Recent Applications and Prospects of Nanowire-Based Biosensors
Abstract
:1. Introduction
2. Fabrication Process and Working Principle of Nanowire
2.1. Fundamentals of Nanowire Fabrication Process
2.2. Working Principle of Nanowire for Biosensor
3. Application of Nanowire for Biosensor
3.1. Detection of Various Neurotransmitters and Molecular
3.2. Detection of DNA and RNA
3.3. Detection of Protein
3.4. Detection of Viruses and Bacteria
4. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shao, Q.; Lu, K.; Huang, X. Platinum Group Nanowires for Efficient Electrocatalysis. Small Methods 2019, 3, 1800545. [Google Scholar] [CrossRef]
- Xu, Z.; He, X.; Liang, M.; Sun, L.; Li, D.; Xie, K.; Liao, L. Catalytic reduction of 4-nitrophenol over graphene supported Cu@Ni bimetallic nanowires. Mater. Chem. Phys. 2019, 227, 64–71. [Google Scholar] [CrossRef]
- Karabiberoğlu, Ş.U.; Koçak, Ç.C.; Dursun, Z. Electrochemical Determination of Dicofol at Nickel Nanowire Modified Poly(p-aminophenol) Film Electrode. Electroanalysis 2019, 31, 1304–1310. [Google Scholar] [CrossRef]
- Kim, M.J.; Cruz, M.A.; Yang, F.; Wiley, B.J. Accelerating electrochemistry with metal nanowires. Curr. Opin. Electro-Chem. 2019, 16, 19–27. [Google Scholar] [CrossRef]
- Li, X.; Mo, J.; Fang, J.; Xu, D.; Yang, C.; Zhang, M.; Li, H.; Xie, X.; Hu, N.; Liu, F. Vertical nanowire array-based biosensors: Device design strategies and biomedical applications. J. Mater. Chem. B 2020, 8, 7609–7632. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.A.; Tran, N.T.; Doan, V.D.; Nguyen, T.-Q.; Thi, H.H.P.; Vo, G.N.L. Application Prospects of MXenes Materials Modifications for Sensors. Micromachines 2023, 14, 247. [Google Scholar] [CrossRef]
- Tran, V.A.; Doan, V.D.; Le, V.T.; Nguyen, T.-Q.; Don, T.N.; Vien, V.; Luan, N.T.; Vo, G.N.L. Metal–Organic Frameworks-Derived Material for Electrochemical Biosensors: Recent Applications and Prospects. Ind. Eng. Chem. Res. 2023, 62, 4738–4753. [Google Scholar] [CrossRef]
- Gupta, R.K. Nanowires: Applications, Chemistry, Materials, and Technologies; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Adam, T.; Dhahi, T.S.; Gopinath, S.C.B.; Hashim, U. Novel Approaches in Fabrication and Integration of Nanowire for Mi-cro/Nano Systems. Crit. Rev. Anal. Chem. 2022, 52, 1913–1929. [Google Scholar] [CrossRef]
- Liu, R.; Lee, J.; Tchoe, Y.; Pre, D.; Bourhis, A.M.; D’Antonio-Chronowska, A.; Robin, G.; Lee, S.H.; Ro, Y.G.; Vatsyayan, R.; et al. Ultra-Sharp Nanowire Arrays Natively Permeate, Record, and Stimulate Intracellular Activity in Neuronal and Cardiac Networks. Adv. Funct. Mater. 2022, 32, 2108378. [Google Scholar] [CrossRef]
- Shi, J.; Sun, C.; Liang, E.; Tian, B. Semiconductor Nanowire-Based Cellular and Subcellular Interfaces. Adv. Funct. Mater. 2022, 32, 2107997. [Google Scholar] [CrossRef]
- Tian, B.; Lieber, C.M. Nanowired Bioelectric Interfaces. Chem. Rev. 2019, 119, 9136–9152. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Li, Z. Schottky-Contacted Nanowire Sensors. Adv. Mater. 2020, 32, 2000130. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.F.; Liu, X.; Woodard, T.L.; Fu, T.; Emrick, T.; Jiménez, J.M.; Lovley, D.R.; Yao, J. Bioelectronic protein nanowire sensors for ammonia detection. Nano Res. 2020, 13, 1479–1484. [Google Scholar] [CrossRef]
- Bagchi, B.; Fernandez, C.S.; Bhatti, M.; Ciric, L.; Lovat, L.; Tiwari, M.K. Copper nanowire embedded hypromellose: An antibacterial nanocomposite film. J. Colloid Interface Sci. 2022, 608, 30–39. [Google Scholar] [CrossRef]
- Fanton, L.; Loria, F.; Amores, M.; Pazos, M.R.; Adán, C.; García-Muñoz, R.A.; Marugán, J. Proliferation of osteoblast precursor cells on the surface of TiO2 nanowires anodically grown on a β-type biomedical titanium alloy. Sci. Rep. 2022, 12, 7895. [Google Scholar] [CrossRef]
- Wang, H.; Tang, M.; Shi, F.; Ding, R.; Wang, L.; Wu, J.; Li, X.; Liu, Z.; Lv, B. Amorphous Cr2WO6-Modified WO3 Nanowires with a Large Specific Surface Area and Rich Lewis Acid Sites: A Highly Efficient Catalyst for Oxidative Desulfurization. ACS Appl. Mater. Interfaces 2020, 12, 38140–38152. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Y.; Liu, X.; Xu, C.; Zhu, J.; Chen, H. Growth of uniform CuCo2O4 porous nanosheets and nanowires for high-performance hybrid supercapacitors. J. Energy Storage 2022, 52, 105048. [Google Scholar] [CrossRef]
- Prameswati, A.; Han, J.W.; Kim, J.H.; Wibowo, A.F.; Entifar, S.A.N.; Park, J.; Lee, J.; Kim, S.; Lim, D.C.; Moon, M.-W.; et al. Highly stretchable and mechanically robust silver nanowires on surface-functionalized wavy elastomers for wearable healthcare electronics. Org. Electron. 2022, 108, 106584. [Google Scholar] [CrossRef]
- Jung, J.; Shin, S.; Kim, Y.T. Dry electrode made from carbon nanotubes for continuous recording of bio-signals. Microelectron. Eng. 2019, 203–204, 25–30. [Google Scholar] [CrossRef]
- Khanna, S.; Paneliya, S.; Makani, N.H.; Mukhopadhyay, I.; Banerjee, R. Controlled restructuring of bidisperse silica nanospheres for size-selective nanowire growth. Mater. Chem. Phys. 2021, 273, 125063. [Google Scholar] [CrossRef]
- Chang, T.-Y.; Kim, H.; Zutter, B.T.; Lee, W.-J.; Regan, B.C.; Huffaker, D.L. Orientation-Controlled Selective-Area Epitaxy of III–V Nanowires on (001) Silicon for Silicon Photonics. Adv. Funct. Mater. 2020, 30, 2002220. [Google Scholar] [CrossRef]
- Tran, V.A.; Le, V.T.; Doan, V.D.; Vo, G.N.L. Utilization of Functionalized Metal–Organic Framework Nanoparticle as Targeted Drug Delivery System for Cancer Therapy. Pharmaceutics 2023, 15, 931. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.A.; Van Vo, G.; Tan, M.A.; Park, J.-S.; An, S.S.A.; Lee, S.-W. Dual Stimuli-Responsive Multifunctional Silicon Nanocarriers for Specifically Targeting Mitochondria in Human Cancer Cells. Pharmaceutics 2022, 14, 858. [Google Scholar] [CrossRef]
- Tran, V.A.; Lee, S.-W. pH-triggered degradation and release of doxorubicin from zeolitic imidazolate framework-8 (ZIF8) decorated with polyacrylic acid. RSC Adv. 2021, 11, 9222–9234. [Google Scholar] [CrossRef]
- Tran, V.A.; Vo, V.G.; Shim, K.; Lee, S.-W.; A An, S.S. Multimodal Mesoporous Silica Nanocarriers for Dual Stimuli-Responsive Drug Release and Excellent Photothermal Ablation of Cancer Cells. Int. J. Nanomed. 2020, 15, 7667–7685. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.-V.; Shim, K.; Thi, T.-T.V.; Kook, J.-K.; An, S.S.A.; Lee, S.-W. Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomater. 2018, 74, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.A.; Lee, S.-W. A prominent anchoring effect on the kinetic control of drug release from mesoporous silica nanoparticles (MSNs). J. Colloid Interface Sci. 2018, 510, 345–356. [Google Scholar] [CrossRef]
- Takahashi, H.; Baba, Y.; Yasui, T. Oxide nanowire microfluidics addressing previously-unattainable analytical methods for bi-omolecules towards liquid biopsy. Chem. Commun. 2021, 57, 13234–13245. [Google Scholar] [CrossRef]
- Kim, K.; Park, C.; Kwon, D.; Kim, D.; Meyyappan, M.; Jeon, S.; Lee, J.-S. Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens. Bioelectron. 2016, 77, 695–701. [Google Scholar] [CrossRef]
- Zhang, H.; Kikuchi, N.; Ohshima, N.; Kajisa, T.; Sakata, T.; Izumi, T.; Sone, H. Design and Fabrication of Silicon Nanowire-Based Biosensors with Integration of Critical Factors: Toward Ultrasensitive Specific Detection of Biomolecules. ACS Appl. Mater. Interfaces 2020, 12, 51808–51819. [Google Scholar] [CrossRef]
- Kim, N.; Han, K.; Su, P.-C.; Kim, I.; Yoon, Y.-J. A rotationally focused flow (RFF) microfluidic biosensor by density difference for early-stage detectable diagnosis. Sci. Rep. 2021, 11, 9277. [Google Scholar] [CrossRef] [PubMed]
- Kartashova, A.D.; Gonchar, K.A.; Chermoshentsev, D.A.; Alekseeva, E.A.; Gongalsky, M.B.; Bozhev, I.V.; Eliseev, A.A.; Dy-akov, S.A.; Samsonova, J.V.; Osminkina, L.A. Surface-Enhanced Raman Scattering-Active Gold-Decorated Silicon Nanowire Sub-strates for Label-Free Detection of Bilirubin. ACS Biomater. Sci. Eng. 2022, 8, 4175–4184. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hui, N. Electrochemical functionalization of polypyrrole nanowires for the development of ultrasensitive biosensors for detecting microRNA. Sens. Actuators B Chem. 2019, 281, 478–485. [Google Scholar] [CrossRef]
- Takahashi, H.; Yasui, T.; Klamchuen, A.; Khemasiri, N.; Wuthikhun, T.; Paisrisarn, P.; Shinjo, K.; Kitano, Y.; Aoki, K.; Natsume, A.; et al. Annealed ZnO/Al2O3 Core-Shell Nanowire as a Platform to Capture RNA in Blood Plasma. Nanomaterials 2021, 11, 1768. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Sarpong, V.; Gu, Z. Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for simul-taneous detection of antibiotics. Biosens. Bioelectron. 2019, 126, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Jia, P.; Yang, K.; Bu, T.; Sun, X.; Wang, L. Facile preparation of Ru@V2O4 nanowires exhibiting excellent tetra-enzyme mimetic activities for sensitive colorimetric H2O2 and cysteine sensing. Sens. Actuators B Chem. 2021, 344, 130266. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Ambhorkar, P.; Wang, Z.; Ko, H.; Lee, S.; Koo, K.-I.; Kim, K.; Cho, D.-I.D. Nanowire-Based Biosensors: From Growth to Applications. Micromachines 2018, 9, 679. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Chae, E.-J.; Park, S.-J.; Choi, J.-W. Label-free detection of γ-aminobutyric acid based on silicon nanowire biosensor. Nano Converg. 2019, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Cui, J.; Wang, Y.; Yu, D.; Qin, Y.; Zheng, H.; Shu, X.; Tan, H.H.; Zhang, Y.; Wu, Y. Metal-organic framework-derived porous Cu2O/Cu@C core-shell nanowires and their application in uric acid biosensor. Appl. Surf. Sci. 2020, 506, 144662. [Google Scholar] [CrossRef]
- Yan, B.; Zhuang, Y.; Jiang, Y.; Xu, W.; Chen, Y.; Tu, J.; Wang, X.; Wu, Q. Enhanced photoeletrochemical biosensing performance from rutile nanorod/anatase nanowire junction array. Appl. Surf. Sci. 2018, 458, 382–388. [Google Scholar] [CrossRef]
- Mariyappan, V.; Jeyapragasam, T.; Chen, S.-M.; Murugan, K. Mo-W-O nanowire intercalated graphene aerogel nanocomposite for the simultaneous determination of dopamine and tyrosine in human urine and blood serum sample. J. Electroanal. Chem. 2021, 895, 115391. [Google Scholar] [CrossRef]
- Guo, X.; Wu, J.; Xia, L.; Xiang, M.; Qu, F.; Li, J. CuO/Cu2O nanowire array photoelectrochemical biosensor for ultrasensitive detection of tyrosinase. Sci. China Chem. 2020, 63, 1012–1018. [Google Scholar] [CrossRef]
- Russell, C.; Welch, K.; Jarvius, J.; Cai, Y.; Brucas, R.; Nikolajeff, F.; Svedlindh, P.; Nilsson, M. Gold Nanowire Based Electrical DNA Detection Using Rolling Circle Amplification. ACS Nano 2014, 8, 1147–1153. [Google Scholar] [CrossRef]
- Zhang, J.; Han, D.; Yang, R.; Ji, Y.; Liu, J.; Yu, X. Electrochemical detection of DNA hybridization based on three-dimensional ZnO nanowires/graphite hybrid microfiber structure. Bioelectrochemistry 2019, 128, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Barozzi, M.; Manicardi, A.; Vannucci, A.; Candiani, A.; Sozzi, M.; Konstantaki, M.; Pissadakis, S.; Corradini, R.; Selleri, S.; Cucinotta, A. Optical Fiber Sensors for Label-Free DNA Detection. J. Light. Technol. 2017, 35, 3461–3472. [Google Scholar] [CrossRef]
- Tai, Y.-H.; Fu, P.-H.; Lee, K.-L.; Wei, P.-K. Spectral Imaging Analysis for Ultrasensitive Biomolecular Detection Using Gold-Capped Nanowire Arrays. Sensors 2018, 18, 2181. [Google Scholar] [CrossRef] [Green Version]
- Shariati, M. The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology. Biosens. Bioelectron. 2018, 105, 58–64. [Google Scholar] [CrossRef]
- Chou, W.-C.; Hu, W.-P.; Yang, Y.-S.; Chan, H.W.-H.; Chen, W.-Y. Neutralized chimeric DNA probe for the improvement of GC-rich RNA detection specificity on the nanowire field-effect transistor. Sci. Rep. 2019, 9, 11056. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Song, C.; Li, T.; Ma, H.; Yao, Y.; Yao, C. TiO2 nanowires as an effective sensing platform for rapid fluorescence detection of single-stranded DNA and double-stranded DNA. Talanta 2019, 199, 442–448. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Malsagova, K.A.; Popov, V.P.; Kupriyanov, I.N.; Pleshakova, T.O.; Galiullin, R.A.; Ziborov, V.S.; Dolgoborodov, A.Y.; Petrov, O.F.; Miakonkikh, A.V.; et al. Micro-Raman Characterization of Structural Features of High-k Stack Layer of SOI Nanowire Chip, Designed to Detect Circular RNA Associated with the Development of Glioma. Molecules 2021, 26, 3715. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.-A.; Lai, H.-Y.; Chang, C.-Y.; Chan, H.W.-H.; Chen, W.-Y. Optimizing surface modification of silicon nanowire field-effect transistors by polyethylene glycol for MicroRNA detection. Colloids Surf. B Biointerfaces 2022, 209, 112142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-J.; Luo, Z.H.H.; Huang, M.J.; Tay, G.K.I.; Lim, E.-J.A. Morpholino-functionalized silicon nanowire biosensor for sequence-specific label-free detection of DNA. Biosens. Bioelectron. 2010, 25, 2447–2453. [Google Scholar] [CrossRef]
- Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Kozlov, A.F.; Shumov, I.D.; Popov, V.P.; Tikhonenko, F.V.; Glukhov, A.V.; Ziborov, V.S.; Petrov, O.F.; et al. Highly Sensitive Detection of CA 125 Protein with the Use of an n-Type Nanowire Biosensor. Biosensors 2020, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Ouhibi, A.; Raouafi, A.; Lorrain, N.; Guendouz, M.; Raouafi, N.; Moadhen, A. Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen. Sens. Actuators B Chem. 2021, 330, 129352. [Google Scholar] [CrossRef]
- Kim, H.-M.; Park, J.-H.; Lee, S.-K. Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor. Sci. Rep. 2019, 9, 15605. [Google Scholar] [CrossRef] [Green Version]
- Ganganboina, A.B.; Doong, R.-A. Graphene Quantum Dots Decorated Gold-Polyaniline Nanowire for Impedimetric Detection of Carcinoembryonic Antigen. Sci. Rep. 2019, 9, 7214. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Shi, Y.; Liu, X.; Han, Z.; Zhao, Z.; Chen, Y.; Xie, W.; Li, X. Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips. Biosens. Bioelectron. 2018, 99, 368–374. [Google Scholar] [CrossRef]
- Verardo, D.; Agnarsson, B.; Zhdanov, V.P.; Höök, F.; Linke, H. Single-Molecule Detection with Lightguiding Nanowires: Deter-mination of Protein Concentration and Diffusivity in Supported Lipid Bilayers. Nano Lett. 2019, 19, 6182–6191. [Google Scholar] [CrossRef]
- Guo, X.; Zong, L.; Jiao, Y.; Han, Y.; Zhang, X.; Xu, J.; Li, L.; Zhang, C.-W.; Liu, Z.; Ju, Q.; et al. Signal-Enhanced Detection of Multiplexed Cardiac Biomarkers by a Paper-Based Fluorogenic Immunodevice Integrated with Zinc Oxide Nanowires. Anal. Chem. 2019, 91, 9300–9307. [Google Scholar] [CrossRef]
- Wang, L.; Huo, X.; Qi, W.; Xia, Z.; Li, Y.; Lin, J. Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 2020, 211, 120715. [Google Scholar] [CrossRef] [PubMed]
- Khosravi-Nejad, F.; Teimouri, M.; Marandi, S.J.; Shariati, M. The highly sensitive impedimetric biosensor in label free ap-proach for hepatitis B virus DNA detection based on tellurium doped ZnO nanowires. Appl. Phys. A 2019, 125, 616. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.T.; Jun, S.W.; Cha, S.H.; Park, J.Y.; Lee, S.; Shin, G.A.; Ahn, Y.H. Enhanced sensitivity in THz plasmonic sensors with silver nanowires. Sci. Rep. 2018, 8, 15536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gongalsky, M.B.; Tsurikova, U.A.; Samsonova, J.V.; Gvindzhiliiia, G.Z.; Gonchar, K.A.; Saushkin, N.Y.; Kudryavtsev, A.A.; Kropotkina, E.A.; Gambaryan, A.S.; Osminkina, L.A. Double etched porous silicon nanowire arrays for impedance sensing of in-fluenza viruses. Results Mater. 2020, 6, 100084. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Zhang, L.; Huang, M.J.; Luo, Z.H.H.; Tay, G.K.I.; Lim, E.-J.A.; Kang, T.G.; Chen, Y. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens. Actuators B Chem. 2010, 146, 138–144. [Google Scholar] [CrossRef]
- Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Shumov, I.D.; Kozlov, A.F.; Romanova, T.S.; Popov, V.P.; Glukhov, A.V.; Konev, V.A.; Archakov, A.I.; et al. Nanowire Aptamer-Sensitized Biosensor Chips with Gas Plasma-Treated Surface for the Detection of Hepatitis C Virus Core Antigen. Coatings 2020, 10, 753. [Google Scholar] [CrossRef]
- Wasfi, A.; Awwad, F.; Gelovani, J.G.; Qamhieh, N.; Ayesh, A.I. COVID-19 Detection via Silicon Nanowire Field-Effect Transistor: Setup and Modeling of Its Function. Nanomaterials 2022, 12, 2638. [Google Scholar] [CrossRef]
- Shariati, M.; Vaezjalali, M.; Sadeghi, M. Ultrasensitive and easily reproducible biosensor based on novel doped MoS2 nanowires field-effect transistor in label-free approach for detection of hepatitis B virus in blood serum. Anal. Chim. Acta 2021, 1156, 338360. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.K.; Lee, J.H.; Kim, H.Y.; Kim, N.H.; Lee, C.H.; Lee, C.S.; Kim, H.G. ZnO Nanowire-Based Early Detection of SARS-CoV-2 Antibody Responses in Asymptomatic Patients with COVID-19. Adv. Mater. Interfaces 2022, 9, 2102046. [Google Scholar] [CrossRef]
- Li, J.; He, G.; Ueno, H.; Jia, C.; Noji, H.; Qi, C.; Guo, X. Direct real-time detection of single proteins using silicon nanowire-based electrical circuits. Nanoscale 2016, 8, 16172–16176. [Google Scholar] [CrossRef]
- Hui, N.; Sun, X.; Niu, S.; Luo, X. PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing. ACS Appl. Mater. Interfaces 2017, 9, 2914–2923. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, H.; Lü, H.; Hui, N. Phytic acid functionalized antifouling conducting polymer hydrogel for electrochemical detection of microRNA. Anal. Chim. Acta 2020, 1124, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, A.A.; Sciuto, E.L.; Faro, M.J.L.; Fazio, B.; Rizzo, M.G.; Calabrese, G.; Francioso, L.; Picca, R.; Nastasi, F.; Mancuso, G.; et al. SARS-CoV-2 and omicron variant detection with a high selectivity, sensitivity, and low-cost silicon bio-nanosensor. Nano Sel. 2023, 4, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Dai, P.; Gao, A.; Valiaho, J.; Kallio, P.; Wang, Y.; Li, T. Label-Free and Rapid Electrical Detection of hTSH with CMOS-Compatible Silicon Nanowire Transistor Arrays. ACS Appl. Mater. Interfaces 2014, 6, 20378–20384. [Google Scholar] [CrossRef]
- Nick, C.; Quednau, S.; Sarwar, R.; Schlaak, H.F.; Thielemann, C. High aspect ratio gold nanopillars on microelectrodes for neural interfaces. Microsyst. Technol. 2014, 20, 1849–1857. [Google Scholar] [CrossRef]
- Hui, N.; Sun, X.; Song, Z.; Niu, S.; Luo, X. Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein. Biosens. Bioelectron. 2016, 86, 143–149. [Google Scholar] [CrossRef]
Materials | Mechanism | Target | Concentration Range | Limit of Detectiozn | Ref. |
---|---|---|---|---|---|
Silicon NWs | Fluorescent signal | γ-Aminobutyric acid (GABA) | 970 fM to 9.7 μM | 9.7 μM | [40] |
Pt-Au NWs | Cyclic voltammetry (CV) | Penicillin and tetracycline | 300–240 μM 300–210 μM | 41.2 μA μM−1 cm−2, 26.4 μA μM−1 cm−2 | [36] |
Ru@V2O4 nanowires | Colorimetric sensor | Cysteine | 3–50 μM | 0.139 μM | [37] |
Cu2O/Cu@C core–shell NWs | Amperometry | Uric acid | 0.05 to 1.15 mM | 330.5 μA·mM−1·cm−2 | [41] |
Rutile/anatase TiO2 (R/A-TiO2) | Photoelectrochemical biosensor | Glucose | 1–20 mM | 0.019 mM | [42] |
Mo-W-O NWs intercalated graphene | Electrochemical sensor (CV, Differential pulse voltammetry (DPV)) | Dopamine and Tyrosine | 0.001–448.0 μM, 0.001–478.0 µM | 0.8 nM, 1.4 nM | [43] |
CuO/Cu2O NWs | Photoelectrochemical | Tyrosinase | 0.05–10 U/mL | 0.016 U/mL | [44] |
Materials | Mechanism | Target | Concentration Range | Limit of Detection | Ref. |
---|---|---|---|---|---|
ITO NWs | FET | DNA of hepatitis B virus (HBV) | 1 fM to 10 µM | 1 fM | [49] |
Core D-Shaped Photonic Crystal Fibre Embedded silver nanowires | Surface Plasmon Resonance | DNA/RNA | 1.35 to 1.50 RIU | 4000 nm/RIU | [35] |
Silicon NWs | FETs | Hepatitis C virus (nDNA) | 10–328 mM | 10 mM | [50] |
TiO2 NWs | fluorescence | ssDNA; dsDNA; | 2 nM to 200 nM | 1.4 nM | [51] |
SOI NWs Chip | Micro-Raman | Circular RNA (Glioma) | 10−16–1.1 × 10−16 M | 10−16 M | [52] |
(PEG)-polypyrrole (PPy) nanowire | Differential pulse voltammetry (DPV) | miRNA | 0.10 pM ~ 1.0 nM | 0.10 pM | [34] |
SiNWFETs/PEG-mSAMs | FETs | miRNA-21 | 10 aM–10 pM | 10 aM | [53] |
Morpholino-functionalized Si NWs | Label-free detection | DNA | 1 nM–100 pM | 100 pM | [54] |
Materials | Mechanism | Target | Concentration Range | Limit of Detection | Ref. |
---|---|---|---|---|---|
Silicon-on-insulator (SOI)-NWs | A field-effect transistor (FET) | CA 125 | 10−15–10−16 M | 2.2 × 10−16 M | [55] |
SiNW FET | FET | Cardiac Troponin I | 0.002–0.01 ng/mL | 0.002 ng/mL | [56] |
ZnO NWs | Fiber-optic-based localized surface plasmon resonance (FO-LSPR) | prostate-specific antigen (PSA) | 5–200 pg/ml | 0.51 pg/ml | [57] |
(N, S-GQDs@Au-PANI) NWs | Impedimetric immunosensor | Carcinoembryonic antigen | 0.5–1000 ng mL−1 | 0.01 ng mL−1 | [58] |
ZnO NWs integrated inside microfluidic chips | fluorescence detection | α-fetoprotein (AFP) | 1 pg/mL–1 μg/mL | 1 pg/mL | [59] |
Semiconductor NWs | Epifluorescence microscopy | Protein Concentration | 0.25–0.00008 w% | 0.00008 w% | [60] |
Paper-Based Zinc Oxide NWs | Fluorescence signals | Cardiac Biomarkers of acute myocardial infarction (AMI) | 1.00–7.94 ng/mL | 1.00 ng/mL | [61] |
Materials | Mechanism | Target | Concentration Range | Limit of Detection | Ref. |
---|---|---|---|---|---|
Tin-doped WO3/In2O3 NWs | Electrochemical impedance spectra (EIS) | Hepatitis B virus (HBV) | 0.1 pM–10 μM | 1 fM | [62] |
Te-doped ZnO NWs | (EIS) | HBV DNA | 1 pM to 1 μM | 0.1 pM | [63] |
AgNWs | THz plasmonic sensors | PRD1 | 3.4–6.7 FOM | 3.4 FOM | [64] |
Porous silicon nanowire | Impedance | Influenza viruses | 1000–100 TCID50 | 100 TCID50 | [65] |
Silicon nanowire (SiNW) | RT-PCR | Dengue serotype 2 | 10–100 fM | 10 fM | [66] |
Nanowire Aptamer | Gas Plasma-Treated Surface | Hepatitis C virus | 2.0 × 10−15–10−17 M | 10−17 M | [67] |
ZnO nanowire | Fluorescent immunoassay (FIA) | SARS-CoV-2 | 0 to 1500 a.u. | 5 µg mL−1 | [68] |
Gold-Decorated Silicon Nanowire | Surface-Enhanced Raman | Bilirubin | 10–8–5 × 10–5 M | 10–8 M | [33] |
MoS2 nanowires | HBV DNA FET | Hepatitis B virus | 0.5 pM to 50 μM | 1 fM | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, V.A.; Vo, G.N.L.; Vo, T.-T.T.; Doan, V.D.; Vo, V.; Le, V.T. Recent Applications and Prospects of Nanowire-Based Biosensors. Processes 2023, 11, 1739. https://doi.org/10.3390/pr11061739
Tran VA, Vo GNL, Vo T-TT, Doan VD, Vo V, Le VT. Recent Applications and Prospects of Nanowire-Based Biosensors. Processes. 2023; 11(6):1739. https://doi.org/10.3390/pr11061739
Chicago/Turabian StyleTran, Vy Anh, Giang N. L. Vo, Thu-Thao Thi Vo, Van Dat Doan, Vien Vo, and Van Thuan Le. 2023. "Recent Applications and Prospects of Nanowire-Based Biosensors" Processes 11, no. 6: 1739. https://doi.org/10.3390/pr11061739
APA StyleTran, V. A., Vo, G. N. L., Vo, T. -T. T., Doan, V. D., Vo, V., & Le, V. T. (2023). Recent Applications and Prospects of Nanowire-Based Biosensors. Processes, 11(6), 1739. https://doi.org/10.3390/pr11061739