A Multi-Stage Decision Framework for Optimal Energy Efficiency Measures of Educational Buildings: A Case Study of Chongqing
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Developing the Building Model
3.2. Defining the Optimization Problems
3.2.1. Objective Functions
A. Energy Consumption ()
B. Retrofit Cost ()
3.2.2. Decision Variables
3.3. Performing the Multi-Objective Optimization
3.4. Ranking the Pareto Front
4. Results and Discussion
4.1. Results of Multi-Objective Optimization
4.2. Results of Pareto Front Ranking
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Nomenclature | |||
Characteristic matrix of the objectives | Energy consumption used for lighting, kWh | ||
Air-conditioning area, m2 | Energy consumption used for domestic hot water, kWh | ||
Surface area of roof, m2 | Decision objectives | ||
Surface area of external wall, m2 | Energy consumption | ||
Surface area of windows, m2 | Retrofit cost | ||
Matrix of retrofit EEMs | Entropy | ||
Building’s total retrofit cost, RMB/m2 | k | Insulation materials for roof | |
Retrofit cost of roof, RMB | Insulation materials for external wall | ||
Unit price of insulation materials k for roof, RMB/m2 | Ideal point matrix | ||
Retrofit cost of external wall, RMB | R | The normalized matrix for objective function | |
Retrofit cost of external windows, RMB | Closeness degrees | ||
Unit price of insulation materials l for external wall, RMB/m3 | Thickness of insulation layer, m | ||
Unit price of the window type, RMB/m2 | Thickness of insulation layer, m | ||
Building’s energy consumption, kWh/m2 | Entropy weights of different objectives | ||
Energy consumption used for cooling, kWh | Original objective function value matrix | ||
Energy consumption used for appliances, kWh | Combination of variables | ||
Energy consumption used for heating, kWh | |||
Acronyms | |||
A | Air | PU | Rigid polyurethane |
EEMs | Energy efficiency measures | RP | Rubber board |
EPS | Expanded polystyrene | RW | Rock wool board |
EWM | Entropy weight method | R3P | Mineral binder and expanded polystyrene granule |
FWG | Float white glass | SEPS | Graphite polystyrene board |
GA | Generic algorithm | TG | Toughened glass |
GW | Glass wool board | TGC | Toughened coated glass |
HVAC | Heating, Ventilation and Air Conditioning | TGLO | Toughened glass with Low-E |
MOPSO | Multi-objective particle swarm optimization | VB | Glazed hollow bead board |
NSGAs | Non-dominated sorting genetic algorithms | WWR | Window–wall ratio |
NSGA-II | Elitist non-dominated sorting genetic algorithm | XPS | Extruded polystyrene |
NSGA-III | Reference-point based non-dominated sorting genetic algorithm |
References
- Huo, T.; Cai, W.; Ren, H.; Feng, W.; Zhu, M.; Lang, N.; Gao, J. China’s building stock estimation and energy intensity analysis. J. Clean. Prod. 2019, 207, 801–813. [Google Scholar] [CrossRef]
- IEA. Buildings: A Source of Enormous Untapped Efficiency Potential. 19 November 2021. Available online: https://www.iea.org/topics/buildings (accessed on 21 January 2022).
- Jing, W.Q.; Zhen, M.; Guan, H.J.; Luo, W.; Liu, X.Y. A prediction model for building energy consumption in a shopping mall based on Chaos theory. Energy Rep. 2022, 8, 5305–5312. [Google Scholar] [CrossRef]
- Ma, D.Y.; Li, X.D.; Lin, B.R.; Zhu, Y.M. An intelligent retrofit decision-making model for building program planning considering tacit knowledge and multiple objectives. Energy 2023, 263, 15. [Google Scholar] [CrossRef]
- Huo, T.F.; Du, Q.X.; Xu, L.B.; Shi, Q.W.; Cong, X.B.; Cai, W.G. Timetable and roadmap for achieving carbon peak and carbon neutrality of China’s building sector. Energy 2023, 274, 14. [Google Scholar] [CrossRef]
- Li, J.; Ng, S.T.; Skitmore, M. Review of low-carbon refurbishment solutions for residential buildings with particular reference to multi-story buildings in Hong Kong. Renew. Sustain. Energy Rev. 2017, 73, 393–407. [Google Scholar] [CrossRef]
- Rakshit, D.M.; Gowda, D.M.; Robinson, A.J.; Byrne, A. Optimisation of retrofit wall insulation: An Irish case study. Energy Build. 2021, 235, 110720. [Google Scholar] [CrossRef]
- Ye, Y.Y.; Hinkelman, K.; Lou, Y.L.; Zuo, W.D.; Wang, G.; Zhang, J. Evaluating the energy impact potential of energy efficiency measures for retrofit applications: A case study with US medium office buildings. Build. Simul. 2021, 14, 1377–1393. [Google Scholar] [CrossRef]
- Streicher, K.N.; Berger, M.; Panos, E.; Narula, K.; Soini, M.C.; Patel, M.K. Optimal building retrofit pathways considering stock dynamics and climate change impacts. Energy Policy 2021, 152, 13. [Google Scholar] [CrossRef]
- Juan, Y.-K.; Kim, J.H.; Roper, K.; Castro-Lacouture, D. GA-based decision support system for housing condition assessment and refurbishment strategies. Autom. Constr. 2009, 18, 394–401. [Google Scholar] [CrossRef]
- Mazzarella, L. Energy retrofit of historic and existing buildings. The legislative and regulatory point of view. Energy Build. 2015, 95, 23–31. [Google Scholar] [CrossRef]
- Hasik, V.; Escott, E.; Bates, R.; Carlisle, S.; Faircloth, B.; Bilec, M.M. Comparative whole-building life cycle assessment of renovation and new construction. Build. Environ. 2019, 161, 106218. [Google Scholar] [CrossRef]
- Son, H.; Kim, C. Evolutionary many-objective optimization for retrofit planning in public buildings: A comparative study. J. Clean Prod. 2018, 190, 403–410. [Google Scholar] [CrossRef]
- Jafari, A.; Valentin, V. An optimization framework for building energy retrofits decision-making. Build. Environ. 2017, 115, 118–129. [Google Scholar] [CrossRef]
- Diakaki, C.; Grigoroudis, E.; Kolokotsa, D. Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Build. 2008, 40, 1747–1754. [Google Scholar] [CrossRef]
- Rosso, F.; Ciancio, V.; Dell’Olmo, J.; Salata, F. Multi-objective optimization of building retrofit in the Mediterranean climate by means of genetic algorithm application. Energy Build. 2020, 216, 109945. [Google Scholar] [CrossRef]
- Solmaz, A.S.; Halicioglu, F.H.; Gunhan, S. An approach for making optimal decisions in building energy efficiency retrofit projects. Indoor Built Environ. 2018, 27, 348–368. [Google Scholar] [CrossRef]
- Kerdan, I.G.; Raslan, R.; Ruyssevelt, P. An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings. Energy 2016, 117, 506–522. [Google Scholar] [CrossRef]
- Qu, K.; Chen, X.J.; Wang, Y.X.; Calautit, J.; Riffat, S.; Cui, X. Comprehensive energy, economic and thermal comfort assessments for the passive energy retrofit of historical buildings—A case study of a late nineteenth-century Victorian house renovation in the UK. Energy 2021, 220, 25. [Google Scholar] [CrossRef]
- Thrampoulidis, E.; Mavromatidis, G.; Lucchi, A.; Orehounig, K. A machine learning-based surrogate model to approximate optimal building retrofit solutions. Appl. Energy 2021, 281, 116024. [Google Scholar] [CrossRef]
- Pazouki, M.; Rezaie, K.; Bozorgi-Amiri, A. A fuzzy robust multi-objective optimization model for building energy retrofit considering utility function: A university building case study. Energy Build. 2021, 241, 13. [Google Scholar] [CrossRef]
- Romani, Z.; Draoui, A.; Allard, F. Metamodeling and multicriteria analysis for sustainable and passive residential building refurbishment: A case study of French housing stock. Build. Simul. 2021, 15, 453–472. [Google Scholar] [CrossRef]
- Asadi, E.; da Silva, M.G.; Antunes, C.H.; Dias, L.; Glicksman, L. Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy Build. 2014, 81, 444–456. [Google Scholar] [CrossRef]
- Cho, H.M.; Yun, B.Y.; Yang, S.; Wi, S.; Chang, S.J.; Kim, S. Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building. Appl. Energy 2020, 275, 12. [Google Scholar] [CrossRef]
- Chae, Y.; Kim, S.H. Selection of retrofit measures for reasonable energy and hygrothermal performances of modern heritage building under dry cold and hot humid climate:A case of modern heritage school in Korea. Case Stud. Therm. Eng. 2022, 36, 15. [Google Scholar] [CrossRef]
- Chang, S.; Castro-Lacouture, D.; Yamagata, Y. Decision support for retrofitting building envelopes using multi-objective optimization under uncertainties. J. Build. Eng. 2020, 32, 13. [Google Scholar] [CrossRef]
- Luo, X.; Oyedele, L.O. Integrated life-cycle optimisation and supply-side management for building retrofitting. Renew. Sustain. Energy Rev. 2022, 154, 111827. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, H.; Tang, X.; Liu, G.; Guo, W.; Jin, Y.; Li, D. Protective energy-saving retrofits of rammed earth heritage buildings using multi-objective optimization. Case Stud. Therm. Eng. 2022, 38, 102343. [Google Scholar] [CrossRef]
- Tavakolan, M.; Mostafazadeh, F.; Jalilzadeh Eirdmousa, S.; Safari, A.; Mirzaei, K. A parallel computing simulation-based multi-objective optimization framework for economic analysis of building energy retrofit: A case study in Iran. J. Build. Eng. 2022, 45, 103485. [Google Scholar] [CrossRef]
- He, Q.; Hossain, M.U.; Ng, S.T.; Skitmore, M.; Augenbroe, G. A cost-effective building retrofit decision-making model—Example of China’s temperate and mixed climate zones. J. Clean. Prod. 2021, 280, 21. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Yengejeh, R.J.; Davami, A.H. Building energy optimization using Grey Wolf Optimizer (GWO). Case Stud. Therm. Eng. 2021, 27, 16. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Zhang, G.L.; Yan, C.C.; Wang, G.; Jiang, Y.L.; Zhao, K. A two-stage multi-objective optimization method for envelope and energy generation systems of primary and secondary school teaching buildings in China. Build. Environ. 2021, 204, 108142. [Google Scholar] [CrossRef]
- Liebana-Duran, M.E.; Serrano-Lanzarote, B.; Ortega-Madrigal, L. Identification of cost-optimal measures for energy renovation of thermal envelopes in different types of public school buildings in the city of Valencia. Appl. Sci. 2021, 11, 5108. [Google Scholar] [CrossRef]
- Huang, J.E.; Wang, S.S.; Teng, F.H.; Feng, W. Thermal performance optimization of envelope in the energy-saving renovation of existing residential buildings. Energy Build. 2021, 247, 9. [Google Scholar] [CrossRef]
- Nasruddin; Sholahudin; Satrio, P.; Mahlia, T.M.I.; Giannetti, N.; Saito, K. Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm. Sustain. Energy Technol. Assess. 2019, 35, 48–57. [Google Scholar] [CrossRef]
- Grtner, J.A.; Gray, F.M.; Auer, T. Assessment of the impact of HVAC system configuration and control zoning on thermal comfort and energy efficiency in flexible office spaces. Energy Build. 2020, 212, 109785. [Google Scholar] [CrossRef]
- Papadopoulos, S.; Kontokosta, C.E.; Vlachokostas, A.; Azar, E. Rethinking HVAC temperature setpoints in commercial buildings: The potential for zero-cost energy savings and comfort improvement in different climates. Build. Environ. 2019, 155, 350–359. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, C. Design optimization of office building envelope based on quantum genetic algorithm for energy conservation. J. Build. Eng. 2020, 35, 102048. [Google Scholar] [CrossRef]
- Afroz, Z.; Shafiullah, G.M.; Urmee, T.; Shoeb, M.A.; Higgins, G. Predictive modelling and optimization of HVAC systems using neural network and particle swarm optimization algorithm. Build. Environ. 2022, 209, 26. [Google Scholar] [CrossRef]
- Rogeau, A.; Girard, R.; Abdelouadoud, Y.; Thorel, M.; Kariniotakis, G. Joint optimization of building-envelope and heating-system retrofits at territory scale to enhance decision-aiding. Appl. Energy 2020, 264, 11. [Google Scholar] [CrossRef]
- Zhang, D.; Li, C.B.; Luo, S.C.; Luo, D.S.; Shahidehpour, M.; Chen, C.; Zhou, B. Multi-Objective Control of Residential HVAC Loads for Balancing the User’s Comfort with the Frequency Regulation Performance. IEEE Trans. Smart Grid 2022, 13, 3546–3557. [Google Scholar] [CrossRef]
- Franco, A.; Bartoli, C.; Conti, P.; Miserocchi, L.; Testi, D. Multi-Objective optimization of HVAC operation for balancing energy use and occupant comfort in educational buildings. Energies 2021, 14, 2847. [Google Scholar] [CrossRef]
- Vukadinovic, A.; Radosavljevic, J.; Dordevic, A.; Protic, M.; Petrovic, N. Multi-objective optimization of energy performance for a detached residential building with a sunspace using the NSGA-II genetic algorithm. Sol. Energy 2021, 224, 1426–1444. [Google Scholar] [CrossRef]
- Liu, B.; Pouramini, S. Multi-objective optimization for thermal comfort enhancement and greenhouse gas emission reduction in residential buildings applying retrofitting measures by an Enhanced Water Strider Optimization Algorithm: A case study. Energy Rep. 2021, 7, 1915–1929. [Google Scholar] [CrossRef]
- Fard, F.A.; Nasiri, F. A bi-objective optimization approach for selection of passive energy alternatives in retrofit projects under cost uncertainty. Energy Built Environ. 2020, 1, 77–86. [Google Scholar] [CrossRef]
- Jeong, K.; Hong, T.; Kim, J.; Cho, K. Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex. Renew. Sustain. Energy Rev. 2019, 110, 118–131. [Google Scholar] [CrossRef]
- Ghaderian, M.; Veysi, F. Multi-objective optimization of energy efficiency and thermal comfort in an existing office building using NSGA-II with fitness approximation: A case study. J. Build. Eng. 2021, 41, 13. [Google Scholar] [CrossRef]
- Zhao, J.; Du, Y.H. Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: A case study for office building in different climatic regions of China. Sol. Energy 2020, 206, 997–1017. [Google Scholar] [CrossRef]
- Zhang, F.; Ju, Y.; Gonzalez, E.; Wang, A.; Dong, P.; Giannakis, M. A new framework to select energy-efficient retrofit schemes of external walls: A case study. J. Clean. Prod. 2020, 289, 125718. [Google Scholar] [CrossRef]
- Fan, Y.; Xia, X. Energy-efficiency building retrofit planning for green building compliance. Build. Environ. 2018, 136, 312–321. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; De Stasio, C.; Mauro, G.M.; Vanoli, G.P. Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality. Appl. Energy 2016, 174, 37–68. [Google Scholar] [CrossRef]
- Li, H.X.; Li, Y.; Jiang, B.; Zhang, L.; Wu, X.; Lin, J. Energy performance optimisation of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis. Renew. Energy 2020, 149, 1414–1423. [Google Scholar] [CrossRef]
- Milic, V.; Ekelow, K.; Andersson, M.; Moshfegh, B. Evaluation of energy renovation strategies for 12 historic building types using LCC optimization. Energy Build. 2019, 197, 156–170. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Iovane, T.; Mauro, G.M.; Napolitano, D.F.; Ruggiano, A.; Viscido, L. A real industrial building: Modeling, calibration and Pareto optimization of energy retrofit. J. Build. Eng. 2020, 29, 13. [Google Scholar] [CrossRef]
- Sharif, S.A.; Hammad, A. Developing surrogate ANN for selecting near-optimal building energy renovation methods considering energy consumption, LCC and LCA. J. Build. Eng. 2019, 25, 100790. [Google Scholar] [CrossRef]
- Liu, B.; Rodriguez, D. Application of multi-objective optimization model to assess the energy efficiency measures for the cases of Spain. J. Build. Eng. 2021, 38, 102144. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, S.; Li, H.; Liu, T.; Wang, H. Rockburst prediction for hard rock and deep-lying long tunnels based on the entropy weight ideal point method and geostress field inversion: A case study of the Sangzhuling Tunnel. Bulletion Eng. Geol. Environ. 2021, 80, 3885–3902. [Google Scholar] [CrossRef]
- Ali, H.; Hashlamun, R. Envelope retrofitting strategies for public school buildings in Jordan. J. Build. Eng. 2019, 25, 13. [Google Scholar] [CrossRef]
- Chongqing Construction Project Cost Information. 16 March 2022. Available online: http://www.cqsgczjxx.org/Pages/CQZJW/priceInformation.aspx (accessed on 23 July 2022).
- Liu, C.R.; Wang, H.Q.; Tang, Y.F.; Wang, Z.Y. Optimization of a multi-energy complementary distributed energy system based on comparisons of two genetic optimization algorithms. Processes 2021, 9, 1388. [Google Scholar] [CrossRef]
- Pymoo. Multi-Objective Optimization in Python: Pymoo. 16 March 2022. Available online: https://pymoo.org (accessed on 15 September 2022).
- Cui, F.K.; Liu, F.; Su, Y.X.; Ruan, X.L.; Xu, S.K.; Liu, L.B. Surface performance multiobjective decision of a cold roll-beating spline with the entropy weight ideal point method. Math. Probl. Eng. 2018, 2018, 5048387. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Hao, J.X. The application of entropy weighting ideal point method in weapon and equipment system of systems construction risk analysis. Appl. Mech. Mater. 2013, 373, 1110–1115. [Google Scholar] [CrossRef]
- Liu, G.; Tan, Y.T.; Li, X.H. China’s policies of building green retrofit: A state-of-the-art overview. Build. Environ. 2020, 169, 106554. [Google Scholar] [CrossRef]
Basic Information | Data |
---|---|
Shape | Rectangle |
Length | 81.9 [m] |
Width | 26.7 [m] |
Floor number | 6 |
Average floor height | 3.6 [m] |
Ground floor area | 1350 [m2] |
Total area | 7680 [m2] |
Window–wall ratio | |
North | 18.27% |
East | 1.97% |
South | 18.55% |
West | 2.37% |
Variable Name | EEM Description | Value | Comments | Cost (RMB/m3) a |
---|---|---|---|---|
[0, 8] | Change insulation material type | 0 | XPS | 600 |
1 | EPS | 425 | ||
2 | PU | 740 | ||
3 | Rock wool board (RW) | 500 | ||
4 | Glass wool board (GW) | 200 | ||
5 | Rubber board (RP) | 1300 | ||
6 | Graphite polystyrene board (SEPS) | 190 | ||
7 | Glazed hollow bead board (VB) | 780 | ||
8 | Mineral binder and expanded polystyrene (R3P) | 450 | ||
Change insulation layer thickness | [0, 100] (Unit: mm) |
Variable Name | EEM Description | Value | Comments | Cost (RMB/m3) |
---|---|---|---|---|
[0, 4] | Change insulation material type | 0 | XPS | 580 |
1 | EPS | 425 | ||
2 | PU | 740 | ||
3 | RW | 500 | ||
4 | GW | 200 | ||
Change insulation layer thickness | [0, 300] (Unit: mm) |
Variable Name | EEM Description | Value | Comments | Cost (RMB/m2) |
---|---|---|---|---|
[1, 21] | Change external window type | 1 | Float white glass (FWG) 6 mm | 34 |
2 | FWG 8 mm | 45 | ||
3 | FWG 12 mm | 70 | ||
4 | 5 mm Toughened glass (TG) + 6 mm Air (6A) + 5 mm TG | 135 | ||
5 | 5 mm TG + 9A + 5 mm TG | 140 | ||
6 | 6 mm TG + 9A + 6 mm TG | 155 | ||
7 | 6 mm TG + 12A + 6 mm TG | 165 | ||
8 | 8 mm TG + 9A + 8 mm TG | 190 | ||
9 | 8 mm TG + 12A + 8 mm TG | 197 | ||
10 | 5 mm Toughened glass with Low-E (TGLO) + 6A + 5 mm TG | 143 | ||
11 | 5 mm TGLO + 9A + 5 mm TG | 150 | ||
12 | 6 mm TGLO + 6A + 6 mm TG | 165 | ||
13 | 6 mm TGLO + 9A + 6 mm TG | 170 | ||
14 | 8 mm TGLO + 9A + 8 mm TG | 205 | ||
15 | 10 mm TGLO + 9A + 10 mm TG | 234 | ||
16 | 5 mm Toughened glass with coated (TGC) + 6A +5 mm TG | 139 | ||
17 | 5 mm TGC + 9A + 5 mm TG | 144 | ||
18 | 6 mm TGC + 9A + 6 mm TG | 170 | ||
19 | 6 mm TGC + 12A + 6 mm TG | 180 | ||
20 | 8 mm TGC + 12A + 8 mm TG | 198 | ||
21 | 10 mm TGC + 12A + 10 mm TG | 234 | ||
Change north window–wall ratio | [0.1, 0.55] | |||
Change south window–wall ratio | (0.1, 0.55] |
Total (N) | Mean | Standard Deviation | Sum | Minimum | Median | Maximum | |
---|---|---|---|---|---|---|---|
Energy Consumption (kWh/m2) | 200 | 39.30 | 7.08 | 7859.13 | 27.11 | 39.40 | 59.84 |
Retrofit Cost (RMB/m2) | 200 | 13.64 | 6.87 | 2728.77 | 4.78 | 11.86 | 34.11 |
Energy Consumption (kWh/m2) | Energy Savings after Optimization (kWh/m2) | Annual Energy Savings (kWh) | |
---|---|---|---|
Reference building | 64.20 | - | - |
Maximum of Pareto front | 59.84 | 4.36 | 33,920.80 |
Minimum of Pareto front | 27.11 | 37.09 | 288,560.20 |
Individual | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Insulation Materials for External Wall | Insulation Layer Thickness for External Wall (mm) | Insulation Materials for Roof | Insulation Layer Thickness for Roof (mm) | Window Types | WWR_North | WWR_South | Energy Consumption (kWh/m2) | Retrofit Cost (RMB/m2) | ||
112 | 0.3628 | 6-SEPS | 40 | 4-GW | 170 | 14 | 0.10 | 0.10 | 27.11 | 34.11 |
122 | 0.3670 | 6-SEPS | 100 | 4-GW | 270 | 15 | 0.11 | 0.10 | 27.53 | 33.75 |
22 | 0.4078 | 6-SEPS | 90 | 4-GW | 250 | 15 | 0.11 | 0.10 | 27.71 | 31.80 |
76 | 0.4352 | 6-SEPS | 70 | 4-GW | 240 | 15 | 0.11 | 0.10 | 27.86 | 30.48 |
1 | 0.4379 | 6-SEPS | 70 | 4-GW | 240 | 15 | 0.10 | 0.10 | 27.87 | 30.35 |
200 | 0.4408 | 6-SEPS | 70 | 4-GW | 230 | 15 | 0.10 | 0.10 | 27.89 | 30.21 |
45 | 0.4630 | 6-SEPS | 60 | 4-GW | 240 | 15 | 0.10 | 0.10 | 28.04 | 29.13 |
117 | 0.4992 | 6-SEPS | 70 | 4-GW | 180 | 15 | 0.10 | 0.11 | 28.32 | 27.35 |
147 | 0.5048 | 6-SEPS | 60 | 4-GW | 185 | 15 | 0.10 | 0.10 | 28.34 | 27.09 |
162 | 0.5270 | 6-SEPS | 50 | 4-GW | 185 | 15 | 0.10 | 0.10 | 28.53 | 25.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, W.; Hong, J.; Liu, G.; Zhang, L.; Wei, L. A Multi-Stage Decision Framework for Optimal Energy Efficiency Measures of Educational Buildings: A Case Study of Chongqing. Processes 2023, 11, 1633. https://doi.org/10.3390/pr11061633
Cui W, Hong J, Liu G, Zhang L, Wei L. A Multi-Stage Decision Framework for Optimal Energy Efficiency Measures of Educational Buildings: A Case Study of Chongqing. Processes. 2023; 11(6):1633. https://doi.org/10.3390/pr11061633
Chicago/Turabian StyleCui, Wenjing, Jingke Hong, Guiwen Liu, Lin Zhang, and Lizhen Wei. 2023. "A Multi-Stage Decision Framework for Optimal Energy Efficiency Measures of Educational Buildings: A Case Study of Chongqing" Processes 11, no. 6: 1633. https://doi.org/10.3390/pr11061633
APA StyleCui, W., Hong, J., Liu, G., Zhang, L., & Wei, L. (2023). A Multi-Stage Decision Framework for Optimal Energy Efficiency Measures of Educational Buildings: A Case Study of Chongqing. Processes, 11(6), 1633. https://doi.org/10.3390/pr11061633