Utilizing Flax Straw for Sustainable Paper Production: Delignification Methods, Structural Analysis, and Fiber Size Distribution Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- (a)
- Sodium hydroxide (NaOH), firm Labopharma LLP (Kazakhstan);
- (b)
- 37% hydrogen peroxide (H2O2), the company “Labopharma” LLP (Kazakhstan);
- (c)
- 70% acetic acid (CH3COOH), firm “DHZ Production” (Russia);
- (d)
- Nitric acid (HNO3), JSC “Base 1 of Chemical Reagents” (Russia).
2.2. The Technology of Pulp Production from Flax Straw
- Cooking in 0.2–1–4% nitric acid solution at 95–98 °C for 120 min. The received suspension was filtered and washed with distilled water.
- Alkaline cooking with 20–25–30% sodium hydroxide solution at 96 °C for 60 min followed by filtration and washing of the suspension with distilled water.
- Treatment with an oxidizing organosolvent (25% acetic acid and 5% hydrogen peroxide) solution at the temperature of 95–98 °C; duration of treatment—120 min.
- (1)
- Reception;
- (2)
- Transfer to storage facilities;
- (3)
- Storage.
- (1)
- Crushing of flax straw;
- (2)
- Shredding of cardboard;
- (3)
- Soaking the crushed straw in water;
- (4)
- Soaking shredded cardboard in water.
- (1)
- Preparation of nitric acid (HNO3);
- (2)
- Preparation of sodium hydroxide (NaOH);
- (3)
- Preparation of oxidizing organosolvent acid from hydrogen peroxide (H2O2) and acetic acid (CH3COOH).
- (1)
- Boiling of crushed and loosened straw in nitric acid; the second and third steps are boiling;
- (2)
- Filtration of the slurry;
- (3)
- Alkaline treatment;
- (4)
- Filtration of the suspension;
- (5)
- Cooking in organosolvent solution;
- (6)
- Filtration of the suspension.
- (1)
- Mixing of suspension and pulp from cardboard;
- (2)
- Grinding in a ball mill.
- (1)
- The shredded product was shaped on sheeting machine BN-8053-01A (Bonnin Company, Hubei, China).
2.3. Laboratory Methods of Analysis
- g—weight of absolutely dry desiccated pulp sample, g;
- Ke—extraction coefficient, which represents the mass loss of the cellulose sample during pre-extraction.
- m1—sample weight after drying, g.
2.4. Determination of Tensile Strength
- l0—nominal distance between clamps, mm;
- m—sample weight, g (arithmetic mean of measurement results of all tested samples).
2.5. X-ray Diffraction (XRD)
2.6. Thermal Gravimetric Analysis (TGA)
2.7. X-ray Phase Analysis
2.8. Microstructure Study
2.9. Determination of Particle Size Distribution
2.10. Statistical Analysis
3. Results
3.1. Characterization of Cellulose
3.2. Tensile Strength and Tensile Elongation
3.3. Investigation of Phase Transformation of Laboratory Samples by Structural Analysis Methods
3.4. Differential Thermal Analysis
- Moisture evaporation (100–200 °C):
- 2.
- Dehydration and degradation (200–300 °C):
- 3.
- Decomposition of the crystalline phase (300–350 °C):
- 4.
- Complete decomposition (350–400 °C):
3.5. Scanning Electron Microscopy
3.5.1. Sample #1 Control Sample (Wrapping Paper)
3.5.2. Sample #2 (Flax Straw Treated with 30% NaOH)
3.5.3. Sample #3 (Flax Straw Treated with 20% NaOH)
3.5.4. Sample #4 (Flax Straw Treated with Nitric Acid 1% and NaOH 25%)
3.5.5. Sample #5 (Flax Straw Treated with 4% Nitric Acid and 25% NaOH)
3.5.6. Sample #6 (Wheat Straw Treated with 25% NaOH)
3.5.7. Sample #7 (Rice Straw Treated with 25% NaOH)
3.5.8. Sample #8 (Cardboard)
3.6. Laser Analysis of Particles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erikli, E. Testing the Suitability of the Waste Packaging Cardboards for External Environmental Conditions to Reuse as Animal Shelter. Eur. J. Res. Dev. 2023, 3, 80–90. [Google Scholar] [CrossRef]
- Available online: https://www.statista.com/statistics/1089078/demand-paper-globally-until-2030/ (accessed on 7 June 2024).
- IEA. Pulp and Paper. 2023. Available online: https://www.iea.org/reports/pulp-and-paper (accessed on 7 June 2024).
- Sun, M.; Wang, Y.; Shi, L.; Klemeš, J. Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2018, 92, 823–833. [Google Scholar] [CrossRef]
- Mathura, F.; Maharaj, R. Non-wood Plants as Sources of Cellulose for Paper and Biodegradable Composite Materials: An Updated Review. Curr. Mater. Sci. 2024, 17, 321–335. [Google Scholar] [CrossRef]
- Serrano, I.; Afailal, Z.; Sánchez-Paniagua, N.; González, P.; Bautista, A.; Gil-Lalaguna, N.; Gonzalo, A.; Arauzo, J.; Crespo, C.; Sánchez, J.L. Production of derivatives from wheat straw as reinforcement material for paper produced from secondary fibers. Cellulose 2024, 31, 2541–2556. [Google Scholar] [CrossRef]
- Tanveer, A.; Gupta, S.; Dwivedi, S.; Yadav, K.; Yadav, S.; Yadav, D. Innovations in papermaking using enzymatic intervention: An ecofriendly approach. Cellulose 2023, 30, 7393–7425. [Google Scholar] [CrossRef]
- Egamberdiyev, E.; Ergashev, Y.; Akmalova, G.; Rahmonberdiyev, G. Effects and Analysis of Chytazone in the Process of Processing Paper from Natural polymeres. In E3S Web of Conferences; Slimani, K., Gerasymov, O., Kerkeb, M.L., Eds.; EDP Sciences: Les Ulis, France, 2024; Volume 477, p. 00053. [Google Scholar] [CrossRef]
- Danielewicz, D. Industrial Hemp as a Potential Nonwood Source of Fibres for European Industrial-Scale Papermaking—A Review. Materials 2023, 16, 6548. [Google Scholar] [CrossRef]
- Sood, S.; Sharma, C. Study on fiber furnishes and fiber morphological properties of commonly used Indian food packaging papers and paperboards. Cellul. Chem. Technol. 2021, 55, 125–131. [Google Scholar] [CrossRef]
- Aziz, T.; Haq, F.; Farid, A.; Kiran, M.; Faisal, S.; Ullah, A.; Ullah, N.; Bokhari, A.; Mubashir, M.; Chuah, L.F.; et al. Challenges associated with cellulose composite material: Facet engineering and prospective. Environ. Res. 2023, 223, 115429. [Google Scholar] [CrossRef]
- Denisova, M.N. Characteristics of cellulose samples from cereal straw obtained by hydrotropic method and results of their study as substrates for enzymatic hydrolysis. Polzunov Bull. 2016, 4, 170–173. [Google Scholar]
- Manian, A.P.; Cordin, M.; Pham, T. Extraction of cellulose fibers from flax and hemp: A review. Cellulose 2021, 28, 8275–8294. [Google Scholar] [CrossRef]
- Korchagina, A.A.; Gismatulina, Y.A.; Budaeva, V.V.; Zolotukhin, V.N.; Bychin, N.V.; Sakovich, G.V. Miscanthus × giganteus var. KAMIS as a new feedstock for cellulose nitrates. J. Sib. Fed. Univ. Chem. 2020, 13, 565–577. [Google Scholar] [CrossRef]
- Bureau of National Statistics, Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. Available online: https://stat.gov.kz/ru/ (accessed on 12 May 2023).
- Biermann, C. Nonwood Fiber Use in Pulp and Paper; Academic Press: Cambridge, MA, USA, 1996; pp. 633–640. [Google Scholar] [CrossRef]
- Mousavi, S.; Hosseini, S.; Resalati, H.; Mahdavi, S.; Garmaroody, E. Papermaking potential of rapeseed straw, a new agricultural-based fiber source. J. Clean. Prod. 2013, 52, 420–424. [Google Scholar] [CrossRef]
- Plazonić, I.; Barbarić-Mikočević, Ž.; Antonović, A. Chemical Composition of Straw as an Alternative Material to Wood Raw Material in Fibre Isolation. Drv. Ind. 2016, 67, 119–125. [Google Scholar] [CrossRef]
- El-Sayed, E.; El-Sakhawy, M.; El-Sakhawy, M. Non-wood fibers as raw material for pulp and paper industry. Nord. Pulp Pap. Res. J. 2020, 35, 215–230. [Google Scholar] [CrossRef]
- Sinha, A. Formic Acid Pulping Process of Rice Straw for Manufacturing of Cellulosic Fibers with Silica. August 2021; TAPPI: Peachtree Corners, GA, USA, 2021. [Google Scholar] [CrossRef]
- Singh, S.; Dutt, D.; Tyagi, C. Complete characterization of wheat straw (Triticum Aestivum Pbw-343 l. Emend. Fiori & Paol.)—A renewable source of fibres for pulp and paper making. Bioresources 2011, 6, 154–177. [Google Scholar]
- GOST 8273-75; Packing Paper: Specifications. Standards Publishing House: Moscow, Russia, 2015.
- GOST 6840-78; Cellulose: Method for Determination of Alpha-Cellulose Content. Standards Publishing House: Moscow, Russia, 1978; 6p.
- GOST 11960-79; Semifinished Fibrous Products and Raw Materials from Annual Plants for Pulp and Paper Production. Method for Determination of Lignin. Standards Publishing House: Moscow, Russia, 1981; 9p.
- GOST 14897-69; Flax Straw. Technical Conditions. Standards Publishing House: Moscow, Russia, 1969; 16p.
- GOST 13525.1-79; Fiber Semi-Finished Products, Paper and Cardboard. Methods of Determination of Tensile Strength and Tensile Elongation. Standards Publishing House: Moscow, Russia, 1980; 4p.
- Ju, X.; Bowden, M.; Brown, E.E.; Zhang, X. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr. Polym. 2015, 123, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, Y.; Zhou, J.; Wang, Y.; Tao, X.; Zhang, X.; Song, W. Thermogravimetric and Kinetic Analysis of High-Temperature Thermal Conversion of Pine Wood Sawdust under CO2/Ar. Energies 2021, 14, 5328. [Google Scholar] [CrossRef]
- Revenko, A.G.; Sharykina, D.S. The application of X-ray fluorescence analysis to research the chemical compositions of tea and coffee samples. Anal. I Kontrol 2019, 23, 6–23. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, L.; Liu, F.; Fan, X.; Sun, R.C. One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification. Biotechnol. Biofuels 2018, 11, 137. [Google Scholar] [CrossRef]
- Krupin, V.I.; Demyanovskaya, N.V.; Kudryashov, V.N. Straw—Raw material for paper industry. Straw—Raw material for paper industry. Cellul. Pap. Cardboard 2010, 3, 50–51. [Google Scholar]
- Puițel, A.C.; Suditu, G.D.; Drăgoi, E.N.; Danu, M.; Ailiesei, G.-L.; Balan, C.D.; Chicet, D.-L.; Nechita, M.T. Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze–Thaw Cycles. Polymers 2023, 15, 1038. [Google Scholar] [CrossRef]
- Razali, N.A.M.; Mohd Sohaimi, R.; Othman, R.N.I.R.; Abdullah, N.; Demon, S.Z.N.; Jasmani, L.; Yunus, W.M.Z.W.; Ya’acob, W.M.H.W.; Salleh, E.M.; Norizan, M.N.; et al. Comparative Study on Extraction of Cellulose Fiber from Rice Straw Waste from Chemo-Mechanical and Pulping Method. Polymers 2022, 14, 387. [Google Scholar] [CrossRef]
- Korchagina, A.A.; Gismatulina, Y.A.; Kortusov, A.N.; Zolotukhin, V.N. Miscanthus “Fortis” and cellulose obtained from it. In Technologies and Equipment of Chemical, Biotechnological and Food Industries; Publishing House of Altai State Technical University: Biysk, Russia, 2022; pp. 106–110. [Google Scholar] [CrossRef]
- Shaimerdenov, J.N.; Dalabaev, A.B.; Temirova, I.J.; Aldieva, A.B.; Sakenova, B.A.; Zhunusova, K.Z.; Iztaev, A. Study of the chemical composition of oilseed flax straw for cellulose production. Sci. News Kazakhstan 2020, 2, 80–88. [Google Scholar]
- Wang, J.; Wang, B.; Liu, J.; Ni, L.; Li, J. Effect of Hot-Pressing Temperature on Characteristics of Straw-Based Binderless Fiberboards with Pulping Effluent. Materials 2019, 12, 922. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.Y.; Sun, S.N.; Cao, X.F.; Sun, R.C. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw. Sci. Rep. 2016, 6, 39354. [Google Scholar] [CrossRef] [PubMed]
- Xiu, H.; Cheng, R.; Li, J.; Ma, F.; Song, T.; Yang, X.; Feng, P.; Zhang, X.; Kozliak, E.; Ji, Y. Effects of acid hydrolysis waste liquid recycle on preparation of microcrystalline cellulose. Green Process. Synth. 2019, 8, 348–354. [Google Scholar] [CrossRef]
- Xu, E.; Wang, D.; Lin, L. Chemical Structure and Mechanical Properties of Wood Cell Walls Treated with Acid and Alkali Solution. Forests 2020, 11, 87. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Molinari, M. Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: Application with Cellulose Nanocrystals. Langmuir 2018, 34, 9376–9386. [Google Scholar] [CrossRef]
- Spagnuolo, L.; D’Orsi, R.; Operamolla, A. Nanocellulose for Paper and Textile Coating: The importance of Surface Chemistry. ChemPlusChem 2022, 87, e202200204. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Y.; Li, K. Removal of residual lignin of ethanol-based organosolv pulp by an alkali extraction process. J. Appl. Polym. Sci. 2007, 106, 630–636. [Google Scholar] [CrossRef]
- Cavali, M.; Soccol, C.; Tavares, D.; Torres, L.; Tanobe, V.; Filho, A.; Woiciechowski, A. Effect of sequential acid-alkaline treatment on physical and chemical characteristics of lignin and cellulose from pine (Pinus spp.) residual sawdust. Bioresour. Technol. 2020, 316, 123884. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Ko, Y.; Melani, L.; Kim, H. Mechanical properties of low-density paper. Nord. Pulp Pap. Res. J. 2020, 35, 61–70. [Google Scholar] [CrossRef]
- I’Anson, S.; Karademir, A.; Sampson, W. Specific contact area and the tensile strength of paper. Appita J. 2006, 59, 297–301. [Google Scholar]
- Nicomrat, D.; Tharajak, J. A Potential Application of the Mechanical Tensile Strength Test for Indicating Paper Biodegradation. Key Eng. Mater. 2016, 723, 183–190. [Google Scholar] [CrossRef]
- Hirn, U.; Schennach, R. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper. Sci. Rep. 2015, 5, 10503. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, N.; Wang, H.; Liu, C.; Pan, X. Preparation and Characterization of Regenerated Cellulose Film from a Solution in Lithium Bromide Molten Salt Hydrate. Polymers 2018, 10, 614. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kataoka, H.; Tsuchikawa, S.; Inagaki, T. Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose: Cellulose I to cellulose II, tracing the structural changes under chemical treatment. Cellulose 2022, 29, 3143–3151. [Google Scholar] [CrossRef]
- Kouko, J.; Jajcinovic, M.; Fischer, W.; Ketola, A.; Hirn, U.; Retulainen, E. Effect of mechanically induced micro deformations on extensibility and strength of individual softwood pulp fibers and sheets. Cellulose 2019, 26, 1995–2012. [Google Scholar] [CrossRef]
- Csiszár, E.; Fekete, E.; Tóth, A.; Bandi, É.; Koczka, B.; Sajó, I. Effect of Particle Size on the Surface Properties and Morphology of Ground Flax. Carbohydr. Polym. 2013, 94, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Csiszár, E.; Fekete, E. Microstructure and Surface Properties of Fibrous and Ground Cellulosic Substrates. Langmuir 2011, 27, 8444–8450. [Google Scholar] [CrossRef]
- Kusmono; Listyanda, R.F.; Wildan, M.W.; Ilman, M.N. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon 2020, 6, e05486. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Li, J.; Wang, Q.; Wang, F.; Kong, L. Homogeneous Isolation of Nanocellulose from Cotton Cellulose by High Pressure Homogenization. J. Mater. Sci. Chem. Eng. 2013, 1, 49–52. [Google Scholar] [CrossRef]
Stage of Treatment | Content in Flax Straw | |||
---|---|---|---|---|
α-Cellulose, % | Lignin, % | Ash Content, % | Yield, % | |
Before treatment | 52.4 ± 0.8 | 24.6 ± 0.4 | 2.3 ± 0.2 | 100 |
After treatment | 67.7 ± 1.1 * | 4.1 ± 0.1 * | 0.8 ± 0.1 * | 77.3 |
Indicator | Material: 40 g, Alkaline Treatment | Material: 45 g, Nitric Acid Treatment | Material: 40 g, Nitric Acid Treatment | |||
---|---|---|---|---|---|---|
First Batch of Samples | Second Batch of Samples | Third Batches of Samples | Fourth Batch of Samples | Fifth Batch of Samples | Sixth Batches of Samples | |
F, kN | 0.079106 | 0.101618 | 0.070314 | 0.062924 | 0.185013 | 0.170429 |
l0, mm | 90 | 90 | 90 | 90 | 90 | 90 |
m, g | 0.78 | 0.78 | 0.79 | 0.99 | 0.84 | 0.94 |
L, m | 900 | 1200 | 800 | 600 | 2000 | 1600 |
Sample | Particle Size | S/V, m2/cm3 | |||
---|---|---|---|---|---|
D10, µm | D50, µm | D90, µm | Dav, µm | ||
Sample #1 Control | 247.9 | 292.7 | 329.8 | 288.3 | 210.9 |
Sample #2 (flax straw treated with 30% NaOH) | 31.7 | 48.4 | 63.4 | 47.9 | 1362 |
Sample #3 (flax straw treated with 20% NaOH) | 10.5 | 30.2 | 59.3 | 33.0 | 3245 |
Sample #4 (flax straw treated with 1% HNO3 and 25% NaOH) | 10.8 | 33.8 | 69.8 | 37.8 | 3158 |
Sample #5 (flax straw treated with 4% HNO3 and 25% NaOH) | 24.6 | 43.6 | 62.8 | 43.8 | 1603 |
Sample #6 (wheat straw treated with 25% NaOH) | 12.9 | 44.1 | 96.6 | 50.5 | 2714 |
Sample #7 (rice straw treated with 25% NaOH) | 11.9 | 39.2 | 83.5 | 44.3 | 2897 |
Sample #8 (cardboard) | 12.4 | 41.2 | 88.4 | 46.8 | 2785 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashanova, N.; Satayeva, Z.; Smagulova, M.; Kundyzbayeva, N.; Ibzhanova, A.; Karimova, G. Utilizing Flax Straw for Sustainable Paper Production: Delignification Methods, Structural Analysis, and Fiber Size Distribution Effects. Processes 2024, 12, 2070. https://doi.org/10.3390/pr12102070
Mashanova N, Satayeva Z, Smagulova M, Kundyzbayeva N, Ibzhanova A, Karimova G. Utilizing Flax Straw for Sustainable Paper Production: Delignification Methods, Structural Analysis, and Fiber Size Distribution Effects. Processes. 2024; 12(10):2070. https://doi.org/10.3390/pr12102070
Chicago/Turabian StyleMashanova, Nurbibi, Zhuldyz Satayeva, Mirgul Smagulova, Nazigul Kundyzbayeva, Ainur Ibzhanova, and Gulmaida Karimova. 2024. "Utilizing Flax Straw for Sustainable Paper Production: Delignification Methods, Structural Analysis, and Fiber Size Distribution Effects" Processes 12, no. 10: 2070. https://doi.org/10.3390/pr12102070
APA StyleMashanova, N., Satayeva, Z., Smagulova, M., Kundyzbayeva, N., Ibzhanova, A., & Karimova, G. (2024). Utilizing Flax Straw for Sustainable Paper Production: Delignification Methods, Structural Analysis, and Fiber Size Distribution Effects. Processes, 12(10), 2070. https://doi.org/10.3390/pr12102070