a novel guaiacol-based deep eutectic solvent pretreatment. Bioresour. Technol. 2021, 326, 124696. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Huang, C.; Lai, C.; Yong, Q. Green solvent pretreatment for enhanced production of sugars and antioxidative lignin from poplar. Bioresour. Technol. 2021, 321, 124471. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.Q.; Wang, W.; Xu, F.; Sun, R.C. Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: Effect of integrated pretreatment on enzymatic hydrolysis. Bioresour. Technol. 2013, 144, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Francisco, M.; Van, D.B.A.; Kroon, M.C. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing. Green Chem. 2012, 14, 2153–2157. [Google Scholar] [CrossRef]
- Nor, N.A.M.; Mustapha, W.A.W.; Hassan, O. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in sugar production. Procedia Chem. 2016, 18, 147–154. [Google Scholar] [CrossRef]
- Han, Y.; Bai, Y.; Zhang, J.; Liu, D.; Zhao, X. A comparison of different oxidative pretreatments on polysaccharide hydrolyzability and cell wall structure for interpreting the greatly improved enzymatic digestibility of sugarcane bagasse by delignification. Bioresour. Bioprocess. 2020, 7, 24. [Google Scholar] [CrossRef]
- Sun, F.F.; Wang, L.; Hong, J.; Ren, J.; Du, F.; Hu, J.; Zhou, B. The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresour. Technol. 2015, 187, 354–361. [Google Scholar] [CrossRef]
HBA | HBD | Molar Ratio (HBA:HBD) | Abbreviation |
---|---|---|---|
Sodium hydroxide | Ethylene glycol | 1:4 | Na: EG |
Sodium hydroxide | Polyethylene glycol-200 | 1:2 | Na: PEG-200 |
Potassium hydroxide | Polyethylene glycol-300 | 1:4 | K: PEG-300 |
Lithium hydroxide | Polyethylene glycol-400 | 1:10 | Li: PEG-400 |
Sodium hydroxide | Polyethylene glycol-600 | 1:4 | Na: PEG-600 |
Sodium hydroxide | 1,4-Butyl glycol | 1:5 | Na: 1,4-BDO |
Potassium hydroxide | 1,2-Propylene glycol | 1:2 | K: 1,2-PG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhan, Y.; Han, L.; Sun, X.; Zhang, T.; Zhao, Z. Poplar Wood Pretreatment Using Deep Eutectic Solvents for Promoting Enzymatic Hydrolysis. Processes 2023, 11, 1293. https://doi.org/10.3390/pr11041293
Zhao X, Zhan Y, Han L, Sun X, Zhang T, Zhao Z. Poplar Wood Pretreatment Using Deep Eutectic Solvents for Promoting Enzymatic Hydrolysis. Processes. 2023; 11(4):1293. https://doi.org/10.3390/pr11041293
Chicago/Turabian StyleZhao, Xuyang, Ying Zhan, Lihua Han, Xiaoran Sun, Tianyu Zhang, and Zheng Zhao. 2023. "Poplar Wood Pretreatment Using Deep Eutectic Solvents for Promoting Enzymatic Hydrolysis" Processes 11, no. 4: 1293. https://doi.org/10.3390/pr11041293
APA StyleZhao, X., Zhan, Y., Han, L., Sun, X., Zhang, T., & Zhao, Z. (2023). Poplar Wood Pretreatment Using Deep Eutectic Solvents for Promoting Enzymatic Hydrolysis. Processes, 11(4), 1293. https://doi.org/10.3390/pr11041293