A New Method for Calculating Reservoir Core-Bound Water Saturation Using the Cast Thin Section
Abstract
:1. Introduction
2. Principle
2.1. Basic Principles of Bound Water Saturation Calculation Using Thin Section
2.2. Determination of Water Film Thickness
3. Technical Implementation
3.1. Automatic Collection of Pore Feature Parameters from Thin Section Images
- ①
- Image preprocessing
- ②
- Threshold segmentation
- ③
- Extraction of pore characteristic parameters
3.2. Calculation of Bound Water Saturation
4. Validation Effect
5. Conclusions
- (1)
- The salt and pepper noise in the thin section images could be effectively removed by median filtering, and the use of gamma transformation image enhancement technology effectively distinguished the pores and skeletons in thin section images.
- (2)
- The two-dimensional OTSU segmentation technique can enable the automatic and accurate collection of the pore characteristic parameters of the thin section.
- (3)
- For hydrophilic rocks with strong homogeneity, bound water saturation can be accurately calculated by thin section image processing technology. Compared with NMR and the semi-permeable baffle plate method, the proposed method for calculating bound water saturation was simpler and more practical for unconsolidated sandstone with expensive coring.
- (4)
- The rocks of sparse offshore sandstone were easily damaged when conducting core experiments. The method for calculating the bound water based on the cast thin section could effectively solve this problem. This method can provide a new way to find the bound water saturation of offshore sparse sandstone reservoirs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, M.; Qin, Y.; Shen, J.; Song, D.; Wang, X.; Zhang, G.; Li, G.; Zhu, S. Influencing factors of irreducible water saturation in tight sandstone reservoirs case study of Linxing Area in Ordos Basin. J. Jilin Univ. (Earth Sci. Ed.) 2022, 52, 68–79. [Google Scholar]
- Freedman, R.; Heaton, N.; Flaum, M.; Hirasaki, G.J.; Flaum, C.; Hürlimann, M. Wettability, saturation and viscosity from NMR measurements. SPE J. 2003, 8, 317–327. [Google Scholar] [CrossRef]
- Wang, Z. Calculation Method of lrreducible Water saturation of lower assemblage reservoir in Fuxian Oil Region. J. Xi’an Shiyou Univ. (Nat. Sci. Ed.) 2021, 36, 66–70. [Google Scholar]
- Sima, L.; Yin, R.; Wang, L. Determining methods of the irreducible water saturation of low-resistivity Oil Layers in Toutunhe Formation, Junggar Basin. Well Logging Technol. 2019, 43, 122–128. [Google Scholar]
- Cheng, R.; Li, K.; Hu, X.; Yuan, W.; Gao, C. X-X Gas Field bound water saturation evaluation in Yingqiong Basin. Offshore Oil 2018, 38, 67–71. [Google Scholar]
- Lu, Y.; Cui, Y.; Zhang, J.; Qi, Y. Calculation method of saturation of Neogene reservoirs with high irreducible water and low resistivity in Bohai Sea. Pet. Geol. Eng. 2022, 36, 72–77. [Google Scholar]
- Zhang, C.; Zhang, C.; Zhan, Z.; Qin, R.; Yu, J. Comparative experimental study of the core irreducible water saturation of tight gas reservoir. Nat. Gas Geosci. 2016, 27, 352–358. [Google Scholar]
- Gui, T.; Wei, D.; Wang, J.; Zhu, Q.; Fang, F.; Xie, K. Experimental test and mechanism of the irreducible water saturation for gas reservoirs. Pet. Geol. Oilfield Dev. Daqing 2017, 36, 81–84. [Google Scholar]
- Liu, P.; Lu, K.; Zhou, W.; Wang, W.; Ou, Z. Experimental evaluation of irreducible water changes during the production of high temperature and high-pressure gas reservoirs in X gas field. Pet. Geol. Eng. 2020, 34, 116–119. [Google Scholar]
- Wu, Y.; Hu, X.; Yang, D. A new method of obtaining core irreducible water saturation based on capillary pressure curve. Geol. Sci. Technol. Inf. 2018, 37, 68–79. [Google Scholar]
- Sun, P.; Cui, S.; Zhang, X.; Li, N.; Cao, X.; Guo, H. A T2cutoff optimization method constrained by irreducible water saturation obtained in petrophysical experiment. Well Logging Technol. 2019, 43, 410–415. [Google Scholar]
- Cheng, Y.; Zhang, C.; Zhu, L.Q. A fractual irreducible water saturation model for capillary tubes and its application in tight gas reservoir. J. Pet. Sci. Eng. 2017, 159, 731–739. [Google Scholar] [CrossRef]
- Xiao, L.; Mao, Z.Q.; Jin, Y. Calculation of irreducible water saturation from NMR logs in tight gas sands. Appl. Magn. Reson. 2012, 42, 113–125. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, C.; Ma, H.L.; Pan, H. Estimating irreducible water saturation and permeability of sandstones from nuclear magnetic resonance measurements by fractal analysis. Mar. Pet. Geol. 2019, 110, 565–574. [Google Scholar] [CrossRef]
- Zhang, C.; Mao, Z.; Jin, Y. Experimental studies of NMR logging irreducible water saturation. Nucl. Electron. Detect. Technol. 2010, 30, 0517. [Google Scholar]
- Mao, Z.Q.; Kuang, L.C.; Xiao, C.W.; Li, G.; Zhou, C.; Ouyang, J. Identification and evaluation of low resistivity pay zones by well log sand the petrophysical research in China. Pet. Sci. 2007, 4, 41–48. [Google Scholar]
- Zhang, X.; Dai, Z.; Liu, L.; Peng, X. Application of theory of water film to reform the reservoir in tight and low permeability sandstone. Mineral. Petrol. 1998, 35, 161–163. [Google Scholar]
- He, C. The thick of water-film in oil and gas Reservoirs. Pet. Explor. Dev. 1998, 25, 75–77. [Google Scholar]
- Wang, L.; Sun, Y.; Nie, C.; Shi, J. Boundary curve recognition and extraction of granite composition based on RGB color space. China Sci. 2016, 11, 1525–1529. [Google Scholar]
- Gong, Q.; Fu, Y.; Ye, J.; Yao, Y. Otsu image segmentation algorithm based on rebuilding of two-dimensional histogram. Comput. Sci. 2013, 40, 313–315. [Google Scholar]
- Zhang, H. Research of Color Image Segmentation Based on the Combination of OTSU and Region Growing Method. Master’s Thesis, Shandong Normal University, Jinan, China, 2016. [Google Scholar]
- Jin, B.; Chen, J.; Shu, X.; Zhou, J.; Deng, M. Depositional characteristics of the low-resistance oil reservoirs of the Guantao formation in the Bohai sea and their control factors: A perspective of oilfield. Mar. Geol. Front. 2021, 37, 17–22. [Google Scholar]
No. | Area of View | Week Length, μm | Actual Area, μm2 | Actual Circumference, μm | No. | Area of View | Week Length, μm | Actual Area, μm2 | Actual Circumference, μm |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1.96 | 0.003 | 0.078 | 1262 | 19,638 | 1582.38 | 31.42 | 63.30 |
2 | 2 | 1.96 | 0.003 | 0.078 | 1263 | 19,685 | 745.43 | 31.50 | 29.82 |
3 | 2 | 1.96 | 0.003 | 0.078 | 1264 | 20,813 | 849.60 | 33.30 | 33.98 |
4 | 3 | 3.92 | 0.005 | 0.157 | 1265 | 21,628 | 2577.77 | 34.61 | 103.11 |
5 | 3 | 3.09 | 0.005 | 0.124 | 1266 | 21919 | 1056.24 | 35.07 | 42.25 |
6 | 3 | 4.59 | 0.005 | 0.184 | 1267 | 28,391 | 1935.97 | 45.43 | 77.44 |
7 | 3 | 3.92 | 0.005 | 0.157 | 1268 | 29,449 | 1900.36 | 47.12 | 76.01 |
8 | 3 | 3.92 | 0.005 | 0.157 | 1269 | 31,830 | 1285.84 | 50.93 | 51.43 |
9 | 3 | 4.59 | 0.005 | 0.184 | 1270 | 32,955 | 1553.96 | 52.73 | 62.16 |
10 | 3 | 3.09 | 0.005 | 0.124 | 1271 | 33,787 | 1255.12 | 54.06 | 50.20 |
11 | 3 | 5.62 | 0.005 | 0.225 | 1272 | 39,223 | 2132.79 | 62.76 | 85.31 |
12 | 3 | 4.59 | 0.005 | 0.184 | 1273 | 56,788 | 1804.14 | 90.86 | 72.17 |
13 | 3 | 4.59 | 0.005 | 0.184 | 1274 | 67,505 | 2275.36 | 108.00 | 91.01 |
14 | 3 | 4.59 | 0.005 | 0.184 | 1275 | 70,999 | 3399.31 | 113.60 | 135.97 |
15 | 3 | 4.59 | 0.005 | 0.184 | 1276 | 71,554 | 4020.60 | 114.49 | 160.82 |
16 | 3 | 3.92 | 0.005 | 0.157 | 1277 | 73,172 | 3199.89 | 117.08 | 128.00 |
17 | 3 | 3.92 | 0.005 | 0.157 | 1278 | 86,531 | 4428.94 | 138.45 | 177.16 |
18 | 3 | 5.26 | 0.005 | 0.225 | 1279 | 89,637 | 3519.58 | 143.42 | 140.78 |
19 | 3 | 3.09 | 0.005 | 0.124 | 1280 | 112,928 | 4209.25 | 180.69 | 168.37 |
20 | 3 | 3.09 | 0.005 | 0.124 | 1281 | 128,012 | 4289.41 | 204.82 | 171.58 |
21 | 3 | 3.09 | 0.005 | 0.124 | 1282 | 128,877 | 5142.98 | 206.20 | 205.72 |
22 | 3 | 3.92 | 0.005 | 0.157 | 1283 | 145,111 | 6169.76 | 232.18 | 246.79 |
23 | 3 | 3.92 | 0.005 | 0.157 | 1284 | 164,479 | 8032.20 | 263.17 | 321.29 |
24 | 3 | 3.09 | 0.005 | 0.124 | 1285 | 271,574 | 8386.19 | 434.52 | 335.45 |
25 | 3 | 5.62 | 0.005 | 0.225 | 1286 | 401,352 | 16616.95 | 642.16 | 664.68 |
No. | Depth, m | Semi-Permeable Baffle Plate Bound Water Saturation, % | NMR Bound Water Saturation, % | Thin Section Bound Water Saturation, % |
---|---|---|---|---|
1 | 2095.4 | 41.1 | 47.1 | 42.3 |
2 | 2096.3 | 39.7 | 44.0 | 39.5 |
3 | 2096.8 | 47.3 | 44.2 | 48.5 |
4 | 2097.2 | 48.1 | 47.3 | 47.5 |
5 | 2099.3 | 40.1 | 42.1 | 38.9 |
6 | 2100.1 | 46.2 | 42.3 | 47.1 |
7 | 2100.6 | 40.6 | 38.7 | 39.6 |
8 | 2102.4 | 38.1 | 36.9 | 37.5 |
9 | 2103.8 | 51.1 | 50.2 | 39.8 |
10 | 2105.4 | 42.1 | 41.6 | 41.1 |
11 | 2106.2 | 46.9 | 47.9 | 45.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Ming, J.; Shi, X.; Yang, W.; Zhang, Z.; Zhang, C. A New Method for Calculating Reservoir Core-Bound Water Saturation Using the Cast Thin Section. Processes 2023, 11, 1397. https://doi.org/10.3390/pr11051397
Cui Y, Ming J, Shi X, Yang W, Zhang Z, Zhang C. A New Method for Calculating Reservoir Core-Bound Water Saturation Using the Cast Thin Section. Processes. 2023; 11(5):1397. https://doi.org/10.3390/pr11051397
Chicago/Turabian StyleCui, Yunjiang, Jun Ming, Xinlei Shi, Wangwang Yang, Zhansong Zhang, and Chong Zhang. 2023. "A New Method for Calculating Reservoir Core-Bound Water Saturation Using the Cast Thin Section" Processes 11, no. 5: 1397. https://doi.org/10.3390/pr11051397
APA StyleCui, Y., Ming, J., Shi, X., Yang, W., Zhang, Z., & Zhang, C. (2023). A New Method for Calculating Reservoir Core-Bound Water Saturation Using the Cast Thin Section. Processes, 11(5), 1397. https://doi.org/10.3390/pr11051397