A Review of Parameter Identification and State of Power Estimation Methods for Lithium-Ion Batteries
Abstract
:1. Introduction
2. SOP Estimation and Parameter Identification Methods Based on Equivalent Circuit Models
2.1. Voltage Response Curve Analysis
2.2. Least-Square-Based Methods
2.3. Intelligent Optimization Algorithms
3. Battery Cell State of Power Estimation Methods
3.1. Model-Based SOP Estimation
3.1.1. Battery Cell Model
Equivalent Circuit Model
Electrochemical Model
Electro-Thermal Coupling Model
3.1.2. SOP Estimation Based on Model Parameter Constraints
SOC Constraint Method
Voltage Constraint Method
Multiple Constraints Method
3.2. Data-Driven SOP Estimation
3.3. Multi-State Joint Estimation
3.3.1. State of Charge and State of Power
3.3.2. State of Energy and State of Power
3.3.3. State of Charge, State of Heathy and State of Power
4. SOP Estimation Methods for Battery Packs
4.1. Battery Pack Inconsistency Analysis
4.2. Series-Connected Battery Pack Modeling and SOP Estimation Methods
4.3. Parallel-Connected Battery Pack Modeling and SOP Estimation Methods
5. Conclusions
- (1)
- The current parameter identification method mainly uses the collected voltage, current and other parameters; combined with the mechanism and algorithm used to identify the parameters of the established battery model, the error and robustness need to be further improved. With the rapid development of sensing technology, the model parameters directly obtained through the online real-time measurement of the parameters is one of the research directions.
- (2)
- For single-cell SOP estimation, the initial step involves constructing a precise battery model capable of capturing various behavioral aspects. This model explores the correlations between external electrical characteristics and internal parameters, encompassing the electrochemical, electrical, thermal, and aging characteristics of the battery. The next step involves addressing the intricate interdependencies among multiple states such as the SOC, SOH or RUL, SOP, and SOE. This is achieved by integrating sophisticated intelligent algorithms capable of jointly estimating these states. Enhancing the estimation accuracy depends on state estimation methods that leverage multi-feature fusion models and consider the association among multiple states concurrently.
- (3)
- Current research on battery management focuses on advanced techniques for parameter identification and state estimation. Methods such as machine learning and artificial intelligence are able to determine the nonlinear characteristics and complex behavioral properties of batteries, but such methods often require a large amount of training data to obtain more accurate results. New battery management systems based on big data, cloud computing platforms and digital twins will become the future trend; they will break through the traditional hardware terminal limitations and upgrade traditional offline estimation to active online real-time estimation.
- (4)
- For battery packs, the inconsistency of different connection methods is the main factor affecting the power state, and accurately describing the dynamic inconsistency of the battery pack model is the basis of state estimation. Furthermore, the inconsistency of battery packs is influenced by various factors, including temperature variations, multiplicity, aging, and more. It is crucial to consider how these factors affect battery parameters and introduce inconsistencies when coupled together. Facing this challenge involves balancing model accuracy and the complexity inherent in battery packs, and enabling the faster and more accurate estimation of the battery pack power state.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, X.L.; Li, Z.G.; Wang, X.L.; Li, C.G. Technology Development of Electric Vehicles: A Review. Energies 2020, 13, 90. [Google Scholar] [CrossRef]
- Arun, M.D.; Manickam, M.; Parisa, A.B.; Shashi, P.; Pooja, K.; Anoop, M.D.; Krishna, N.M. Rational design on materials for developing next generation lithium-ion secondary battery. Prog. Solid State Chem. 2021, 62, 100298. [Google Scholar]
- Feng, X.N.; Ouyang, M.G.; Liu, X.; Lu, L.G.; Xia, Y.; He, X.M. Thermal runaway mechanism of lithium-ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Wang, Y.J.; Tian, J.Q.; Sun, Z.D.; Wang, L.; Xu, R.L.; Li, M.; Chen, Z.H. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [Google Scholar] [CrossRef]
- Wang, Y.J.; Chen, Z.H.; Zhang, C.B. On-line remaining energy prediction: A case study in embedded battery management system. Appl. Energy 2017, 194, 688–695. [Google Scholar] [CrossRef]
- Liu, X.T.; He, Y.; Zeng, G.J.; Zheng, X.X. State-of-Power Estimation for Li-ion Battery Considering the Effect of Temperature. Trans. China Electrotech. Soc. 2016, 31, 155–163. [Google Scholar]
- Wang, Z.L.; Feng, G.J.; Liu, X.W.; Gu, F.S.; Ball, A. A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system. J. Energy Storage 2022, 49, 104124. [Google Scholar] [CrossRef]
- Lin, X.Y.; Tang, Y.L.; Ren, J.; Wei, Y.M. State of charge estimation with the adaptive unscented Kalman filter based on an accurate equivalent circuit model. J. Energy Storage 2021, 41, 102840. [Google Scholar] [CrossRef]
- Cao, L.J. Research on Electronic Information Measurement and Error Analysis and Correction; Northeast Normal University Press: Changchun, China, 2017; pp. 260–265. [Google Scholar]
- Hua, G.Y. Least Squares Identification and Comparison of Generalized Methods. Sci. Technol. Innov. 2023, 4, 14–17. [Google Scholar]
- Mitra, D.; Ghosh, S.; Mukhopadhyay, S. Model-based estimation of state of charge and state of power of a lithium-ion battery pack and their effects on energy management in hybrid electric vehicles. Int. J. Dyn. Control 2023, 12, 2033–2049. [Google Scholar] [CrossRef]
- Li, B.W.; Wang, S.L.; Fernandez, C.; Yu, C.M.; Xia, L.L.; Fan, Y.C. A linear recursive state of power estimation method based on fusion model of voltage and state of charge limitations. J. Energy Storage 2021, 40, 102583. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Xu, G.; Zhang, X.W. A novel one-way transmitted co-estimation framework for capacity and state-of-charge of lithium-ion battery based on double adaptive extended Kalman filters. J. Energy Storage 2021, 33, 102093. [Google Scholar]
- Ye, J.L.; Wu, C.; Ma, C.L.; Yuan, Z.J.; Guo, Y.L.; Wang, R.Y.; Wu, Y.P.; Sun, J.L.; Liu, L.L. An Adaptive Peak Power Prediction Method for Power Lithium-Ion Batteries Considering Temperature and Aging Effects. Processes 2023, 11, 2449. [Google Scholar] [CrossRef]
- Wu, M.Y.; Qin, L.L.; Wu, G. State of charge estimation of power lithium-ion battery based on an adaptive time scale dual extend Kalman filtering. J. Energy Storage 2021, 39, 102535. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, X.M. An improved parameter identification method considering multi-timescale characteristics of lithium-ion batteries. J. Energy Storage 2023, 59, 106462. [Google Scholar] [CrossRef]
- Xin, L.; He, L.; Wang, S.Y.; Zhou, L.; Zhang, Y.F.; Sun, T.; Zheng, Y.J. Co-estimation of state of charge and state of power for lithium-ion batteries based on fractional variable-order model. J. Clean. Prod. 2020, 255, 120203. [Google Scholar]
- Yu, Z.H.; Xiao, L.J.; Li, H.Y.; Zhu, X.L.; Huai, R.T. Model Parameter Identification for Lithium Batteries Using the Coevolutionary Particle Swarm Optimization Method. IEEE Trans. Ind. Electron. 2017, 64, 5690–5700. [Google Scholar] [CrossRef]
- Liu, C.H.; Hu, M.H.; Jin, G.Q.; Xu, Y.D.; Zhai, J. State of power estimation of lithium-ion battery based on fractional-order equivalent circuit model. J. Energy Storage 2021, 41, 102954. [Google Scholar] [CrossRef]
- Li, L.; Hu, M.M.; Xu, Y.D.; Fu, C.Y.; Jin, G.Q.; Li, Z.H. State of Charge Estimation for Lithium-Ion Power Battery Based on H-Infinity Filter Algorithm. Appl. Sci. 2020, 10, 6371. [Google Scholar] [CrossRef]
- Seongyoon, K.; Sanghyun, K.; Yun, Y.C.; Jung-Il, C. Bayesian parameter identification in electrochemical model for lithium-ion batteries. J. Energy Storage 2023, 71, 108129. [Google Scholar]
- Wang, B.C.; He, Y.B.; Liu, J.; Luo, B. Fast parameter identification of lithium-ion batteries via classification model-assisted Bayesian optimization. Energy 2024, 288, 129667. [Google Scholar] [CrossRef]
- Minho, K.; Chun, H.Y.; Jungsoo, K.; Kwangrae, K.; Jungwook, Y.; Taegyun, K.; Soohee, H. Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search. Appl. Energy 2019, 254, 113644. [Google Scholar]
- Wang, H.; Zheng, Y.P.; Yu, Y. Joint Estimation of SOC of Lithium Battery Based on Dual Kalman Filter. Processes 2021, 9, 1412. [Google Scholar] [CrossRef]
- Guo, P.; Wu, X.; Lopes, A.M.; Cheng, A.; Xu, Y.; Chen, L. Parameter Identification for Lithium-Ion Battery Based on Hybrid Genetic–Fractional Beetle Swarm Optimization Method. Mathematics 2022, 10, 3056. [Google Scholar] [CrossRef]
- Hicham, B.S.; Fatima, E.; Es-Sbai, N. State of charge estimation by multi-innovationunscented Kalman filter for vehicular applications. J. Energy Storage 2020, 32, 101978. [Google Scholar]
- Zhao, J.H.; Qian, X.X.; Jiang, B.; Wang, B. Lithium battery model parameter identification based on the GA-LM algorithm. Int. J. Green Energy 2023, 21, 1147–1160. [Google Scholar] [CrossRef]
- Johnson, V.H. Battery performance models in ADVISOR. J. Power Sources 2002, 110, 321–329. [Google Scholar] [CrossRef]
- Liaw, B.Y.; Ganesan, N.; Rudolph, G.J.; Daniel, H.D. Modeling of lithium-ion cells—A simple equivalent-circuit model approach. Solid State Ion. 2004, 175, 835–839. [Google Scholar]
- Andre, D.; Meiler, M.; Steiner, K.; Wimmer, C.; Soczka, T.; Sauer, D.U. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J. Power Sources 2011, 196, 5334–5341. [Google Scholar] [CrossRef]
- Guo, R.H.; Shen, W.X. An enhanced multi-constraint state of power estimation algorithm for lithium-ion batteries in electric vehicles. J. Energy Storage 2022, 50, 104628. [Google Scholar] [CrossRef]
- Feiner, A.S.; Mccevoy, A.J. The Nernst equation. J. Chem. Educ. 1994, 71, 493. [Google Scholar] [CrossRef]
- Freeborn, T.J.; Maundy, B.; Elwakil, A.S. Fractional-order models of supercapacitors, batteries and fuel cells: A survey. Mater. Renew. Sustain. Energy 2015, 4, 9. [Google Scholar]
- Newman, J.; Itedemann, W. Porous-electrode theory with battery applications. AIChE J. 1975, 21, 25–41. [Google Scholar]
- Doyle, M.; Fuller, T.F.; Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 1993, 140, 1526–1533. [Google Scholar] [CrossRef]
- Prada, E.; Domenico, D.D.; Creff, Y.; Bernard, J.; Sauvant, V.M.; Huet, F. Simplified electrochemical and thermal model of LiFePO4-Graphite Lion batteries for fast charge applications. J. Electrochem. Soc. 2012, 159, A1508–A1519. [Google Scholar] [CrossRef]
- Rahimian, S.K.; Rayman, S.; Ralph, E.W. Extension of physics-based single particle model for higher Charge-Discharge rates. J. Power Sources 2013, 224, 180–194. [Google Scholar] [CrossRef]
- Sun, X.D.; Xu, N.X.; Chen, Q.; Yang, J.F.; Zhu, J.G.; Xu, J.; Zheng, L.F. State of Power Capability Prediction of Lithium-Ion Battery From the Perspective of Electrochemical Mechanisms Considering Temperature Effect. IEEE Trans. Transp. Electrif. 2022, 9, 2453–2463. [Google Scholar] [CrossRef]
- An, Z.J.; Jia, L.; Wei, L.T.; Yang, C.L. Numerical modeling and analysis of thermal behavior and Li+ transport characteristic in lithium-ion battery. Int. J. Heat Mass Transf. 2018, 127, A1351–A1366. [Google Scholar]
- Wang, L.X.; Song, Y.K.; Lyu, C.; Yang, D.Z.; Wang, W.T.; Ge, Y. Online maximum discharge power prediction for lithium-ion batteries with thermal safety constraints. J. Energy Storage 2023, 71, 108041. [Google Scholar]
- Ye, Y.H.; Shi, Y.X.; Cai, N.S.; Lee, J.J.; He, X.M. Electro-thermal modeling and experimental validation for lithium-ion battery. J. Power Sources 2012, 199, 227–238. [Google Scholar] [CrossRef]
- Madani, S.S.; Ziebert, C.; Marzband, M. Thermal Behavior Modeling of Lithium-Ion Batteries: A Comprehensive Review. Symmetry 2023, 15, 1597. [Google Scholar] [CrossRef]
- Robert, R.R.; Zhao, S.; David, A.H. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part I. Low-order thermal modelling. J. Power Sources 2016, 326, 377388. [Google Scholar]
- Bernardi, D.; Pawlikowski, E.; Newman, J. A General Energy Balance for Battery Systems. J. Electrochem. Soc. 1984, 132, 512. [Google Scholar]
- Thomas, K.E.; Newman, J. Heats of mixing and of entropy in porous insertion electrodes. J. Power Sources 2003, 119, 844–849. [Google Scholar]
- Wang, C.Y.; Cui, N.X.; Li, C.L.; Zhang, C.H. State of Power Prediction Based on Electro-thermal Battery Model and Multi-parameter Constraints for Lithium-ion Battery. J. Mech. Eng. 2019, 55, 28–35. [Google Scholar]
- Forgez, C.; Dinh, V.D.; Friedrich, G.; Mathieu, M.; Charles, D. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J. Power Sources 2010, 195, 2961–2968. [Google Scholar] [CrossRef]
- Khadija, S.; Houda, B.; Nacer, K.M.; Mohammed, O.B. Lithium-ion battery electro-thermal modelling and internal states co-estimation for electric vehicles. J. Energy Storage 2023, 63, 107072. [Google Scholar]
- Xu, Z.C.; Zhang, C.; Sun, B.; Liu, S.Z. The electric-thermal coupling simulation and state estimation of lithium-ion battery. J. Energy Storage 2023, 58, 106431. [Google Scholar]
- Jeong, Y.M.; Cho, Y.K.; Ahn, J.H.; Ryu, S.H.; Lee, B.K. Enhanced Coulomb counting method with adaptive SOC reset time for estimating OCV. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition, Pittsburgh, PA, USA, 14–18 September 2014; pp. 1313–1318. [Google Scholar]
- Chen, X.K.; Lei, H.; Xiong, R.; Shen, W.X.; Yang, R.X. A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium-ion batteries in electric vehicles. Appl. Energy 2019, 255, 113758. [Google Scholar]
- Westerhoff, U.; Kroker, T.; Kurbach, K.; Kurrat, M. Electrochemical impedance spectroscopy based estimation of the state of charge of lithium-ion batteries. J. Energy Storage 2016, 8, 244–256. [Google Scholar]
- Wadi, A.; Abdel-Hafez, M.; Hashim, H.A.; Hussein, A.A. An Invariant Method for Electric Vehicle Battery State-of-Charge Estimation Under Dynamic Drive Cycles. IEEE Access 2023, 11, 8663–8673. [Google Scholar]
- Lin, C.; Mu, H.; Xiong, R.; Shen, W.X. A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm. Appl. Energy 2016, 166, 76–83. [Google Scholar]
- Sun, C.C.; Lin, H.P.; Cai, H.; Gao, M.Y.; Zhu, C.X.; He, Z.W. Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed memory recursive least squares and sigma-point Kalman filter. Electrochim. Acta 2021, 387, 138501. [Google Scholar]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Ahmed, R.; Emadi, A. Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries. IEEE Trans. Ind. Electron. 2018, 65, 6730–6739. [Google Scholar]
- Ma, L.; Zhang, T.L. Deep learning-based battery state of charge estimation: Enhancing estimation performance with unlabelled training samples. J. Energy Chem. 2023, 80, 48–57. [Google Scholar]
- Liu, Y.F.; Li, J.Q.; Zhang, G.; Hua, B.; Xiong, N. State of Charge Estimation of Lithium-Ion Batteries Based on Temporal Convolutional Network and Transfer Learning. IEEE Access 2021, 9, 34177–34187. [Google Scholar]
- Liu, D.T.; Li, L.; Song, Y.C.; Wu, L.F.; Peng, Y. Hybrid state of charge estimation for lithium-ion battery under dynamic operating conditions. Int. J. Electr. Power Energy Syst. 2019, 110, 48–61. [Google Scholar]
- Zhang, X.H.; Zhang, Z.F.; Yu, Z.H. Joint Estimation of SOC and SOP of Lithium Battery. Control Eng. China 2021, 5, 1–10. [Google Scholar]
- Esfandyari, M.J.; Esfahanian, V.; Hairi, M.R.; Nehzati, H.; Shekoofa, O. A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle. Energy 2019, 176, 505–520. [Google Scholar]
- Wu, J.J.; Zhang, N.; Li, P.C.; Chen, N. A Temperature-Based Peak Power Capability Estimation Method for Lithium-Ion Batteries. Procedia Eng. 2017, 187, 249–256. [Google Scholar]
- Wang, Y.J.; Pan, R.; Liu, C.; Chen, Z.H.; Ling, Q. Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation. J. Power Sources 2018, 374, 12–23. [Google Scholar]
- Guo, R.H.; Shen, W.X. A data-model fusion method for online state of power estimation of lithium-ion batteries at high discharge rate in electric vehicles. Energy 2022, 254, 124270. [Google Scholar]
- Fleischer, C.; Waag, W.; Bai, Z.; Dirk, U.S. Adaptive on-line state-of-available power prediction of lithium-ion batteries. J. Power Electron 2013, 13, 516–527. [Google Scholar]
- Lou, T.T.; Guo, X.; Sun, B.X.; Guo, H.Y.; Zheng, T.R.; Zhang, D.D. Research on Lithium-Ion Battery Peak Power Prediction Model for Hybrid Electric Vehicles. J. State Grid Technol. Coll. 2018, 21, 19–23. [Google Scholar]
- Xiong, R.; Sun, F.C.; He, H.W.; Trong, D.N. A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles. Energy 2013, 63, 295–308. [Google Scholar]
- Sun, F.C.; Xiong, R.; He, H.W. Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions. J. Power Sources 2014, 259, 166–176. [Google Scholar]
- Xiong, R.; He, H.W.; Sun, F.C.; Liu, X.L.; Liu, Z.T. Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles. J. Power Sources 2013, 229, 159–169. [Google Scholar]
- Tan, Y.Q.; Luo, M.J.; She, L.Y.; Cui, X.Y. Joint Estimation of Ternary Lithium-ion Battery State of Charge and State of Power Based on Dual Polarization Model. Int. J. Electrochem. Sci. 2020, 15, 1128–1147. [Google Scholar]
- Xiang, S.; Hu, G.D.; Huang, R.S.; Zhou, P.K. Lithium-Ion Battery Online Rapid State-of-Power Estimation under Multiple Constraints. Energies 2018, 11, 283. [Google Scholar] [CrossRef]
- Qin, P.J.; Che, Y.B.; Li, H.F.; Jiang, M.D. Joint SOC–SOP estimation method for lithium-ion batteries based on electro-thermal model and multi-parameter constraints. J. Power Electron. 2022, 22, 490–502. [Google Scholar]
- Tang, X.P.; Wang, Y.J.; Yao, K.; He, Z.W.; Gao, F.R. Model migration-based battery power capability evaluation considering uncertainties of temperature and aging. J. Power Sources 2019, 440, 227141. [Google Scholar]
- Cheng, Z.; Xing, Y.H.; Cheng, S.L.; Guo, P.Y. Power prediction method of lithium-ion battery for unmanned vehicles based on combined constraint intelligence algorithm. Clust. Comput. 2018, 22, 8553–8560. [Google Scholar]
- Li, Y.F.; Xu, B.Q.; Zhang, Y.M. Estimation of state-of-power capability for lithium-ion battery considering limiting conditions recalibration. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–18. [Google Scholar] [CrossRef]
- Zhang, W.G.; Shi, W.; Ma, Z.Y. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery. J. Power Sources 2015, 289, 50–62. [Google Scholar]
- Zhang, X.; Wang, Y.J.; Wu, J.; Chen, Z.H. A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter. Appl. Energy 2018, 216, 442–451. [Google Scholar]
- Shen, P.; Ouyang, M.G.; Lu, L.G.; Li, J.Q.; Feng, X.N. The Co-estimation of State of Charge, State of Health, and State of Function for Lithium-Ion Batteries in Electric Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 92–103. [Google Scholar]
- Hu, X.S.; Jiang, H.F.; Feng, F.; Liu, B. An enhanced multi-state estimation hierarchy for advanced lithium-ion battery management. Appl. Energy 2020, 257, 114019. [Google Scholar]
- Shu, X.; Li, G.; Shen, J.W.; Lei, Z.Z.; Chen, Z.; Liu, Y.G. An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation. Energy 2020, 207, 118262. [Google Scholar]
- Zhang, T.; Guo, N.Y.; Sun, X.X.; Fan, J.; Yang, N.F.; Song, J.J.; Zou, Y. A Systematic Framework for State of Charge, State of Health and State of Power Co-Estimation of Lithium-Ion Battery in Electric Vehicles. Sustainability 2021, 23, 5166. [Google Scholar]
- Liu, F.; Shao, C.; Su, W.X.; Liu, Y. Online joint estimator of key states for battery based on a new equivalent circuit model. J. Energy Storage 2022, 52 Pt A, 104780. [Google Scholar]
- Zhao, X.B.; Qian, X.; Xuan, D.J.; Jung, S. State of charge estimation of lithium-ion battery based on multi-input extreme learning machine using online model parameter identification. J. Energy Storage 2022, 56 Pt A, 105796. [Google Scholar]
- MI, C.; Masrur, M.A.; Gao, W.Z. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yang, C.F.; Wang, X.Y.; Fang, Q.H.; Dai, H.F.; Cao, Y.Q.; Wei, X.Z. An online SOC and capacity estimation method for aged lithium-ion battery pack considering cell inconsistency. J. Energy Storage 2020, 29, 101250. [Google Scholar]
- Zhang, J.L. Research on Key Technology of Active Battery Balancing System; Harbin Institute of Technology: Harbin, China, 2018. [Google Scholar]
- Dubarry, M.; Vuillaume, N.; Liaw, B.Y. Origins and accommodation of cell variations in Li-ion battery pack modeling. Int. J. Energy Res. 2010, 34, 216–231. [Google Scholar]
- Arunkumar, T.A.; Wu, Y.; Manthiram, A. Factors Influencing the Irreversible Oxygen Loss and Reversible Capacity in Layered Li[Li1/3Mn2/3]O2−Li[M]O2(M = Mn0.5−yNi0.5−yCo2y and Ni1−yCoy) Solid Solutions. Chem. Mater. 2007, 19, 3067–3073. [Google Scholar]
- Tran, H.Y.; Greco, G.; Täubert, C.; Margret, W.M.; Haselrieder, W.; Kwade, A. Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries. J. Power Sources 2012, 210, 276–285. [Google Scholar] [CrossRef]
- Deng, C. Research and Design of Lithium Iron Phosphate Battery Management System for FCEV Vehicles; Wuhan University of Technology: Wuhan, China, 2011. [Google Scholar]
- Plett, G.L. High-performance battery-pack power estimation using a dynamic cell model. IEEE Trans. Veh. Technol. 2004, 53, 1586–1593. [Google Scholar]
- Zhang, C.P.; Zhang, C.N.; Sharkh, S.M. Estimation of real-time peak power capability of a traction battery pack used in an HEV. In Proceedings of the Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010. [Google Scholar]
- Dong, G.Z.; Wei, J.W.; Chen, Z.H. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries. J. Power Sources 2016, 328, 615–626. [Google Scholar] [CrossRef]
- Waag, W.; Fleischer, C.; Suer, D.U. Adaptive on-line prediction of the available power of lithium-ion batteries. J. Power Sources 2013, 242, 548–559. [Google Scholar] [CrossRef]
- Jiang, B.; Dai, H.G.; Wei, X.Z.; Zhu, Z.T.; Sun, Z.C. Online reliable peak charge/discharge power estimation of series-connected lithium-ion battery packs. Energies 2017, 10, 390. [Google Scholar] [CrossRef]
- Zhou, Z.K.; Kang, Y.Z.; Shang, Y.L.; Cui, N.X.; Zhang, C.H.; Duan, B. Peak power prediction for series-connected LiNCM battery pack based on representative cells. J. Clean. Prod. 2019, 230, 1061–1073. [Google Scholar]
- Gong, X.Z.; Xiong, R.; Mi, C.C. Study of the characteristics of battery packs in electric vehicles with parallel-connected lithium-ion battery cells. IEEE Trans. Ind. Appl. 2014, 51, 1872–1879. [Google Scholar] [CrossRef]
- Peng, S.M.; Miao, Y.F.; Xiong, R.; Bai, J.W.; Cheng, M.Z.; Pecht, M. State of charge estimation for a parallel battery pack jointly by fuzzy-PI model regulator and adaptive unscented Kalman filter. Appl. Energy 2024, 360, 122807. [Google Scholar] [CrossRef]
- Han, W.J.; Altaf, F.; Zou, C.F.; Wik, T. State of Power Prediction for Battery Systems with Parallel-Connected Units. IEEE Trans. Transp. Electrif. 2022, 8, 925–935. [Google Scholar] [CrossRef]
- Fan, X.Y.; Zhang, W.G.; Wang, Z.G.; An, F.L.; Li, H.; Jiang, J.C. Simplified Battery Pack Modeling Considering Inconsistency and Evolution of Current Distribution. IEEE Trans. Intell. Transp. Syst. 2021, 22, 630–639. [Google Scholar] [CrossRef]
- Zhong, L.; Zhang, C.B.; He, Y.; Chen, Z.H. A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis. Appl. Energy 2014, 113, 558–564. [Google Scholar] [CrossRef]
- Shi, W.; Hu, X.S.; Jin, C.; Jiang, J.C.; Zhang, Y.R.; Yip, T. Effects of imbalanced currents on large-format LiFePO4/graphite batteries systems connected in parallel. J. Power Sources 2016, 313, 198–204. [Google Scholar] [CrossRef]
- Wang, S.L.; Fernandez, C.; Yu, C.M.; Fan, Y.C.; Cao, W.; Stroe, D.I. A novel charged state prediction method of the lithium-ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm. J. Power Sources 2020, 471, 228450. [Google Scholar] [CrossRef]
Methodology | Advantages | Disadvantages | |
---|---|---|---|
Voltage response curve analysis |
|
| |
Least squares | FFRLS AFFRLS VFFLRS FMRLS |
|
|
Intelligent optimization algorithms | PSO LM-RLS GA-LM Bayesian |
|
|
Equivalent Circuit Model | Illustration of the Model | |
---|---|---|
Integral order model | Rint | |
n-RC | ||
Asymmetric RC | ||
PNGV | ||
Fractional order model | Constant phase element (CPE) instead of capacitance in standard RC networks |
SOC Estimation Methods | Methods | Reference |
---|---|---|
Direct measurement methods |
| [50,51,52] |
Adaptive filter-based methods |
| [53,54] |
Adaptive artificial intelligence-based methods |
| [55,56,57] |
Advanced algorithms |
| [58,59] |
Filtering Algorithms | Methods and Features | Reference |
---|---|---|
AEKF | A data-driven approach to parameter identification Accurate estimation for aging batteries and multiple complex operating conditions | [67,68,69] |
DEKF | Online identification of model parameters 1-RC model considering hysteresis effects | [70] |
EKF | Balancing complexity and accuracy Bipolarized battery model | [71] |
UKF | Electro-thermal coupling model Multiple constraints | [72] |
PF | Aging and temperature uncertainties are taken into account | [73] |
CKF | 2-RC model considering hysteresis effects Gaussian noise suppression | [74] |
H∞ | Introduction of capacity loss–temperature–discharge rate response function to correct peak current | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Wu, C.; Wang, L.; Chen, X.; Liu, L.; Wu, Y.; Ye, J. A Review of Parameter Identification and State of Power Estimation Methods for Lithium-Ion Batteries. Processes 2024, 12, 2166. https://doi.org/10.3390/pr12102166
Ma C, Wu C, Wang L, Chen X, Liu L, Wu Y, Ye J. A Review of Parameter Identification and State of Power Estimation Methods for Lithium-Ion Batteries. Processes. 2024; 12(10):2166. https://doi.org/10.3390/pr12102166
Chicago/Turabian StyleMa, Changlong, Chao Wu, Luoya Wang, Xueyang Chen, Lili Liu, Yuping Wu, and Jilei Ye. 2024. "A Review of Parameter Identification and State of Power Estimation Methods for Lithium-Ion Batteries" Processes 12, no. 10: 2166. https://doi.org/10.3390/pr12102166
APA StyleMa, C., Wu, C., Wang, L., Chen, X., Liu, L., Wu, Y., & Ye, J. (2024). A Review of Parameter Identification and State of Power Estimation Methods for Lithium-Ion Batteries. Processes, 12(10), 2166. https://doi.org/10.3390/pr12102166