Microencapsulation of Chia Oil Using Whey Protein and Gum Arabic for Oxidation Prevention: A Comparative Study of Spray-Drying and Freeze-Drying Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Analysis and Fatty Acid Determination
2.3. Emulsion Preparation
2.4. Spray-Drying Process
2.5. Freeze-Drying Process
2.6. Recovered Solid Yield
2.7. Color Measurement
2.8. Moisture Content and Water Activity
2.9. Morphological Analysis
2.10. Total Oil Determination
2.11. Determination of Encapsulation Efficiency
2.12. Analysis of Oil’s Oxidative Stability at Different Storage Times
2.13. Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis of Chia Seeds and Fatty Acid Composition
3.2. Encapsulation Formulas and Chemical Properties
3.3. Effect of Encapsulation Storage on Chemical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, A.; Martínez, M.L.; Paredes, A.J.; León, A.E.; Ribotta, P.D. Study of the preparation process and variation of wall components in chia (Salvia hispanica L.) oil microencapsulation. Powder Technol. 2016, 301, 868–875. [Google Scholar] [CrossRef]
- Jamboonsri, W.; Phillips, T.D.; Geneve, R.L.; Cahill, J.P.; Hildebrand, D.F. Extending the range of an ancient crop, Salvia hispanica L.—A new ω3 source. Genet. Resour. Crop Evol. 2012, 59, 171–178. [Google Scholar] [CrossRef]
- Marineli, R.S.; Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Maróstica, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.; Ness, A.; Galan, P.; et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol. 2018, 3, 225–234. [Google Scholar] [CrossRef]
- Wu, J.H.Y.; Micha, R.; Imamura, F.; Pan, A.; Biggs, M.L.; Ajaz, O.; Djousse, L.; Hu, F.B.; Mozaffarian, D. Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107, S214. [Google Scholar] [CrossRef]
- Martínez, M.L.; Penci, M.C.; Ixtaina, V.; Ribotta, P.D.; Maestri, D. Effect of natural and synthetic antioxidants on the oxidative stability of walnut oil under different storage conditions. LWT Food Sci. Technol. 2013, 51, 44–50. [Google Scholar] [CrossRef]
- Rodea-González, D.A.; Cruz-Olivares, J.; Román-Guerrero, A.; Rodríguez-Huezo, M.E.; Vernon-Carter, E.J.; Pérez-Alonso, C. Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. J. Food Eng. 2012, 111, 102–109. [Google Scholar] [CrossRef]
- Calvo, P.; Castaño, Á.L.; Lozano, M.; González-Gómez, D. Influence of the microencapsulation on the quality parameters and shelf-life of extra-virgin olive oil encapsulated in the presence of BHT and different capsule wall components. Food Res. Int. 2012, 45, 256–261. [Google Scholar] [CrossRef]
- Sobel, R.; Gundlach, M.; Su, C.P. Novel Concepts and Challenges of Flavor Microencapsulation and Taste Modification. In Microencapsulation in the Food Industry; Academic Press: Cambridge, MA, USA, 2014; pp. 421–442. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, C.; Abbas, S.; Eric, K.; Zhang, X.; Xia, S.; Jia, C. The effect of soy protein structural modification on emulsion properties and oxidative stability of fish oil microcapsules. Colloids Surf. B Biointerfaces 2014, 120, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.H.; Kunz, B. The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. J. Food Eng. 2011, 105, 367–378. [Google Scholar] [CrossRef]
- Ixtaina, V.Y.; Julio, L.M.; Wagner, J.R.; Nolasco, S.M.; Tomás, M.C. Physicochemical characterization and stability of chia oil microencapsulated with sodium caseinate and lactose by spray-drying. Powder Technol. 2015, 271, 26–34. [Google Scholar] [CrossRef]
- Wandrey, C.; Bartkowiak, A.; Harding, S.E. Materials for Encapsulation. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Springer: New York, NY, USA, 2010; pp. 31–100. [Google Scholar]
- Nami, Y.; Haghshenas, B.; Yari Khosroushahi, A. Effect of psyllium and gum Arabic biopolymers on the survival rate and storage stability in yogurt of Enterococcus durans IW3 encapsulated in alginate. Food Sci. Nutr. 2017, 5, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Z. The Use of Starch-Based Materials for Microencapsulation. In Microencapsulation in the Food Industry; Academic Press: Cambridge, MA, USA, 2014; pp. 195–210. [Google Scholar] [CrossRef]
- Ray, A.K.; Bird, P.B.; Iacobucci, G.A.; Clark, B.C. Functionality of gum arabic. Fractionation, characterization and evaluation of gum fractions in citrus oil emulsions and model beverages. Food Hydrocoll. 1995, 9, 123–131. [Google Scholar] [CrossRef]
- Román-Guerrero, A.; Orozco-Villafuerte, J.; Pérez-Orozco, J.P.; Cruz-Sosa, F.; Jiménez-Alvarado, R.; Vernon-Carter, E.J. Application and evaluation of mesquite gum and its fractions as interfacial film formers and emulsifiers of orange peel-oil. Food Hydrocoll. 2009, 23, 708–713. [Google Scholar] [CrossRef]
- Trejo-Espino, J.L.; Rodríguez-Monroy, M.; Vernon-Carter, E.J.; Cruz-Sosa, F. Emulsifying properties of the gum produced by Prosopis laevigata (Humb. & Bonpl. ex Willd) M.C. Johnst (Mesquite) cells suspension culture in bioreactor. Rev. Mex. Ing. Quim. 2010, 9, 251–260. [Google Scholar]
- Morr, C.V.; Ha, E.Y.W. Whey protein concentrates and isolates: Processing and functional properties. Food Sci. Nutr. 1993, 33, 431–476. [Google Scholar] [CrossRef]
- Zuidam, N.J.; Shimoni, E. Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Springer: New York, NY, USA, 2010; pp. 3–29. [Google Scholar] [CrossRef]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J. Food Eng. 2010, 98, 385–392. [Google Scholar] [CrossRef]
- Fuchs, M.; Turchiuli, C.; Bohin, M.; Cuvelier, M.E.; Ordonnaud, C.; Peyrat-Maillard, M.N.; Dumoulin, E. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J. Food Eng. 2006, 75, 27–35. [Google Scholar] [CrossRef]
- AOAC Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Washington, DC, USA, 2000. [Google Scholar]
- Ruiz-López, N.; Martínez-Force, E.; Garcés, R. Sequential one-step extraction and analysis of triacylglycerols and fatty acids in plant tissues. Anal. Biochem. 2003, 317, 247–254. [Google Scholar] [CrossRef]
- Noello, C.; Carvalho, A.G.S.; Silva, V.M.; Hubinger, M.D. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition. Food Res. Int. 2016, 89, 549–557. [Google Scholar] [CrossRef]
- Rodríguez-Enríquez, S.; Hernández-Esquivel, L.; Marin-Hernandez, A.; El Hafidi, M.; Gallardo-Pérez, J.C.; Hernandez-Resendiz, I.; Rodriguez-Zavala, J.S.; Pacheco-Velazquez, S.C.; Moreno-Sanchez, R. Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells. Int. J. Biochem. Cell Biol. 2015, 65, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Escalona-García, L.A.; Pedroza-Islas, R.; Natividad, R.; Rodríguez-Huezo, M.E. Oxidation kinetics and thermodynamic analysis of chia oil microencapsulated in a whey protein concentrate-polysaccharide matrix. J. Food Eng. 2016, 175, 93–103. [Google Scholar] [CrossRef]
- Njinkoue, J.M.; Gouado, I.; Tchoumbougnang, F.; Ngueguim, J.Y.; Ndinteh, D.T.; Fomogne-Fodjo, C.Y.; Schweigert, F.J. Proximate composition, mineral content and fatty acid pro fi le of two marine fishes from Cameroonian coast: Pseudotolithus typus (Bleeker, 1863) and Pseudotolithus elongatus (Bowdich, 1825). NFS J. 2016, 4, 27–31. [Google Scholar] [CrossRef]
- Silva, C.; Garcia, V.; Zanette, C. Chia (Salvia hispanica L.) oil extraction using different organic solvents: Oil yield, fatty acids profile and technological analysis of defatted meal. Food Int. 2016, 23, 998–1004. [Google Scholar]
- Jones, S.; Thornton, J.M. Review Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 1996, 93, 13–20. [Google Scholar] [CrossRef]
- Khalique, A.; Javid, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. J. Food Sci. Technol. 2015, 53, 1750–1758. [Google Scholar] [CrossRef]
- Ayerza, H.R.; Coates, W. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Ind. Crops Prod. 2011, 34, 1366–1371. [Google Scholar] [CrossRef]
- Bodoira, R.M.; Penci, M.C.; Ribotta, P.D.; Martínez, M.L. Chia (Salvia hispanica L.) oil stability: Study of the effect of natural antioxidants. LWT Food Sci. Technol. 2017, 75, 107–113. [Google Scholar] [CrossRef]
- Pintado, T.; Ruiz-Capillas, C.; Jiménez-Colmenero, F.; Carmona, P.; Herrero, A.M. Oil-in-water emulsion gels stabilized with chia (Salvia hispanica L.) and cold gelling agents: Technological and infrared spectroscopic characterization. Food Chem. 2015, 185, 470–478. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, Y.P.; Lee, Y.M.; Seo, E.M.; Lee, K.W.; Kim, H.S. Food Chemistry Optimization of microencapsulation of seed oil by response surface methodology. Food Chem. 2008, 107, 98–105. [Google Scholar] [CrossRef]
- Johnson, W.; Aribidesi, L.; Ahmad, T.; Ige, S.F.; Okesina, B.K.; Abolarin, P.O.; Usman, H.; Tiamiyu, A.O.; Seidu, M.O.; Opabode, A.O. Comparative evaluation of the pharmacological value of virgin coconut oil, omega 3 fatty acids, and orlistat in experimental study on obesity with normo/hyper-lipidaemic diet. PharmaNutrition 2020, 13, 100192. [Google Scholar] [CrossRef]
- Karaca, A.C.; Nickerson, M.; Low, N.H. Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chem. 2013, 139, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Ayerza, R.; Coates, W. Ground chia seed and chia oil effects on plasma lipids and fatty acids in the rat. Nutr. Res. 2005, 25, 995–1003. [Google Scholar] [CrossRef]
- Ayerza, R. Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. J. Am. Oil Chem. Soc. 1995, 72, 1079–1081. [Google Scholar] [CrossRef]
- Sardenne, F.; Kraffe, E.; Amiel, A.; Fouché, E.; Debrauwer, L.; Ménard, F.; Bodin, N. Comparative Biochemistry and Physiology, Part A Biological and environmental influence on tissue fatty acid compositions in wild tropical tunas. Comp. Biochem. Physiol. Part A 2017, 204, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Sargi, S.C.; Silva, B.C.; Santos, H.M.C.; Montanher, P.F.; Boeing, J.S.; Santos Júnior, O.O.; Souza, N.E.; Visentainer, J.V. Antioxidant capacity and chemical composition in seeds rich in omega-3: Chia, flax, and perilla. Food Sci. Technol. 2013, 33, 541–548. [Google Scholar] [CrossRef]
Code | Weight of Core Material (g) | Weight of Wall Material (g) | WP:GA Ratio | Core to Wall Material Ratio | DDW (mL) | ||
---|---|---|---|---|---|---|---|
Chia Oil | WP | GA | Total | ||||
W10 | 14.68 | 73.72 | 0 | 73.72 | 1:0 | 1:5 | 500 |
A11 | 14.68 | 36.86 | 36.86 | 73.72 | 1:1 | 1:5 | 500 |
B12 | 14.68 | 24.57 | 49.15 | 73.72 | 1:2 | 1:5 | 500 |
C21 | 14.68 | 49.15 | 24.57 | 73.72 | 2:1 | 1:5 | 500 |
D13 | 14.68 | 18.43 | 55.29 | 73.72 | 1:3 | 1:5 | 500 |
E31 | 14.68 | 55.29 | 18.43 | 73.72 | 3:1 | 1:5 | 500 |
Formula | Yield (g) | Yield (%) | Moisture Content (wt%) | Water Activity (aw) | Color | ||
---|---|---|---|---|---|---|---|
L* | a* | b* | |||||
W10S | 43.86 | 49.62 | 3.13 ± 0.06 e | 0.11 ± 0.04 a | 92.24 ± 0.02 f | 0.24 ± 0.01 f | 26.96 ± 0.01 g |
A11S | 46.40 | 52.49 | 3.41 ± 0.05 bcd | 0.15 ± 0.05 a | 94.99 ± 0.06 c | −0.79 ± 0.02 i | 23.59 ± 0.01 j |
B12S | 41.04 | 46.43 | 3.20 ± 0.07 de | 0.12 ± 0.02 a | 95.43 ± 0.06 b | −0.99 ± 0.01 j | 22.86 ± 0.01 k |
C21S | 40.28 | 45.57 | 3.59 ± 0.09 ab | 0.16 ± 0.02 a | 93.68 ± 0.02 d | −0.42 ± 0.01 h | 24.02 ± 0.01 i |
D13S | 45.18 | 51.11 | 3.40 ± 0.07 bgd | 0.14 ± 0.01 a | 96.45 ± 0.02 a | −1.61 ± 0.01 k | 21.51 ± 0.01 l |
E31S | 48.18 | 54.50 | 3.20 ± 0.08 de | 0.12 ± 0.02 a | 93.23 ± 0.05 e | −0.07 ± 0.01 g | 25.58 ± 0.01 h |
W10F | 60.86 | 68.85 | 3.36 ± 0.10 bcde | 0.13 ± 0.01 a | 86.10 ± 0.01 j | 3.84 ± 0.01 b | 38.37 ± 0.01 a |
A11F | 61.90 | 70.02 | 3.50 ± 0.08 abc | 0.12 ± 0.04 a | 85.73 ± 0.07 k | 2.33 ± 0.01 c | 30.39 ± 0.02 c |
B12F | 62.82 | 71.06 | 3.13 ± 0.09 e | 0.14 ± 0.03 a | 86.27 ± 0.01 i | 1.26 ± 0.01 e | 27.94 ± 0.01 e |
C21F | 68.06 | 76.99 | 3.70 ± 0.11 a | 0.18 ± 0.06 a | 87.37 ± 0.01 g | 2.29 ± 0.01 d | 28.73 ± 0.01 d |
D13F | 64.64 | 73.12 | 3.40 ± 0.08 bcd | 0.13 ± 0.05 a | 86.52 ± 0.01 h | 1.27 ± 0.01 e | 27.76 ± 0.01 f |
E31F | 67.20 | 76.02 | 3.31 ± 0.06 cde | 0.13 ± 0.03 a | 82.84 ± 0.05 l | 3.97 ± 0.01 a | 31.99 ± 0.02 b |
WP | 85.41 ± 0.01 | 3.89 ± 0.01 | 39.26 ± 0.02 | ||||
GA | 97.41 ± 0.19 | −1.78 ± 0.00 | 20.84 ± 0.03 |
Formula | 0 Month | 3 Months | 6 Months | |||
---|---|---|---|---|---|---|
SO (g/100 g) | %EE | SO (g/100 g) | %EE | SO (g/100 g) | %EE | |
W10S | 2.25 ± 0.05 g | 62.10 ± 0.32 b | 2.26 ± 0.06 h | 58.25 ± 0.43 c | 2.75 ± 0.05 g | 50.92 ± 0.72 c |
A11S | 2.22 ± 0.08 g | 65.81 ± 0.49 a | 2.22 ± 0.07 hi | 60.70 ± 0.46 b | 2.63 ± 0.05 ghi | 52.24 ± 0.41 c |
B12S | 1.92 ± 0.06 h | 57.07 ± 0.56 c | 2.07 ± 0.06 i | 56.26 ± 0.60 d | 2.45 ± 0.06 i | 45.91 ± 0.67 f |
C21S | 2.03 ± 0.04 h | 65.51 ± 0.24 a | 2.46 ± 0.06 g | 62.80 ± 0.47 a | 2.68 ± 0.07 gh | 55.43 ± 0.70 ab |
D13S | 1.98 ± 0.03 h | 61.95 ± 0.28 b | 2.96 ± 0.06 f | 58.41 ± 0.37 c | 2.76 ± 0.06 g | 54.63 ± 0.45 b |
E31S | 2.25 ± 0.04 g | 65.06 ± 0.24 a | 2.26 ± 0.06 h | 59.37 ± 0.61 c | 2.54 ± 0.08 hi | 56.63 ± 0.60 a |
W10F | 3.53 ± 0.02 f | 46.30 ± 0.26 g | 3.64 ± 0.07 e | 43.74 ± 0.55 h | 4.04 ± 0.06 f | 38.00 ± 0.43 h |
A11F | 6.22 ± 0.05 b | 56.60 ± 0.17 cd | 6.66 ± 0.08 b | 54.56 ± 0.25 e | 7.63 ± 0.05 a | 47.40 ± 0.19 e |
B12F | 6.06 ± 0.04 c | 56.69 ± 0.13 cd | 6.27 ± 0.06 c | 52.99 ± 0.21 f | 6.87 ± 0.06 c | 48.87 ± 0.21 d |
C21F | 6.61 ± 0.03 a | 55.42 ± 0.10 de | 7.02 ± 0.05 a | 54.65 ± 0.15 e | 7.23 ± 0.06 b | 51.92 ± 0.18 c |
D13F | 5.22 ± 0.04 d | 54.22 ± 0.16 e | 5.35 ± 0.03 d | 51.33 ± 0.18 g | 5.88 ± 0.09 e | 46.70 ± 0.42 ef |
E31F | 4.27 ± 0.05 e | 51.07 ± 0.28 f | 6.53 ± 0.04 b | 50.54 ± 0.14 g | 6.32 ± 0.08 d | 39.73 ± 0.46 g |
Fatty Acid | Month | Formula | |||||
W10S | A11S | B12S | C21S | D13S | E31S | ||
C16:0 | 0 | 8.24 ± 0.77 ij | 10.41 ± 0.37 b–g | 9.11 ± 0.37 f–i | 8.56 ± 0.35 h–j | 8.87 ± 0.31 g–j | 9.09 ± 0.24 g–i |
3 | 11.23 ± 0.30 a–d | 9.69 ± 1.20 d–i | 10.36 ± 0.46 b–g | 9.25 ± 1.09 e–i | 10.48 ± 1.56 b–g | 11.76 ± 0.75 ab | |
6 | 11.57 ± 0.64 a–c | 9.63 ± 0.62 d–i | 8.92 ± 1.57 g–j | 9.57 ± 0.66 e–i | 9.96 ± 2.30 c–h | 10.86 ± 1.64 b–e | |
C18:0 | 0 | 4.86 ± 0.14 a | 3.47 ± 0.09 e–k | 3.56 ± 0.04 e–k | 3.62 ± 0.17 d–k | 4.66 ± 0.52 a–c | 3.54 ± 0.06 e–k |
3 | 3.73 ± 1.37 c–k | 4.10 ± 0.57 a–h | 4.37 ± 0.58 a–e | 4.53 ± 0.06 a–d | 3.69 ± 0.97 d–k | 3.39 ± 1.30 f–k | |
6 | 3.72 ± 0.76 c–k | 4.02 ± 0.69 a–i | 4.75 ± 0.85 ab | 4.37 ± 0.33 a–e | 3.86 ± 0.96 b–j | 2.87 ± 1.18 k | |
C18:1 | 0 | 9.05 ± 0.08 c–h | 7.67 ± 0.43 i | 8.87 ± 0.04 d–h | 8.82 ± 0.23 d–i | 8.04 ± 0.26 hi | 9.13 ± 0.41 c–h |
3 | 9.66 ± 1.24 b–e | 9.29 ± 0.47 b–g | 9.24 ± 0.41 c–g | 9.54 ± 0.59 b–f | 8.87 ± 0.24 d–h | 9.05 ± 0.16 c–h | |
6 | 10.40 ± 1.38 ab | 9.93 ± 0.66 a–d | 11.02 ± 2.02 a | 9.04 ± 0.15 c–h | 9.17 ± 0.93 c–h | 9.32 ± 2.04 b–g | |
C18:2 | 0 | 20.21 ± 0.35 b–g | 20.10 ± 0.06 b–h | 20.36 ± 0.16 b–e | 20.79 ± 0.07 a–c | 20.15 ± 0.06 b–g | 20.28 ± 0.17 b–f |
3 | 19.57 ± 0.82 c–i | 20.67 ± 1.61 a–c | 19.10 ± 0.19 d–i | 21.03 ± 1.73 ab | 20.65 ± 1.68 a–c | 20.16 ± 1.27 b–g | |
6 | 18.66 ± 0.09 ij | 19.02 ± 1.12 e–i | 17.52 ± 1.20 j | 21.90 ± 2.00 a | 18.87 ± 0.96 g–j | 19.15 ± 0.67 d–i | |
C18:3 | 0 | 57.64 ± 0.49 d–i | 58.35 ± 0.03 b–f | 58.10 ± 0.28 d–g | 58.21 ± 0.11 c–g | 58.27 ± 0.11 b–f | 57.96 ± 0.06 d–h |
3 | 55.80 ± 1.64 j–l | 56.25 ± 0.21 h–l | 56.93 ± 0.54 e–j | 55.64 ± 1.76 j–l | 56.31 ± 0.68 h–l | 55.64 ± 1.00 j–l | |
6 | 55.65 ± 1.34 j–l | 57.40 ± 1.05 d–j | 57.79 ± 0.54 d–i | 55.12 ± 0.91 kl | 58.13 ± 1.40 d–g | 57.80 ± 2.12 d–i | |
MUFA/PUFA | 0 | 0.12 | 0.10 | 0.11 | 0.11 | 0.10 | 0.12 |
3 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | |
6 | 0.14 | 0.13 | 0.15 | 0.12 | 0.12 | 0.12 | |
Fatty Acid | Month | Formula | |||||
W10F | A11F | B12F | C21F | D13F | E31F | ||
C16:0 | 0 | 9.40 ± 0.66 e–i | 7.40 ± 0.12 j | 10.36 ± 1.45 b–g | 9.06 ± 0.51 g–i | 9.10 ± 0.52 g–i | 8.65 ± 0.16 h–j |
3 | 11.78 ± 0.94 ab | 9.42 ± 0.99 e–i | 9.29 ± 1.22 e–i | 11.72 ± 1.02 ab | 9.17 ± 1.55 f–i | 10.74 ± 0.55 b–f | |
6 | 11.36 ± 1.12 a–c | 9.22 ± 1.25 f–i | 9.19 ± 1.20 f–i | 12.72 ± 0.88 a | 9.55 ± 0.69 e–i | 10.32 ± 1.42 b–g | |
C18:0 | 0 | 4.27 ± 0.25 a–f | 4.08 ± 0.21 a–h | 3.20 ± 0.11 h–k | 4.33 ± 0.27 a–f | 3.58 ± 0.05 e–k | 4.00 ± 0.38 a–j |
3 | 3.58 ± 0.92 e–k | 3.85 ± 0.55 b–j | 3.53 ± 1.29 e–k | 3.93 ± 0.84 a–j | 4.65 ± 0.13 a–c | 4.14 ± 0.49 a–h | |
6 | 3.28 ± 0.85 g–k | 3.06 ± 0.98 jk | 3.31 ± 0.80 g–k | 3.53 ± 0.66 e–k | 4.19 ± 0.12 a–g | 3.12 ± 0.71 i–k | |
C18:1 | 0 | 8.38 ± 0.04 g–i | 8.44 ± 0.05 g–i | 9.11 ± 0.08 c–h | 8.84 ± 0.37 d–h | 8.49 ± 0.01 f–i | 8.38 ± 0.20 g–i |
3 | 9.00 ± 0.19 c–h | 9.02 ± 0.18 c–h | 8.46 ± 1.18 f–i | 10.05 ± 1.24 a–c | 9.04 ± 0.57 c–h | 9.59 ± 0.61 b–f | |
6 | 9.68 ± 0.83 b–d | 8.25 ± 0.15 g–i | 8.52 ± 0.29 e–i | 10.05 ± 1.39 a–c | 9.39 ± 0.79 b–g | 9.14 ± 0.66 c–h | |
C18:2 | 0 | 20.25 ± 0.06 b–g | 20.13 ± 0.21 b–g | 20.05 ± 0.17 b–h | 19.86 ± 0.07 b–i | 20.40 ± 0.04 b–e | 20.22 ± 0.03 b–g |
3 | 19.89 ± 0.77 b–i | 19.93 ± 0.72 b–i | 20.07 ± 1.26 b–h | 21.04 ± 2.10 ab | 19.74 ± 1.43 b–i | 19.47 ± 0.82 c–i | |
6 | 18.92 ± 0.18 f–i | 19.48 ± 0.76 c–i | 18.72 ± 0.71 h–j | 19.13 ± 0.46 d–i | 20.42 ± 1.75 b–d | 18.91 ± 0.44 f–i | |
C18:3 | 0 | 57.70 ± 0.39 d–i | 59.95 ± 0.08 a–c | 57.28 ± 1.15 d–j | 57.91 ± 1.07 d–h | 58.43 ± 0.52 b–f | 58.76 ± 0.77 a–d |
3 | 55.75 ± 0.69 j–l | 57.78 ± 0.65 d–i | 58.65 ± 1.67 a–e | 53.26 ± 2.73 m | 57.40 ± 1.04 d–j | 56.06 ± 0.96 i–l | |
6 | 56.75 ± 0.93 f–k | 60.00 ± 1.35 ab | 60.25 ± 1.17 a | 54.58 ± 2.45 lm | 56.45 ± 1.40 g–k | 58.52 ± 1.26 a–f | |
MUFA/PUFA | 0 | 0.11 | 0.11 | 0.12 | 0.11 | 0.11 | 0.11 |
3 | 0.12 | 0.12 | 0.11 | 0.14 | 0.12 | 0.13 | |
6 | 0.13 | 0.10 | 0.11 | 0.14 | 0.12 | 0.12 |
Formula | Acid Value (mg KOH) | Peroxide Value (Meq Peroxide/kg Oil) | ||||
---|---|---|---|---|---|---|
0 | 3 | 6 | 0 | 3 | 6 | |
W10S | 2.46 ± 0.30 b | 3.13 ± 0.22 ab | 3.72 ± 0.20 ab | 1.33 ± 0.28 b | 4.83 ± 0.76 ab | 20.33 ± 0.57 abc |
A11S | 2.53 ± 0.42 b | 2.90 ± 0.06 abcd | 3.65 ± 0.25 ab | 1.17 ± 0.28 b | 5.50 ± 0.50 ab | 20.83 ± 0.76 ab |
B12S | 2.37 ± 0.28 bc | 2.92 ± 0.13 abc | 3.78 ± 0.22 a | 1.17 ± 0.28 b | 5.50 ± 0.86 ab | 20.83 ± 0.76 ab |
C21S | 2.70 ± 0.43 ab | 3.17 ± 0.18 a | 3.68 ± 0.17 ab | 2.67 ± 0.76 a | 4.83 ± 1.04 ab | 21.33 ± 1.04 a |
D13S | 3.36 ± 0.46 a | 3.13 ± 0.20 ab | 3.49 ± 0.11 ab | 3.33 ± 0.28 a | 6.00 ± 0.00 a | 22.00 ± 0.86 a |
E31S | 3.10 ± 0.21 ab | 3.24 ± 0.08 a | 3.64 ± 0.24 ab | 3.33 ± 0.28 a | 5.33 ± 1.04 ab | 20.50 ± 0.50 abc |
W10F | 1.56 ± 0.11 cd | 2.50 ± 0.23 cd | 3.03 ± 0.15 cd | 1.17 ± 0.28 b | 4.50 ± 0.50 ab | 17.50 ± 0.86 d |
A11F | 1.31 ± 0.17 d | 2.65 ± 0.10 cd | 2.93 ± 0.12 d | 1.17 ± 0.28 b | 3.83 ± 0.76 b | 18.17 ± 1.04 cd |
B12F | 1.41 ± 0.20 d | 2.47 ± 0.22 d | 3.23 ± 0.09 bcd | 1.00 ± 0.00 b | 4.33 ± 0.76 ab | 18.17 ± 0.76 cd |
C21F | 1.42 ± 0.17 d | 2.45 ± 0.17 d | 3.05 ± 0.18 cd | 1.17 ± 0.28 b | 4.50 ± 0.50 ab | 18.50 ± 1.00 bcd |
D13F | 1.33 ± 0.06 d | 2.71 ± 0.05 bcd | 2.97 ± 0.11 d | 1.17 ± 0.28 b | 4.67 ± 0.57 ab | 17.83 ± 1.60 d |
E31F | 1.34 ± 0.09 d | 2.48 ± 0.12 d | 3.03 ± 0.24 cd | 1.50 ± 0.00 b | 4.17 ± 0.28 ab | 18.17 ± 0.57 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangkulangkool, M.; Ketthaisong, D.; Tangwongchai, R.; Boonmars, T.; Lomthaisong, K. Microencapsulation of Chia Oil Using Whey Protein and Gum Arabic for Oxidation Prevention: A Comparative Study of Spray-Drying and Freeze-Drying Methods. Processes 2023, 11, 1462. https://doi.org/10.3390/pr11051462
Wangkulangkool M, Ketthaisong D, Tangwongchai R, Boonmars T, Lomthaisong K. Microencapsulation of Chia Oil Using Whey Protein and Gum Arabic for Oxidation Prevention: A Comparative Study of Spray-Drying and Freeze-Drying Methods. Processes. 2023; 11(5):1462. https://doi.org/10.3390/pr11051462
Chicago/Turabian StyleWangkulangkool, Monchawan, Danupol Ketthaisong, Ratchada Tangwongchai, Thidarut Boonmars, and Khomsorn Lomthaisong. 2023. "Microencapsulation of Chia Oil Using Whey Protein and Gum Arabic for Oxidation Prevention: A Comparative Study of Spray-Drying and Freeze-Drying Methods" Processes 11, no. 5: 1462. https://doi.org/10.3390/pr11051462
APA StyleWangkulangkool, M., Ketthaisong, D., Tangwongchai, R., Boonmars, T., & Lomthaisong, K. (2023). Microencapsulation of Chia Oil Using Whey Protein and Gum Arabic for Oxidation Prevention: A Comparative Study of Spray-Drying and Freeze-Drying Methods. Processes, 11(5), 1462. https://doi.org/10.3390/pr11051462