Two Potential Ways of Vanadium Extraction from Thin Film Steelmaking Slags
Abstract
:1. Introduction
2. Thermodynamic Considerations
3. Experimental
3.1. Materials and Sample Preparation
3.2. Experimental Set-Up
3.3. Samples Analysis
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worldsteel Association Fact Sheet. Steel Industry Co-Products. Available online: https://worldsteel.org/wp-content/uploads/Fact-sheet-Steel-industry-co-products.pdf (accessed on 1 March 2023).
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide, and Vanadium Pentoxide; World Health Organization International Agency for Research on Cancer: Lyon, France; Geneva, Switzerland, 2006; ISBN 978-92-832-1286-7. [Google Scholar]
- Bin Li, X.; Wei, C.; Deng, Z.G.; Li, M.T.; Li, C.X.; Xu, H.S. Acid Leaching of Vanadium from a Vanadium Residue. Adv. Mater. Res. 2011, 402, 243–248. [Google Scholar] [CrossRef]
- Xiang, J.; Huang, Q.; Lv, X.; Bai, C. Extraction of vanadium from converter slag by two-step sulfuric acid leaching process. J. Clean. Prod. 2018, 170, 1089–1101. [Google Scholar] [CrossRef]
- Zhang, G.-Q.; Zhang, T.-A.; Lü, G.-Z.; Zhang, Y.; Liu, Y.; Liu, Z.-L. Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching. Int. J. Miner. Met. Mater. 2015, 22, 21–26. [Google Scholar] [CrossRef]
- Aarabi-Karasgani, M.; Rashchi, F.; Mostoufi, N.; Vahidi, E. Leaching of vanadium from LD converter slag using sulfuric acid. Hydrometallurgy 2010, 102, 14–21. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, D.; Song, S.; Cheng, G.; Xue, X. Selective leaching of vanadium over iron from vanadium slag. J. Hazard. Mater. 2019, 368, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Y.; Wang, C.-J.; Yuan, Y.-H.; Guo, Y.; Diao, J.; Xie, B. Magnesiation roasting-acid leaching: A zero-discharge method for vanadium extraction from vanadium slag. J. Clean. Prod. 2020, 260, 121091. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, L.; Liu, Y.; Qi, T.; Wang, J.; Wang, L. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. J. Hazard. Mater. 2013, 244-245, 588–595. [Google Scholar] [CrossRef]
- Liu, B.; Meng, L.; Zheng, S.; Li, M.; Wang, S. A novel method to extract vanadium from high-grade vanadium slag: Non-salt roasting and alkaline leaching. Physicochem. Probl. Miner. Process. 2018, 54, 657–667. [Google Scholar]
- Li, H.-Y.; Fang, H.-X.; Wang, K.; Zhou, W.; Yang, Z.; Yan, X.-M.; Ge, W.-S.; Li, Q.-W.; Xie, B. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching. Hydrometallurgy 2015, 156, 124–135. [Google Scholar] [CrossRef]
- Ye, G.; Burstrom, E.; Kuhn, M.; Piret, J. Reduction of steel-making slags for recovery of valuable metals and oxide materials. Scand. J. Met. 2003, 32, 7–14. [Google Scholar] [CrossRef]
- Mirazimi, S.M.J.; Rashchi, F. Optimization of Bioleaching of a Vanadium Containing Slag Using RSM. In Proceedings of the 7th International Chemical Engineering Congress & Exihibition, Kish, Iran, 21–24 November 2011; p. 11. [Google Scholar]
- Mahdavian, A.; Shafyei, A.; Alamdari, E.K.; Haghshenas, D.F. Recovery of vanadium from esfahan steel company steel slag; Optimizing of roasting and leaching parameters. Int. J. Iron Steel Soc. Iran 2006, 3, 17–21. [Google Scholar]
- Jia, L.; Zhang, Y.; Tao, L.; Jing, H.; Bao, S. A methodology for assessing cleaner production in the vanadium extraction industry. J. Clean. Prod. 2014, 84, 598–605. [Google Scholar] [CrossRef]
- Yuan, J.; Cao, Y.; Fan, G.; Du, H.; Dreisinger, D.; Han, G.; Li, M. Study on the Mechanisms for Vanadium Phases’ Transformation of Vanadium Slag Non-Salt Roasting Process. In Proceedings of the Rare Metal Technology 2020; Azimi, G., Forsberg, K., Ouchi, T., Kim, H., Alam, S., Baba, A.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 235–242. [Google Scholar]
- Hu, P.; Zhang, Y.; Liu, H.; Liu, T.; Li, S.; Zhang, R.; Guo, Z. High efficient vanadium extraction from vanadium slag using an enhanced acid leaching-coprecipitation process. Sep. Purif. Technol. 2023, 304, 122319. [Google Scholar] [CrossRef]
- Ji, Y.; Shen, S.; Liu, J.; Yan, S.; Zhang, Z. Green and Efficient Process for Extracting Chromium from Vanadium Slag by an Innovative Three-Phase Roasting Reaction. ACS Sustain. Chem. Eng. 2017, 5, 6008–6015. [Google Scholar] [CrossRef]
- Ling, H.; Malfliet, A.; Blanpain, B.; Guo, M. Evaporation of Antimony Trioxide from Antimony Slag by Nitrogen Injection in a Top-Submerged Lance Smelting Set-Up. In Proceedings of the 12th International Symposium on High-Temperature Metallurgical Processing; Peng, Z., Hwang, J.-Y., White, J.F., Downey, J.P., Gregurek, D., Zhao, B., Yücel, O., Keskinkilic, E., Jiang, T., Mahmoud, M.M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 133–142. [Google Scholar]
- Persson, M.; Seetharaman, S.; Seetharaman, S. Kinetic Studies of Fluoride Evaporation from Slags. ISIJ Int. 2007, 47, 1711–1717. [Google Scholar] [CrossRef]
- Ju, J.-T.; Ji, G.-H.; Tang, C.-M.; An, J.-L. Fluoride Evaporation and Melting Characteristics of CaF2 -CaO-Al2 O3-MgO-Li2 O- (TiO2) Slag for Electroslag Remelting. Steel Res. Int. 2020, 91, 2000111. [Google Scholar] [CrossRef]
- Shimizu, K.; Cramb, A. Fluoride Evaporation from CaF2-SiO2-CaO Slags and Mold Fluxes in Dry and Humid Atmospheres. High Temp. Mater. Process. 2003, 22, 237–246. [Google Scholar] [CrossRef]
- Seetharaman, S.; Albertsson, G.J.; Scheller, P. Studies of Vaporization of Chromium from Thin Slag Films at Steelmaking Temperatures in Oxidizing Atmosphere. Met. Mater. Trans. B 2013, 44, 1280–1286. [Google Scholar] [CrossRef]
- Cheremisina, E.; Schenk, J. Chromium Stability in Steel Slags. Steel Res. Int. 2017, 88, 1700206. [Google Scholar] [CrossRef]
- Seetharaman, S.; Shyrokykh, T.; Schröder, C.; Scheller, P.R. Vaporization Studies from Slag Surfaces Using a Thin Film Technique. Met. Mater. Trans. B 2013, 44, 783–788. [Google Scholar] [CrossRef]
- Shyrokykh, T.; Schröder, C.; Scheller, P.R.; Shatokha, V.; Seetharaman, S. Studies of High Temperature Surface Oxidation of FeO-CaO-SiO2-V2O5 Slags with the Use of Single Hot Thermocouple Technique. Metall. Mater. Trans. B 2012, 44, 4. [Google Scholar]
- Wang, W.X.; Xue, Z.L.; Song, S.Q.; Li, P.; Chen, Z.C.; Liu, R.N.; Wang, G.L. Research on High-Temperature Volatilization Characteristics of V2O5 during Direct Alloying of Smelting Vanadium Steel. Adv. Mater. Res. 2012, 557–559, 182–186. [Google Scholar] [CrossRef]
- Shyrokykh, T.; Wei, X.; Seetharaman, S.; Volkova, O. Vaporization of Vanadium Pentoxide from CaO-SiO2-VOx Slags During Alumina Dissolution. Met. Mater. Trans. A 2021, 52, 1472–1483. [Google Scholar] [CrossRef]
- Bergerud, A.J. Phase Stability and Transformations in Vanadium Oxide Nanocrystals. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2016. [Google Scholar]
- Yamaguchi, I.; Manabe, T.; Tsuchiya, T.; Nakajima, T.; Sohma, M.; Kumagai, T. Preparation and Characterization of Epitaxial VO2Films on Sapphire Using Postepitaxial Topotaxy Route via Epitaxial V2O3Films. Jpn. J. Appl. Phys. 2008, 47, 1022–1027. [Google Scholar] [CrossRef]
- FactSage, Version 7.2; Centre for Research in Computational Thermochemistry: Quebec, QC, Canada; GTT-Technologies: Herzogenrath, Germany.
- Kubaschewski, O.; Alcock, C.B. Metallurgical Thermochemistry, 5th ed.; Metallurgy: Moscow, Russia, 1982. [Google Scholar]
- Yang, Y.; Teng, L.; Seetharaman, S. Kinetic Studies on Evaporation of Liquid Vanadium Oxide, VOx (Where x = 4 or 5). Met. Mater. Trans. B 2012, 43, 1684–1691. [Google Scholar] [CrossRef]
- Wang, L.; Teng, L.; Chou, K.-C.; Seetharaman, S. Determination of Vanadium Valence State in CaO-MgO-Al2O3-SiO2 System By High-Temperature Mass Spectrometry. Met. Mater. Trans. B 2013, 44, 948–953. [Google Scholar] [CrossRef]
- HSC Chemistry, Version 9.0; Chemistry Software: Houston, TX, USA: Houston, TX, USA.
- Wang, H.; Wang, L.; Seetharaman, S. Determination of Vanadium Oxidation States in CaO-MgO-Al2O3-SiO2-VOxSystem by K Edge XANES Method. Steel Res. Int. 2015, 87, 199–209. [Google Scholar] [CrossRef]
- Mittelstadt, R.; Schwerdtfeger, K. The dependence of the oxidation state of vanadium on the oxygen pressure in melts of VOx, Na2O-VOx, and CaO-SiO2-VOx. Met. Trans. B 1990, 21, 111–120. [Google Scholar] [CrossRef]
- Farah, H.; Brungs, M. Oxidation-reduction equilibria of vanadium in CaO-SiO2, CaO-Al2O3-SiO2 and CaO-MgO-SiO2 melts. J. Mater. Sci. 2003, 38, 1885–1894. [Google Scholar] [CrossRef]
- Iida, T.; Sakai, H.; Kita, Y.; Shigeno, K. An Equation for Accurate Prediction of the Viscosities of Blast Furnace Type Slags from Chemical Composition. ISIJ Int. 2000, 40, S110–S114. [Google Scholar] [CrossRef]
- Mills, K. Ken Mills–Slag Modelling. Available online: https://www.pyrometallurgy.co.za/KenMills/ (accessed on 26 July 2020).
- Wang, Z.; Bai, J.; Kong, L.; Wen, X.; Li, X.; Bai, Z.; Li, W.; Shi, Y. Viscosity of coal ash slag containing vanadium and nickel. Fuel Process. Technol. 2014, 136, 25–33. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Y.; Yuan, F.; An, Z. Effects of the Cr2O3 Content on the Viscosity of CaO-SiO2-10 Pct Al2O3-Cr2O3 Quaternary Slag. Met. Mater. Trans. B 2018, 49, 1719–1731. [Google Scholar] [CrossRef]
- Mills, K. Slag Atlas, 2nd ed.; VDEh: Düsseldorf, Germany, 1995. [Google Scholar]
- Semykina, A.; Dzhebian, I.; Shatokha, V. On the Formation of Vanadium Ferrites in CaO-SiO2-FeO-V2O5 Slags. Steel Res. Int. 2012, 83, 1129–1134. [Google Scholar] [CrossRef]
- Katsufuji, T.; Suzuki, T.; Takei, H.; Shingu, M.; Kato, K.; Osaka, K.; Takata, M.; Sagayama, H.; Arima, T.-H. Structural and Magnetic Properties of Spinel FeV2O4with Two Ions Having Orbital Degrees of Freedom. J. Phys. Soc. Jpn. 2008, 77, 053708. [Google Scholar] [CrossRef]
- Myoung, B.R.; Kim, S.J.; Lim, J.T.; Kouh, T.; Kim, C.S. Microscopic evidence of magnetic and structure phase transition in multiferroic spinel FeV2O4. AIP Adv. 2017, 7, 055828. [Google Scholar] [CrossRef]
Sample Name | CaO/SiO2 Ratio | CaO, wt.% | SiO2, wt.% | FeO, wt.% | V2O5, wt.% |
---|---|---|---|---|---|
CSFV1 | 0.8 | 33.6 | 42.0 | 20.0 | 4.4 |
CSFV2 | 1.0 | 37.8 | 37.8 | 20.0 | 4.4 |
CSFV3 | 1.2 | 41.2 | 34.4 | 20.0 | 4.4 |
CSFV4 | 1.4 | 44.1 | 31.5 | 20.0 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shyrokykh, T.; Neubert, L.; Volkova, O.; Sridhar, S. Two Potential Ways of Vanadium Extraction from Thin Film Steelmaking Slags. Processes 2023, 11, 1646. https://doi.org/10.3390/pr11061646
Shyrokykh T, Neubert L, Volkova O, Sridhar S. Two Potential Ways of Vanadium Extraction from Thin Film Steelmaking Slags. Processes. 2023; 11(6):1646. https://doi.org/10.3390/pr11061646
Chicago/Turabian StyleShyrokykh, Tetiana, Lukas Neubert, Olena Volkova, and Seetharaman Sridhar. 2023. "Two Potential Ways of Vanadium Extraction from Thin Film Steelmaking Slags" Processes 11, no. 6: 1646. https://doi.org/10.3390/pr11061646
APA StyleShyrokykh, T., Neubert, L., Volkova, O., & Sridhar, S. (2023). Two Potential Ways of Vanadium Extraction from Thin Film Steelmaking Slags. Processes, 11(6), 1646. https://doi.org/10.3390/pr11061646