Multi-Parameter Experimental Investigation on the Characteristics of Acidizing Effectiveness in High-Temperature Carbonate Formation
Abstract
:1. Introduction
2. Evaluation of Acidizing Effectiveness
2.1. Experiment Preparation
2.2. Evaluation of Permeability Change
2.3. Evaluation of Conductivity Experiment
3. Discussion
3.1. Multi-Parameter Evaluation
3.2. High-Temperature Resistance Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parandeh, M.; Dehkohneh, H.Z.; Soulgani, B.S. Experimental investigation of the acidizing effects on the mechanical properties of carbonated rocks. Geoenergy Sci. Eng. 2023, 222, 211447. [Google Scholar] [CrossRef]
- Penny, G.; Biswas, D.; Germack, D.; Shedd, D.; El Din, N. The Effect of Various Additives on Matrix Acidizing Effectiveness in Carbonate Reservoirs. In Proceedings of the First Eage Workshop on Well Injectivity & Productivity in Carbonates, Doha, Qatar, 30 March–1 April 2015. [Google Scholar]
- Norlee, A.; Shi, T.; Mahmud, H.K.B. Investigating the Effectiveness of Emulsified Acid on Sandstone Formation under High Temperature Conditions. In IOP Conference Series: Materials Science and Engineering, Proceedings of the Curtin University Technology, Science and Engineering International Conference, Sarawak, Malaysia, 26–28 November 2018; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Zhou, J.; Zou, H.; Zhu, D.; Xiong, W. Experimental study on the fracture conductivity in the carbonate reservoirs with low elastic modulus. Oil Drill. Prod. Technol. 2020, 6, 752–756. [Google Scholar]
- Aldakkan, B.; Moajil, A.M.A.; Alnoaimi, K. Carbonate Acidizing and Flowback Analysis—A Review and an Evaluation Method. In Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Bangkok, Thailand, 28 August 2018; p. SPE-191017-MS. [Google Scholar]
- Wang, M.; Wu, Y.; Sun, H.; Chen, P.; Jia, X. Influence of Acid on the Conductivity of Acid Corrosion Fracture. Spec. Oil Gas Reserv. 2019, 5, 153–158. [Google Scholar]
- Safari, A.; Panjalizadeh, H.; Pournik, M.; Jafari, H. A Comprehensive Method for Diverter-Performance Evaluation during Stimulation of Long-Interval Heterogeneous Reservoirs: A Case Study. SPE Prod. Oper. 2020, 36, 22–33. [Google Scholar] [CrossRef]
- Panjalizadeh, H.; Safari, A.R.; Kamani, M. An Efficient Interpretation Method for Matrix Acidizing Evaluation and Optimization in Long Heterogeneous Carbonate Reservoirs. SPE Prod. Oper. 2021, 36, 780–794. [Google Scholar] [CrossRef]
- Kalabayev, R.; Kruglov, R. Increasing the Efficiency of Carbonate Acidizing: Kazakhstan Case Studies. In Proceedings of the SPE Annual Technical Conference and Exhibition, Virtual, 5–7 October 2020. [Google Scholar]
- Yang, Z.; Zhong, P.; Wang, H.; Mao, Y.u.; Yi, L.; Li, X. Experimental Study on the Conductivity of Acid Etching Cracks in Penglai Gas Are. Sci. Technol. Eng. 2023, 23, 1671–1815. [Google Scholar]
- Liu, P.; Hu, H.; Chen, X.; Du, J.; Liu, J.; Liu, F.; Chen, W.; Jia, Y. The influencing parameters and improve methods of acid-etched fracture conductivity: A review. Geoenergy Sci. Eng. 2024, 238, 212844. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, X.; He, J.; Mao, T.; Zheng, B.; Li, G. A laboratory investigation of fracture propagation induced by supercritical carbon dioxide fracturing in continental shale with interbeds. J. Pet. Sci. Eng. 2018, 166, 739–746. [Google Scholar] [CrossRef]
- Sistrunk, C.; Brashear, A.T.; Hill, D.; Zhu, D.; Tajima, T. The Effect of Fracture Surface Roughness on Propped Fracture Conductivity Using 3D-Printed Fracture Surfaces. In Proceedings of the SPE Western Regional Meeting, Anchorage, AL, USA, 22–25 May 2023. [Google Scholar]
- Bennion, D.B.; Bachu, S. Drainage and Imbibition CO2/Brine Relative Permeability Curves at Reservoir Conditions for High-Permeability Carbonate Rocks. In Proceedings of the SPE Annual Technical Conference and Exhibition, Florence, Italy, 20–22 September 2010; p. SPE-134028-MS. [Google Scholar]
- Zhao, Z.; Ma, Y.; Zhang, Y.; Lan, K.; Zhang, X. Evaluation and Application of Efficient Gelled Acid for Carbonate Formation Fracturing. ACS Omega 2023, 8, 26201–26205. [Google Scholar] [CrossRef] [PubMed]
- Deidre, T.; Kumar, P.; Diankui, F. Viscoelastic Surfactant Based Self-Diverting Acid for Enhanced Stimulation in Carbonate Reservoirs. In Proceedings of the SPE European Formation Damage Conference Society of Petroleum Engineers, The Hague, The Netherlands, 13–14 May 2003. [Google Scholar]
- Li, S.; Zhang, H.; Wang, M.; Zhang, X.; Zhou, C.; Hu, Q. Experimental evaluation and process optimization of temporary plugging to acid-frac in fractured carbonate reservoirs. Chem. Eng. Oil Gas 2021, 50, 90–95. [Google Scholar]
- Guo, J.; Gou, B.; Lu, D.; Liu, Z.; Xiao, B.; Xu, K.; Ren, J. Advance and Prospect of Acid Fracturing in Deep Carbonate Reservoirs. Drill. Prod. Technol. 2024, 47, 121–129. [Google Scholar]
- Gelius, L.; Wang, Z. Modelling production caused changes in conductivity for a siliciclastic reservoir: A differential effective medium approach. Geophys. Prospect. 2008, 56, 1365–2478. [Google Scholar] [CrossRef]
- Karimi, S.; Bareither, C.A.; Scalia, J. Influence of oil and gas exploration and production waste on municipal solid waste hydraulic conductivity. Waste Manag. 2023, 166, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Khormali, A.; Ahmadi, S. Experimental and modeling analysis on the performance of 2-mercaptobenzimidazole corrosion inhibitor in hydrochloric acid solution during acidizing in the petroleum industry. J. Pet. Explor. Prod. Technol. 2023, 13, 2217–2235. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, C.; Liu, Y. High-Temperature-Resistant Diverting Acid for Carbonate Formation Fracturing in Sichuan Basin: A Property Evaluation and Field Study. Geofluids 2022, 2022, 1832993. [Google Scholar] [CrossRef]
- Sun, C.; Liu, Y.; Yang, Z.; He, C.; Mei, Z. Research of steering acid type selection and its application in Gao-Mo block Dengying formation of Sichuan Basin. Chem. Eng. Oil Gas 2019, 48, 70–74. [Google Scholar]
- Welton, T.D.; Domelen, M.S.V. High-Viscosity-Yield Acid Systems for High-Temperature Stimulation. SPE Prod. Facil. 2008, 23, 177–183. [Google Scholar] [CrossRef]
Acid System | Amount of Thickener | Initial Permeability (mD) | Permeability after Acidizing (mD) | Permeability Change Rate (%) |
---|---|---|---|---|
Gelled acid | 0.4 | 6.231 | 10.362 | 66.3 |
0.6 | 9.502 | 14.988 | 57.7 | |
0.8 | 7.974 | 12.769 | 60.1 |
Acid System | Amount of Diverting Agent | Initial Permeability (mD) | Permeability after Acidizing (mD) | permeability Change Rate (%) |
---|---|---|---|---|
Diverting acid | 6 | 0.182 | 0.276 | 51.6 |
7.150 | Breakthrough | / | ||
8 | 0.191 | 0.304 | 59.2 | |
7.228 | Breakthrough | / | ||
10 | 0.173 | 0.284 | 64.2 | |
6.884 | Breakthrough | / |
Samples | Temperature (°C) | Flow Rate (mL/min) | Total Volume (mL) | Closure Stress (MPa) |
---|---|---|---|---|
Dengying Formation | 160 | 50 | 1000 | 30~60 |
Xixia Formation | ||||
Maokou Formation |
Samples | S (cm2) | Sf (cm2) | D | Acidified Surface |
---|---|---|---|---|
Dengying Formation | 75.40 | 91.55 | 1.21 | |
Xixia Formation | 75.86 | 82.06 | 1.08 | |
Maokou Formation | 75.09 | 98.36 | 1.31 |
Samples | S (cm2) | Sf (cm2) | D | Acidified Surface |
---|---|---|---|---|
Dengying Formation | 75.41 | 90.04 | 1.19 | |
Xixia Formation | 74.89 | 79.62 | 1.06 | |
Maokou Formation | 75.13 | 95.62 | 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zheng, Y.; Liu, Q.; Zhang, Y.; Tang, Y.; Xu, Y. Multi-Parameter Experimental Investigation on the Characteristics of Acidizing Effectiveness in High-Temperature Carbonate Formation. Processes 2024, 12, 2112. https://doi.org/10.3390/pr12102112
Zhao Z, Zheng Y, Liu Q, Zhang Y, Tang Y, Xu Y. Multi-Parameter Experimental Investigation on the Characteristics of Acidizing Effectiveness in High-Temperature Carbonate Formation. Processes. 2024; 12(10):2112. https://doi.org/10.3390/pr12102112
Chicago/Turabian StyleZhao, Zhiheng, Youcheng Zheng, Qiang Liu, Yan Zhang, Yong Tang, and Yuan Xu. 2024. "Multi-Parameter Experimental Investigation on the Characteristics of Acidizing Effectiveness in High-Temperature Carbonate Formation" Processes 12, no. 10: 2112. https://doi.org/10.3390/pr12102112
APA StyleZhao, Z., Zheng, Y., Liu, Q., Zhang, Y., Tang, Y., & Xu, Y. (2024). Multi-Parameter Experimental Investigation on the Characteristics of Acidizing Effectiveness in High-Temperature Carbonate Formation. Processes, 12(10), 2112. https://doi.org/10.3390/pr12102112