Exploring Different Designs in Thieno[3,4-b]pyrazine-Based Dyes to Enhance Divergent Optical Properties in Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis
2.2.1. Synthesis of 4-(7-(4-(bis(4-(Hexylthio)phenyl)amino)phenyl)-2,3-diphenylthieno[3,4-b]pyrazin-5-yl)benzaldehyde (4)
2.2.2. Synthesis of (E)-3-(4-(7-(4-(bis(4-(Hexylthio)phenyl)amino)phenyl)-2,3-diphenylthieno[3,4-b]pyrazin-5-yl)phenyl)-2-cyanoacrylic Acid (TP1)
2.2.3. Synthesis of Dimethyl 4,4′-(1-Hydroxy-2-oxoethane-1,2-diyl)dibenzoate (6) [28]
2.2.4. Synthesis of Dimethyl 4,4′-Oxalyldibenzoate (7) [29]
2.2.5. Synthesis of Dimethyl 4,4′-(Thieno[3,4-b]pyrazine-2,3-diyl)dibenzoate (9) [30]
2.2.6. Synthesis of Dimethyl 4,4′-(5,7-bis(4-(bis(4-(Hexylthio)phenyl)amino)phenyl)thieno[3,4-b]pyrazine-2,3-diyl)dibenzoate (10) [21]
2.2.7. Synthesis of 4,4′-(5,7-bis(4-(bis(4-(Hexylthio)phenyl)amino)phenyl)thieno[3,4-b]pyrazine-2,3-diyl)dibenzoic acid (TP2) [24]
3. Results and Discussion
3.1. Synthesis of the Dyes
3.2. Spectroscopic and Electrochemical Characterization of Dyes TP1–2
λabs [nm] (ε × 104 [M−1 cm−1]) a | λabs on TiO2 [nm] | AVT [%] | E0–0 [eV] b | Eox [V] c | Eox* [V] d | |
---|---|---|---|---|---|---|
TP1 | 572 (1.83); 420 (1.88); 337 (4.10) | 557 | 42.3 | 1.91 | 1.01 | –0.90 |
TP2 | 597 (3.70); 306 (30.49) | 591 | 83.7 | 1.82 | 1.04 | –0.78 |
3.3. Photovoltaic Characterization of Dyes TP1–2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pillai, D.S.; Shabunko, V.; Krishna, A. A comprehensive review on building integrated photovoltaic systems: Emphasis to technological advancements, outdoor testing, and predictive maintenance. Renew. Sustain. Energy Rev. 2022, 156, 111946. [Google Scholar] [CrossRef]
- Kirimtat, A.; Tasgetiren, M.F.; Brida, P.; Krejcar, O. Control of PV integrated shading devices in buildings: A review. Build. Environ. 2022, 214, 108961. [Google Scholar] [CrossRef]
- Ikudayisi, A.E.; Chan, A.P.; Darko, A.; Adegun, O.B. Integrated design process of green building projects: A review towards assessment metrics and conceptual framework. J. Build. Eng. 2022, 50, 104180. [Google Scholar] [CrossRef]
- Abdalazeem, M.E.; Hassan, H.; Asawa, T.; Mahmoud, H. Review on integrated photovoltaic-green roof solutions on urban and energy-efficient buildings in hot climate. Sustain. Cities Soc. 2022, 82, 103919. [Google Scholar] [CrossRef]
- Almora, O.; Baran, D.; Bazan, G.C.; Cabrera, C.I.; Erten-Ela, S.; Forberich, K.; Guo, F.; Hauch, J.; Ho-Baillie, A.W.Y.; Jacobsson, T.J.; et al. Device Performance of Emerging Photovoltaic Materials (Version 3). Adv. Energy Mater. 2023, 13, 2203313. [Google Scholar] [CrossRef]
- Almora, O.; Baran, D.; Bazan, G.C.; Berger, C.; Cabrera, C.I.; Catchpole, K.R.; Erten-Ela, S.; Guo, F.; Hauch, J.; Ho-Baillie, A.W.Y.; et al. Device Performance of Emerging Photovoltaic Materials (Version 2). Adv. Energy Mater. 2021, 11, 2102526. [Google Scholar] [CrossRef]
- Gross, H.; Blechinger, F.; Achtner, B. Handbook of Optical Systems: Volume 4: Survey of Optical Instruments; Wiley-VCH: Weinheim, Germany, 2012; Volume 4, ISBN 978-3-527-40380-6. [Google Scholar]
- Lim, J.W.; Shin, M.; Lee, D.J.; Lee, S.H.; Yun, S.J. Highly transparent amorphous silicon solar cells fabricated using thin absorber and high-bandgap-energy n/i-interface layers. Sol. Energy Mater. Sol. Cells 2014, 128, 301–306. [Google Scholar] [CrossRef]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef]
- Baek, S.; Ha, S.-J.; Lee, H.; Kim, K.; Kim, D.; Moon, J.H. Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 37006–37012. [Google Scholar] [CrossRef]
- Kiruthiga, G.; Rajni, K.S.; Raguram, T.; Eswaramoorthy, N.; Pitchaiya, S. Indium-free MgSnO3 transparent conductive oxide layer: Investigation on structural, optical and electrical properties and photovoltaic performance analysis. Appl. Nanosci. 2022, 13, 3421–3434. [Google Scholar] [CrossRef]
- Gao, S.; Lan, Z.; Wu, W.; Que, L.; Wu, J.; Lin, J. Room temperature polymerization of poly(3,4-ethylenedioxythiophene) as transparent counter electrodes for dye-sensitized solar cells. Polym. Adv. Technol. 2014, 25, 1560–1564. [Google Scholar] [CrossRef]
- Jeon, S.S.; Kim, C.; Lee, T.H.; Lee, Y.W.; Do, K.; Ko, J.; Im, S.S. Camphorsulfonic Acid-Doped Polyaniline Transparent Counter Electrode for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 22743–22748. [Google Scholar] [CrossRef]
- Zhang, K.; Qin, C.; Yang, X.; Islam, A.; Zhang, S.; Chen, H.; Han, L. High-Performance, Transparent, Dye-Sensitized Solar Cells for See-Through Photovoltaic Windows. Adv. Energy Mater. 2014, 4, 1301966. [Google Scholar] [CrossRef]
- Alnoman, R.B.; Nabil, E.; Parveen, S.; Hagar, M.; Zakaria, M.; Hasanein, A.A. Synthesis and Computational Characterization of Organic UV-Dyes for Cosensitization of Transparent Dye-Sensitized Solar Cells. Molecules 2021, 26, 7336. [Google Scholar] [CrossRef]
- Naim, W.; Novelli, V.; Nikolinakos, I.; Barbero, N.; Dzeba, I.; Grifoni, F.; Ren, Y.; Alnasser, T.; Velardo, A.; Borrelli, R.; et al. Transparent and Colorless Dye-Sensitized Solar Cells Exceeding 75% Average Visible Transmittance. JACS Au 2021, 1, 409–426. [Google Scholar] [CrossRef]
- Franchi, D.; Calamante, M.; Coppola, C.; Mordini, A.; Reginato, G.; Sinicropi, A.; Zani, L. Synthesis and Characterization of New Organic Dyes Containing the Indigo Core. Molecules 2020, 25, 3377. [Google Scholar] [CrossRef] [PubMed]
- Dessì, A.; Sinicropi, A.; Mohammadpourasl, S.; Basosi, R.; Taddei, M.; De Biani, F.F.; Calamante, M.; Zani, L.; Mordini, A.; Bracq, P.; et al. New Blue Donor–Acceptor Pechmann Dyes: Synthesis, Spectroscopic, Electrochemical, and Computational Studies. ACS Omega 2019, 4, 7614–7627. [Google Scholar] [CrossRef]
- Dessì, A.; Calamante, M.; Sinicropi, A.; Parisi, M.L.; Vesce, L.; Mariani, P.; Taheri, B.; Ciocca, M.; Di Carlo, A.; Zani, L.; et al. Thiazolo[5,4-d]thiazole-based organic sensitizers with improved spectral properties for application in greenhouse-integrated dye-sensitized solar cells. Sustain. Energy Fuels 2020, 4, 2309–2321. [Google Scholar] [CrossRef]
- Dessì, A.; Chalkias, D.A.; Bilancia, S.; Sinicropi, A.; Calamante, M.; Mordini, A.; Karavioti, A.; Stathatos, E.; Zani, L.; Reginato, G. D–A–π–A organic dyes with tailored green light absorption for potential application in greenhouse-integrated dye-sensitized solar cells. Sustain. Energy Fuels 2021, 5, 1171–1183. [Google Scholar] [CrossRef]
- Goti, G.; Calamante, M.; Coppola, C.; Dessì, A.; Franchi, D.; Mordini, A.; Sinicropi, A.; Zani, L.; Reginato, G. Donor-Acceptor-Donor Thienopyrazine-Based Dyes as NIR-Emitting AIEgens. Eur. J. Org. Chem. 2021, 2021, 2655–2664. [Google Scholar] [CrossRef]
- Yzeiri, X.; Calamante, M.; Dessì, A.; Franchi, D.; Pucci, A.; Ventura, F.; Reginato, G.; Zani, L.; Mordini, A. Synthesis and Spectroscopic Characterization of Thienopyrazine-Based Fluorophores for Application in Luminescent Solar Concentrators (LSCs). Molecules 2021, 26, 5428. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, N.P.; Yella, A.; Nazeeruddin, M.; Grätzel, M.; Delcamp, J.H. Thieno[3,4-b]pyrazine as an Electron Deficient π-Bridge in D–A−π–A DSCs. ACS Appl. Mater. Interfaces 2016, 8, 5376–5384. [Google Scholar] [CrossRef] [PubMed]
- Peddapuram, A.; Cheema, H.; Adams, R.E.; Schmehl, R.H.; Delcamp, J.H. A Stable Panchromatic Green Dual Acceptor, Dual Donor Organic Dye for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2017, 121, 8770–8780. [Google Scholar] [CrossRef]
- Cheema, H.; Peddapuram, A.; Adams, R.E.; McNamara, L.; Hunt, L.A.; Le, N.; Watkins, D.L.; Hammer, N.I.; Schmehl, R.H.; Delcamp, J.H. Molecular Engineering of Near Infrared Absorbing Thienopyrazine Double Donor Double Acceptor Organic Dyes for Dye-Sensitized Solar Cells. J. Org. Chem. 2017, 82, 12038–12049. [Google Scholar] [CrossRef] [PubMed]
- Dessì, A.; Calamante, M.; Mordini, A.; Peruzzini, M.; Sinicropi, A.; Basosi, R.; de Biani, F.F.; Taddei, M.; Colonna, D.; Di Carlo, A.; et al. Organic dyes with intense light absorption especially suitable for application in thin-layer dye-sensitized solar cells. Chem. Commun. 2014, 50, 13952–13955. [Google Scholar] [CrossRef]
- Robson, K.C.D.; Hu, K.; Meyer, G.J.; Berlinguette, C.P. Atomic Level Resolution of Dye Regeneration in the Dye-Sensitized Solar Cell. J. Am. Chem. Soc. 2013, 135, 1961–1971. [Google Scholar] [CrossRef]
- Guo, B.; Li, F.; Wang, C.; Zhang, L.; Sun, D. A rare (3,12)-connected zirconium metal–organic framework with efficient iodine adsorption capacity and pH sensing. J. Mater. Chem. A 2019, 7, 13173–13179. [Google Scholar] [CrossRef]
- Medabalmi, V.; Ramanujam, K. Introduction of Carbonyl Groups: An Approach to Enhance Electrochemical Performance of Conjugated Dicarboxylate for Li-Ion Batteries. J. Electrochem. Soc. 2017, 164, A1720–A1725. [Google Scholar] [CrossRef]
- McNamara, L.E.; Liyanage, N.; Peddapuram, A.; Murphy, J.S.; Delcamp, J.H.; Hammer, N.I. Donor–Acceptor–Donor Thienopyrazines via Pd-Catalyzed C–H Activation as NIR Fluorescent Materials. J. Org. Chem. 2015, 81, 32–42. [Google Scholar] [CrossRef]
- Parisi, M.L.; Dessì, A.; Zani, L.; Maranghi, S.; Mohammadpourasl, S.; Calamante, M.; Mordini, A.; Basosi, R.; Reginato, G.; Sinicropi, A. Combined LCA and Green Metrics Approach for the Sustainability Assessment of an Organic Dye Synthesis on Lab Scale. Front. Chem. 2020, 8, 214. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, B.R.; Lim, J.W.; Kim, J.N. An efficient palladium-catalyzed synthesis of benzils from aryl bromides: Vinylene carbonate as a synthetic equivalent of glyoxal. Tetrahedron Lett. 2011, 52, 3463–3466. [Google Scholar] [CrossRef]
- Garapati, V.K.R.; Gravel, M. Oxazolium Salts as Organocatalysts for the Umpolung of Aldehydes. Org. Lett. 2018, 20, 6372–6375. [Google Scholar] [CrossRef]
- Estager, J.; Lévêque, J.-M.; Turgis, R.; Draye, M. Neat benzoin condensation in recyclable room-temperature ionic liquids under ultrasonic activation. Tetrahedron Lett. 2007, 48, 755–759. [Google Scholar] [CrossRef]
- Li, C.; Xu, Y.; Lu, M.; Zhao, Z.; Liu, L.; Zhao, Z.; Cui, Y.; Zheng, P.; Ji, X.; Gao, G. A Novel and Efficient Oxidation of Benzyl Alcohols to Benzaldehydes with DMSO Catalyzed by Acids. Cheminform 2002, 34, 2041–2042. [Google Scholar] [CrossRef]
- Sharpe, L.T.; Stockman, A.; Jagla, W.; Jägle, H. A luminous efficiency function, VD65* (λ), for daylight adaptation: A correction. Color Res. Appl. 2011, 36, 42–46. [Google Scholar] [CrossRef]
- Traverse, C.J.; Pandey, R.; Barr, M.C.; Lunt, R.R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2017, 2, 849–860. [Google Scholar] [CrossRef]
- Reference Air Mass 1.5 Spectra|Grid Modernization. NREL: Golden, CO, USA. Available online: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html (accessed on 27 March 2023).
- Aranzaes, J.R.; Daniel, M.-C.; Astruc, D. Metallocenes as references for the determination of redox potentials by cyclic voltammetry—Permethylated iron and cobalt sandwich complexes, inhibition by polyamine dendrimers, and the role of hydroxy-containing ferrocenes. Can. J. Chem. 2006, 84, 288–299. [Google Scholar] [CrossRef]
- Koops, S.E.; O’regan, B.C.; Barnes, P.R.F.; Durrant, J.R. Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2009, 131, 4808–4818. [Google Scholar] [CrossRef]
- Hardin, B.E.; Snaith, H.J.; McGehee, M.D. The renaissance of dye-sensitized solar cells. Nat. Photonics 2012, 6, 162–169. [Google Scholar] [CrossRef]
- Dessì, A.; Calamante, M.; Mordini, A.; Peruzzini, M.; Sinicropi, A.; Basosi, R.; de Biani, F.F.; Taddei, M.; Colonna, D.; di Carlo, A.; et al. Thiazolo[5,4-d]thiazole-based organic sensitizers with strong visible light absorption for transparent, efficient and stable dye-sensitized solar cells. RSC Adv. 2015, 5, 32657–32668. [Google Scholar] [CrossRef]
- Wu, C.; Gong, Y.; Han, S.; Jin, T.; Chi, B.; Pu, J.; Jian, L. Electrochemical characterization of a novel iodine-free electrolyte for dye-sensitized solar cell. Electrochim. Acta 2012, 71, 33–38. [Google Scholar] [CrossRef]
- Giribabu, L.; Bolligarla, R.; Panigrahi, M. Recent Advances of Cobalt(II/III) Redox Couples for Dye-Sensitized Solar Cell Applications. Chem. Rec. 2015, 15, 760–788. [Google Scholar] [CrossRef] [PubMed]
- Bella, F.; Galliano, S.; Gerbaldi, C.; Viscardi, G. Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices. Energies 2016, 9, 384. [Google Scholar] [CrossRef]
- Feldt, S.M.; Wang, G.; Boschloo, G.; Hagfeldt, A. Effects of Driving Forces for Recombination and Regeneration on the Photovoltaic Performance of Dye-Sensitized Solar Cells using Cobalt Polypyridine Redox Couples. J. Phys. Chem. C 2011, 115, 21500–21507. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. Joule 2018, 2, 1108–1117. [Google Scholar] [CrossRef]
- Sapp, S.A.; Elliott, C.M.; Contado, C.; Caramori, S.; Bignozzi, C.A. Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2002, 124, 11215–11222. [Google Scholar] [CrossRef]
- Klahr, B.M.; Hamann, T.W. Performance Enhancement and Limitations of Cobalt Bipyridyl Redox Shuttles in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2009, 113, 14040–14045. [Google Scholar] [CrossRef]
- Shavaleev, N.M.; Kessler, F.; Grätzel, M.; Nazeeruddin, M.K. Redox Properties of Cobalt(II) Complexes with Azole-Pyridines. Inorg. Chim Acta 2013, 407, 261–268. [Google Scholar] [CrossRef]
Dye | Electrolyte | JSC [mA cm−2] | VOC [mV] | ff [%] | η [%] |
---|---|---|---|---|---|
TP1 | HSE | 10.38 ± 0.27 | 680 ± 6 | 73.0 ± 0.5 | 5.16 ± 0.12 |
LIE | 8.44 ± 0.48 | 695 ± 9 | 72.5 ± 2.9 | 4.24 ± 0.04 | |
TP2 | HSE | 8.67 ± 0.41 | 680 ± 5 | 68.4 ± 1.4 | 4.03 ± 0.14 |
LIE | 6.97 ± 0.38 | 689 ± 3 | 69.6 ± 1.5 | 3.35 ± 0.19 | |
TTZ5 | HSE | 14.08 | 711 | 74.4 | 7.44 |
LIE | 13.48 | 751 | 69.0 | 6.98 |
Dye | Electrolyte | JSC [mA cm−2] | VOC [mV] | ff [%] | η [%] |
---|---|---|---|---|---|
TP1 | Co(bpy)3 | 7.37 ± 0.52 | 706 ± 8 | 75.3 ± 1.8 | 4.00 ± 0.30 |
Co(phen)3 | 7.20 ± 0.44 | 770 ± 3 | 72.4 ± 4.4 | 4.01 ± 0.36 | |
Co(bpypz)2 | 3.55 ± 0.15 | 844 ± 1 | 73.6 ± 3.0 | 2.21 ± 0.13 | |
TP2 | Co(bpy)3 | 4.58 ± 0.21 | 721 ± 6 | 75.9 ± 3.7 | 2.46 ± 0.18 |
Co(phen)3 | 3.59 ± 0.15 | 731 ± 4 | 77.5 ± 3.3 | 2.03 ± 0.05 | |
Co(bpypz)2 | 1.20 ± 0.19 | 806 ± 11 | 78.3 ± 1.4 | 0.75 ± 0.10 | |
TTZ5 | Co(bpy)3 | 6.13 ± 0.32 | 640 ± 7 | 74.5 ± 1.5 | 2.92 ± 0.08 |
Co(phen)3 | 6.71 ± 0.45 | 697 ± 14 | 75.1 ± 1.0 | 3.51 ± 0.32 | |
Co(bpypz)2 | 4.64 ± 0.29 | 817 ± 8 | 72.1 ± 2.0 | 2.74 ± 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franchi, D.; Bartolini, M.; D’Amico, F.; Calamante, M.; Zani, L.; Reginato, G.; Mordini, A.; Dessì, A. Exploring Different Designs in Thieno[3,4-b]pyrazine-Based Dyes to Enhance Divergent Optical Properties in Dye-Sensitized Solar Cells. Processes 2023, 11, 1542. https://doi.org/10.3390/pr11051542
Franchi D, Bartolini M, D’Amico F, Calamante M, Zani L, Reginato G, Mordini A, Dessì A. Exploring Different Designs in Thieno[3,4-b]pyrazine-Based Dyes to Enhance Divergent Optical Properties in Dye-Sensitized Solar Cells. Processes. 2023; 11(5):1542. https://doi.org/10.3390/pr11051542
Chicago/Turabian StyleFranchi, Daniele, Matteo Bartolini, Francesco D’Amico, Massimo Calamante, Lorenzo Zani, Gianna Reginato, Alessandro Mordini, and Alessio Dessì. 2023. "Exploring Different Designs in Thieno[3,4-b]pyrazine-Based Dyes to Enhance Divergent Optical Properties in Dye-Sensitized Solar Cells" Processes 11, no. 5: 1542. https://doi.org/10.3390/pr11051542
APA StyleFranchi, D., Bartolini, M., D’Amico, F., Calamante, M., Zani, L., Reginato, G., Mordini, A., & Dessì, A. (2023). Exploring Different Designs in Thieno[3,4-b]pyrazine-Based Dyes to Enhance Divergent Optical Properties in Dye-Sensitized Solar Cells. Processes, 11(5), 1542. https://doi.org/10.3390/pr11051542