A Deep-Learning Neural Network Approach for Secure Wireless Communication in the Surveillance of Electronic Health Records
Abstract
:1. Introduction
2. Related Works
3. Methods
3.1. Endorsed Joint Security Scheme
3.2. Federated Learning for Joint Security Verification
4. Results and Analysis
4.1. Self-Analysis
4.2. Comparative Analysis
4.3. Interrupt Detection
4.4. Authentication Time
4.5. Access Time
4.6. Access Failures
4.7. Authentication Lag
4.8. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jusak, J.; Mahmoud, S.S.; Laurens, R.; Alsulami, M.; Fang, Q. A New Approach for Secure Cloud-Based Electronic Health Record and its Experimental Testbed. IEEE Access 2021, 10, 1082–1095. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, Z.; Zheng, M. A quantum blockchain-enabled framework for secure private electronic medical records in Internet of Medical Things. Inf. Sci. 2022, 612, 942–958. [Google Scholar] [CrossRef]
- Attarian, R.; Hashemi, S. An anonymity communication protocol for security and privacy of clients in IoT-based mobile health transactions. Comput. Netw. 2021, 190, 107976. [Google Scholar] [CrossRef]
- Mahajan, H.B. Emergence of Healthcare 4.0 and Blockchain into Secure Cloud-based Electronic Health Records Systems: Solutions, Challenges, and Future Roadmap. Wirel. Pers. Commun. 2022, 126, 2425–2446. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, N.; Sun, H.-M.; Chang, C.-C.; Yu, S.; Choo, K.-K.R. Secure search for encrypted personal health records from big data NoSQL databases in cloud. Computing 2020, 102, 1521–1545. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Zhang, T.; Huang, H.; He, Y.; Xiong, J. HTAC: Fine-Grained Policy-Hiding and Traceable Access Control in mHealth. IEEE Access 2020, 8, 123430–123439. [Google Scholar] [CrossRef]
- De Oliveira, M.T.; Reis, L.H.A.; Verginadis, Y.; Mattos, D.M.F.; Olabarriaga, S.D. SmartAccess: Attribute-Based Access Control System for Medical Records Based on Smart Contracts. IEEE Access 2022, 10, 117836–117854. [Google Scholar] [CrossRef]
- Xiang, X.; Cao, J.; Fan, W. Decentralized authentication and access control protocol for blockchain-based e-health systems. J. Netw. Comput. Appl. 2022, 207, 103512. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Chiang, D.-L.; Chen, T.-S.; Wang, S.-D.; Lai, F.-P.; Lin, Y.-D. Lagrange interpolation-driven access control mechanism: Towards secure and privacy-preserving fusion of personal health records. Knowl.-Based Syst. 2022, 236, 107679. [Google Scholar] [CrossRef]
- Yuan, W.-X.; Yan, B.; Li, W.; Hao, L.-Y.; Yang, H.-M. Blockchain-based medical health record access control scheme with efficient protection mechanism and patient control. Multimed. Tools Appl. 2022, 82, 16279–16300. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Zhou, P.; Xu, Z.; Wang, X.; Xie, Y.; Ding, X.; Wen, S. A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach. IEEE Internet Things J. 2021, 8, 9122–9138. [Google Scholar] [CrossRef]
- Ghayvat, H.; Sharma, M.; Gope, P.; Sharma, P.K. SHARIF: Solid Pod-Based Secured Healthcare Information Storage and Exchange Solution in Internet of Things. IEEE Trans. Ind. Inform. 2021, 18, 5609–5618. [Google Scholar] [CrossRef]
- Ibrahim, A.; Gebali, F. Compact modular multiplier design for strong security capabilities in resource-limited telehealth IoT devices. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 6847–6854. [Google Scholar] [CrossRef]
- Usman, M.; Qamar, U. Secure Electronic Medical Records Storage and Sharing Using Blockchain Technology. Procedia Comput. Sci. 2020, 174, 321–327. [Google Scholar] [CrossRef]
- Symvoulidis, C.; Kiourtis, A.; Mavrogiorgou, A.; Kyriazis, D. Healthcare Provision in the Cloud: An EHR Object Store-based Cloud Used for Emergency. Healthinf 2021, 1, 435–442. [Google Scholar] [CrossRef]
- Sun, J.; Yao, X.; Wang, S.; Wu, Y. Blockchain-Based Secure Storage and Access Scheme for Electronic Medical Records in IPFS. IEEE Access 2020, 8, 59389–59401. [Google Scholar] [CrossRef]
- Madine, M.M.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Al-Hammadi, Y.; Ellahham, S.; Calyam, P. Fully Decentralized Multi-Party Consent Management for Secure Sharing of Patient Health Records. IEEE Access 2020, 8, 225777–225791. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, A.; Zhang, P.; Qu, Y.; Yu, S. Security-Aware and Privacy-Preserving Personal Health Record Sharing Using Consortium Blockchain. IEEE Internet Things J. 2021, 9, 12014–12028. [Google Scholar] [CrossRef]
- Wei, J.; Chen, X.; Huang, X.; Hu, X.; Susilo, W. RS-HABE: Revocable-storage and Hierarchical Attribute-based Access Scheme for Secure Sharing of e-Health Records in Public Cloud. IEEE Trans. Dependable Secur. Comput. 2019, 18, 2301–2315. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Y.; Zhang, L. An improved convolution Merkle tree-based blockchain electronic medical record secure storage scheme. J. Inf. Secur. Appl. 2021, 61, 102952. [Google Scholar] [CrossRef]
- Zaghloul, E.; Li, T.; Ren, J. d-EMR: Secure and distributed electronic medical record management. High-Confid. Comput. 2022, 3, 100101. [Google Scholar] [CrossRef]
- Olakanmi, O.; Odeyemi, K. FEACS: A fog enhanced expressible access control scheme with secure services delegation among carers in E-health systems. Internet Things 2020, 12, 100278. [Google Scholar] [CrossRef]
- Shuaib, K.; Abdella, J.; Sallabi, F.; Serhani, M.A. Secure decentralized electronic health records sharing system based on blockchains. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5045–5058. [Google Scholar] [CrossRef]
- Hurst, W.; Tekinerdogan, B.; Alskaif, T.; Boddy, A.; Shone, N. Securing electronic health records against insider-threats: A supervised machine learning approach. Smart Health 2022, 26, 100354. [Google Scholar] [CrossRef]
- Chen, C.-L.; Huang, P.-T.; Deng, Y.-Y.; Chen, H.-C.; Wang, Y.-C. A secure electronic medical record authorization system for smart device application in cloud computing environments. Hum.-Cent. Comput. Inf. Sci. 2020, 10, 1–31. [Google Scholar] [CrossRef]
- Abbas, A.; Alroobaea, R.; Krichen, M.; Rubaiee, S.; Vimal, S.; Almansour, F.M. Blockchain-assisted secured data man-agement framework for health information analysis based on Internet of Medical Things. Pers. Ubiquitous Comput. 2021, 1–14. [Google Scholar]
- Tan, K.-L.; Chi, C.-H.; Lam, K.-Y. Secure and privacy-preserving sharing of personal health records with multi-party pre-authorization verification. Wirel. Netw. 2022, 1–23. [Google Scholar] [CrossRef]
- Zaabar, B.; Cheikhrouhou, O.; Jamil, F.; Ammi, M.; Abid, M. HealthBlock: A secure blockchain-based healthcare data management system. Comput. Netw. 2021, 200, 108500. [Google Scholar] [CrossRef]
- Masud, M.; Gaba, G.S.; Choudhary, K.; Alroobaea, R.; Hossain, M.S. A robust and lightweight secure access scheme for cloud based E-healthcare services. Peer-to-Peer Netw. Appl. 2021, 14, 3043–3057. [Google Scholar] [CrossRef]
- Kiourtis, A.; Mavrogiorgou, A.; Menesidou, S.-A.; Gouvas, P.; Kyriazis, D. A Secure Protocol for Managing and Sharing Personal Healthcare Data. Stud. Health Technol. Inform. 2020, 275, 92–96. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Lu, J.-C.; Jan, J.-K. A Secure EHR System Based on Hybrid Clouds. J. Med. Syst. 2012, 36, 3375–3384. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.kaggle.com/datasets/krsna540/synthea-dataset-jsons-ehr (accessed on 18 July 2022).
Metrics | FEACS | RS-HABE | BSDMF | EJSS |
---|---|---|---|---|
Interrupt Detection (%) | 48.49 | 54.95 | 63.7 | 78.195 |
Mean Authentication Time (ms) | 106.81 | 80.71 | 59.82 | 45.628 |
Access Time (ms) | 392.01 | 296.55 | 173.17 | 103.82 |
Access Failures | 27 | 20 | 15 | 7 |
Authentication Lag (ms) | 50.41 | 40.59 | 35.48 | 23.935 |
Metrics | FEACS | RS-HABE | BSDMF | EJSS |
---|---|---|---|---|
Interrupt Detection (%) | 46.63 | 53.12 | 63.17 | 78.061 |
Mean Authentication Time (ms) | 102.73 | 80.67 | 61.92 | 42.243 |
Access Time (ms) | 394.41 | 321.33 | 235.72 | 123.567 |
Access Failures | 26 | 21 | 12 | 6 |
Authentication Lag (ms) | 50.07 | 40.91 | 31.53 | 23.819 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diao, Z.; Sun, F. A Deep-Learning Neural Network Approach for Secure Wireless Communication in the Surveillance of Electronic Health Records. Processes 2023, 11, 1329. https://doi.org/10.3390/pr11051329
Diao Z, Sun F. A Deep-Learning Neural Network Approach for Secure Wireless Communication in the Surveillance of Electronic Health Records. Processes. 2023; 11(5):1329. https://doi.org/10.3390/pr11051329
Chicago/Turabian StyleDiao, Zhifeng, and Fanglei Sun. 2023. "A Deep-Learning Neural Network Approach for Secure Wireless Communication in the Surveillance of Electronic Health Records" Processes 11, no. 5: 1329. https://doi.org/10.3390/pr11051329
APA StyleDiao, Z., & Sun, F. (2023). A Deep-Learning Neural Network Approach for Secure Wireless Communication in the Surveillance of Electronic Health Records. Processes, 11(5), 1329. https://doi.org/10.3390/pr11051329