A Novel First-Order Kinetic Model for Simultaneous Anaerobic–Aerobic Degradation of Municipal Solid Waste in Landfills
Abstract
:1. Introduction
Study | Reaction Mechanisms | Degradable Substrates | Correction Functions | |||||
---|---|---|---|---|---|---|---|---|
Aerobic Degradation | Anaerobic Degradation | Methane Oxidation | Temperature | Moisture Content | Oxygen Concentration | Porosity | ||
Chen et al. [29] | √ | Cellulose, Sugars, Proteins, Lipids | □ | |||||
Feng et al. [30] | √ | √ | √ | C6H10O5 | ● | ■ | ||
Fathinezhad et al. [31] | √ | √ | Organic Matter | ● | ||||
Kaiser [32] | √ | Sugars, Starch, Hemicellulose, Cellulose, Lignin | ■ | |||||
Kim et al. [25] | √ | √ | CaHbOcNd | ● | ● | |||
Oldenburg et al. [33] | √ | √ | Organic Matter | ● | ● | |||
Omar and Rohani [26] | √ | √ | (C6H10O4)x | ● | ■ | ■ | ||
Shishido and Seki [34] | √ | Sugars, Proteins, Lipids | ■ | ■ | ■ | |||
Seng et al. [35] | √ | √ | Rapidly Degradable, Slowly Degradable, and Inert Substances | ● | ■ | ■ | ||
Sun et al. [11] | √ | Holocellulose, Non-Cellulosic Sugars, Proteins, Lipids, and Lignin | ■ | ■ | ■ | ■ | ||
Wang et al. [19] | √ | Sugars, Cellulose, Lignin | ■ | ■ | ■ | ■ | ||
White et al. [36] | √ | Carbohydrates, Fats, Proteins | ||||||
Zhang et al. [37] | √ | Organic Matter | ■ | ■ | ■ | ■ | ||
This paper | √ | √ | √ | Holocellulose, Non-Cellulosic Sugars, Proteins, Lipids, and Lignin | ■ | ■ | ■ | ■ |
2. Development of Simultaneous Anaerobic–Aerobic Degradation Model of MSW
2.1. Chemical Compositions and Proportions of Degradable Substrates within MSW
2.2. Biochemical Reaction Equations for MSW
2.3. Reaction Rates of the Five Substrates in Aerobic/Anaerobic Degradation Process
- (1)
- Temperature correction functions
- (2)
- Moisture content correction functions
- (3)
- Oxygen volume fraction correction functions
- (4)
- Porosity correction functions
- Others
3. Validation
3.1. Aerobic/Anaerobic Landfill Column Experiment of Ko et al. [51]
3.2. Anaerobic–Aerobic Sequence Degradation Experiment of Pellera et al. [47]
4. Application
4.1. Influence of Simultaneous Anaerobic–Aerobic Degradation
4.2. Influence of Temperature and Aeration in Aerobic Remediation Technology
5. Conclusions
- (1)
- The model can comprehensively consider the effects of temperature, moisture content, oxygen concentration, and free air space on the degradation rates of five substrates: hemicellulose, non-cellulosic sugars, proteins, lipids, and lignin.
- (2)
- The anaerobic degradation model enables the coexistence of anaerobic and aerobic degradation within specific oxygen concentration ranges by incorporating the effect of oxygen concentration through a novel oxygen concentration correction function.
- (3)
- Based on existing literature, the dry weight proportions of hemicellulose, non-cellulosic sugars, proteins, lipids, and lignin in food waste, paper, yard waste, and textile waste are summarized, and recommended degradable fractions for these substrates under both aerobic and anaerobic conditions are provided.
- (4)
- The sequential model underestimates both compression strain and degradation ratio, with peak underestimation ratios of 8.7% and 9.2%, respectively. The advance rate of aerobic remediation stabilization time () is more sensitive to anaerobic age and temperature, while the degradation rate after 100 days of aerobic remediation () is more sensitive to anaerobic age and aeration rate; under optimal conditions, and can reach 86.3% and 70.9%, respectively.
- (5)
- The proposed model provides an optional theoretical tool for assessing the effectiveness of aerobic remediation in informal landfills. The results may offer valuable references for the practical implementation and management of aerobic remediation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bareither, C.A.; Benson, C.H.; Barlaz, M.A.; Edil, T.B.; Tolaymat, T.M. Performance of North American Bioreactor Landfills. I: Leachate Hydrology and Waste Settlement. J. Environ. Eng. 2010, 136, 824–838. [Google Scholar] [CrossRef]
- Giusti, L. A Review of Waste Management Practices and Their Impact on Human Health. Waste Manag. 2009, 29, 2227–2239. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Hettiarachchi, H.; Parakalla, N.S.; Gangathulasi, J.; Bogner, J.E. Geotechnical Properties of Fresh Municipal Solid Waste at Orchard Hills Landfill, USA. Waste Manag. 2009, 29, 952–959. [Google Scholar] [CrossRef] [PubMed]
- El-Fadel, M.; Shazbak, S.; Saliby, E.; Leckie, J. Comparative Assessment of Settlement Models for Municipal Solid Waste Landfill Applications. Waste Manag. Res. 1999, 17, 347–368. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Townsend, T.G.; Powell, J.; Jain, P.; Xu, Q.; Tolaymat, T.; Reinhart, D. Sustainable Practices for Landfill Design and Operation; Springer: New York, NY, USA, 2015; ISBN 978-1-4939-2661-9. [Google Scholar]
- Geng, X.; Song, N.; Zhao, Y.; Zhou, T. Waste Plastic Resource Recovery from Landfilled Refuse: A Novel Waterless Cleaning Method and Its Cost-Benefit Analysis. J. Environ. Manag. 2022, 306, 114462. [Google Scholar] [CrossRef]
- Gu, Z.; Chen, W.; Wang, F.; Li, Q. A Pilot-Scale Comparative Study of Bioreactor Landfills for Leachate Decontamination and Municipal Solid Waste Stabilization. Waste Manag. 2020, 103, 113–121. [Google Scholar] [CrossRef]
- Hashisho, J.; El-Fadel, M. Determinants of Optimal Aerobic Bioreactor Landfilling for the Treatment of the Organic Fraction of Municipal Waste. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1865–1891. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal Solid Waste Management and Landfilling Technologies: A Review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Sun, X.-Y.; Xu, H.; Wu, B.-H.; Shen, S.-L.; Zhan, L.-T. A First-Order Kinetic Model for Simulating the Aerobic Degradation of Municipal Solid Waste. J. Environ. Manag. 2023, 329, 117093. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, R.; Li, Y.-C.; Liu, H.; Zhan, T.L. A Degradation Model for High Kitchen Waste Content Municipal Solid Waste. Waste Manag. 2016, 58, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Walling, E.; Trémier, A.; Vaneeckhaute, C. A Review of Mathematical Models for Composting. Waste Manag. 2020, 113, 379–394. [Google Scholar] [CrossRef]
- Xiao, D.; Chen, Y.; Xu, W.; Zhan, L. An Aerobic Degradation Model for Landfilled Municipal Solid Waste. Appl. Sci. 2021, 11, 7557. [Google Scholar] [CrossRef]
- Haug, R. The Practical Handbook of Compost Engineering; Routledge: New York, NY, USA, 2017; ISBN 978-0-203-73623-4. [Google Scholar]
- Higgins, C.W.; Walker, L.P. Validation of a New Model for Aerobic Organic Solids Decomposition: Simulations with Substrate Specific Kinetics. Process Biochem. 2001, 36, 875–884. [Google Scholar] [CrossRef]
- Rosso, L. An Unexpected Correlation between Cardinal Temperatures of Microbial Growth Highlighted by a New Model. J. Theor. Biol. 1993, 162, 447–463. [Google Scholar] [CrossRef] [PubMed]
- Malamis, D.; Moustakas, K.; Haralambous, K.-J. Evaluating In-Vessel Composting in Treating Sewage Sludge and Agricultural Waste by Examining and Determining the Kinetic Reactions of the Process. Clean Technol. Environ. Policy 2016, 18, 2493–2502. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, L.; Liu, X.; Wang, Y.; Zhou, K.; Luo, F. Using Thermal Balance Model to Determine Optimal Reactor Volume and Insulation Material Needed in a Laboratory-Scale Composting Reactor. Bioresour. Technol. 2016, 206, 164–172. [Google Scholar] [CrossRef]
- Hale Boothe, D.D.; Smith, M.C.; Gattie, D.K.; Das, K.C. Characterization of Microbial Populations in Landfill Leachate and Bulk Samples during Aerobic Bioreduction. Adv. Environ. Res. 2001, 5, 285–294. [Google Scholar] [CrossRef]
- Megalla, D.; Van Geel, P.J.; Doyle, J.T. Simulating the Heat Budget for Waste as It Is Placed within a Landfill Operating in a Northern Climate. Waste Manag. 2016, 55, 108–117. [Google Scholar] [CrossRef]
- Powell, J.; Jain, P.; Kim, H.; Townsend, T.; Reinhart, D. Changes in Landfill Gas Quality as a Result of Controlled Air Injection. Environ. Sci. Technol. 2006, 40, 1029–1034. [Google Scholar] [CrossRef]
- Lu, S.-F.; Feng, S.-J.; Zheng, Q.-T.; Bai, Z.-B. A Multi-Phase, Multi-Component Model for Coupled Processes in Anaerobic Landfills: Theory, Implementation and Validation. Géotechnique 2021, 71, 826–842. [Google Scholar] [CrossRef]
- Feng, S.-J.; Li, A.Z.; Zheng, Q.T.; Cao, B.Y.; Chen, H.X. Numerical Model of Aerobic Bioreactor Landfill Considering Aerobic-Anaerobic Condition and Bio-Stable Zone Development. Environ. Sci. Pollut. Res. 2019, 26, 15229–15247. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Tojo, Y.; Matsuto, T. Compartment Model of Aerobic and Anaerobic Biodegradation in a Municipal Solid Waste Landfil. Waste Manag. Res. 2007, 25, 524–537. [Google Scholar] [CrossRef]
- Omar, H.; Rohani, S. The Mathematical Model of the Conversion of a Landfill Operation from Anaerobic to Aerobic. Appl. Math. Model. 2017, 50, 53–67. [Google Scholar] [CrossRef]
- Yazdani, R.; Mostafid, M.E.; Han, B.; Imhoff, P.T.; Chiu, P.; Augenstein, D.; Kayhanian, M.; Tchobanoglous, G. Quantifying Factors Limiting Aerobic Degradation during Aerobic Bioreactor Landfilling. Environ. Sci. Technol. 2010, 44, 6215–6220. [Google Scholar] [CrossRef]
- Charles, W.; Walker, L.; Cord-Ruwisch, R. Effect of Pre-Aeration and Inoculum on the Start-up of Batch Thermophilic Anaerobic Digestion of Municipal Solid Waste. Bioresour. Technol. 2009, 100, 2329–2335. [Google Scholar] [CrossRef]
- Chen, Y.M.; Xu, W.J.; Ling, D.S.; Zhan, L.T.; Gao, W. A Degradation–Consolidation Model for the Stabilization Behavior of Landfilled Municipal Solid Waste. Comput. Geotech. 2020, 118, 103341. [Google Scholar] [CrossRef]
- Feng, S.J.; Bai, Z.B.; Zheng, Q.T. Three-dimensional Settlement Characteristics and Accelerated Stabilization of Landfills under Aerobic Remediation. Chin. J. Geotech. Eng. 2021, 43, 1976–1985. (In Chinese) [Google Scholar]
- Fathinezhad, A.; Jafari, N.H.; Oldenburg, C.M.; Caldwell, M.D. Numerical Investigation of Air Intrusion and Aerobic Reactions in Municipal Solid Waste Landfills. Waste Manag. 2022, 147, 60–72. [Google Scholar] [CrossRef]
- Kaiser, J. Modelling Composting as a Microbial Ecosystem: A Simulation Approach. Ecol. Model. 1996, 91, 25–37. [Google Scholar] [CrossRef]
- Oldenburg, C.M.; Borglin, S.E.; Hazen, T.C. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor; Office of Scientific & Technical Information Report Number 840972; LBNL-50027; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2002. [Google Scholar]
- Shishido, T.; Seki, H. Laboratory-Scale Experiment for an Active-Stage Composting Process under the Same Material and Operating Conditions. J. Agric. Meteorol. 2015, 71, 111–123. [Google Scholar] [CrossRef]
- Seng, B.; Kristanti, R.A.; Hadibarata, T.; Hirayama, K.; Katayama-Hirayama, K.; Kaneko, H. Mathematical Model of Organic Substrate Degradation in Solid Waste Windrow Composting. Bioprocess Biosyst. Eng. 2016, 39, 81–94. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Robinson, J.; Ren, Q. Modelling the Biochemical Degradation of Solid Waste in Landfills. Waste Manag. 2004, 24, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lashermes, G.; Houot, S.; Doublet, J.; Steyer, J.P.; Zhu, Y.G.; Barriuso, E.; Garnier, P. Modelling of Organic Matter Dynamics during the Composting Process. Waste Manag. 2012, 32, 19–30. [Google Scholar] [CrossRef]
- Guo, R.Y. Research on the Biochemical and Mechanical Behaviors of High Food Content MSW; Zhejiang University: Hangzhou, China, 2018. (In Chinese) [Google Scholar]
- Barlaz, M.A. Forest Products Decomposition in Municipal Solid Waste Landfills. Waste Manag. 2006, 26, 321–333. [Google Scholar] [CrossRef]
- Ham, R.K.; Norman, M.R.; Fritschel, P.R. Chemical Characterization of Fresh Kills Landfill Refuse and Extracts. J. Environ. Eng. 1993, 119, 1176–1195. [Google Scholar] [CrossRef]
- Komilis, D.P.; Ham, R.K. The Effect of Lignin and Sugars to the Aerobic Decomposition of Solid Wastes. Waste Manag. 2003, 23, 419–423. [Google Scholar] [CrossRef]
- Wang, X.; Barlaz, M.A. Decomposition and Carbon Storage of Hardwood and Softwood Branches in Laboratory-Scale Landfills. Sci. Total Environ. 2016, 557–558, 355–362. [Google Scholar] [CrossRef]
- Angelidaki, I.; Sanders, W. Assessment of the Anaerobic Biodegradability of Macropollutants. Rev. Environ. Sci. Biotechnol. 2004, 3, 117–129. [Google Scholar] [CrossRef]
- Young, A. Mathematical Modelling of Landfill Degradation. J. Chem. Technol. Biotechnol. 1989, 46, 189–208. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Panahi, H.K.S.; Nizami, A.-S.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K. A comprehensive review on recent biological innovations to improve biogas production, part 1: Upstream strategies. Renew. Energy 2020, 146, 1204–1220. [Google Scholar] [CrossRef]
- Vikhareva, I.N.; Aminova, G.K.; Mazitova, A.K. Resource Cycling: Application of anaerobic utilization methods. Sustainability 2022, 14, 9278. [Google Scholar] [CrossRef]
- Pellera, F.-M.; Pasparakis, E.; Gidarakos, E. Consecutive Anaerobic-Aerobic Treatment of the Organic Fraction of Municipal Solid Waste and Lignocellulosic Materials in Laboratory-Scale Landfill-Bioreactors. Waste Manag. 2016, 56, 181–189. [Google Scholar] [CrossRef]
- Wu, S.J.; Feng, S.J.; Zheng, Q.T.; Zhang, X.L.; Chen, H.X. Stabilization behavior of the three-phase and multi-component system of landfilled waste under aeration: Numerical modeling. Comput. Geotech. 2023, 156, 105318. [Google Scholar] [CrossRef]
- Zheng, Q.T.; Feng, S.J.; Wu, S.J.; Zhang, X.L.; Chen, H.X. Modeling of multifield coupling interactions in an aerobic landfill based on the finite volume method. Comput. Geotech. 2022, 146, 104704. [Google Scholar] [CrossRef]
- Ivanova, L.K.; Richards, D.J.; Smallman, D.J. Assessment of the Anaerobic Biodegradation Potential of MSW. Proc. Inst. Civ. Eng Waste Resour. Manag. 2008, 161, 167–180. [Google Scholar] [CrossRef]
- Ko, J.H.; Ma, Z.; Jin, X.; Xu, Q. Effects of Aeration Frequency on Leachate Quality and Waste in Simulated Hybrid Bioreactor Landfills. J. Air Waste Manag. Assoc. 2016, 66, 1245–1256. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Tian, Y.; Wang, S.; Ko, J.H. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors. Waste Manag. 2015, 41, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Abichou, T.; Mahieu, K.; Chanton, J.; Romdhane, M.; Mansouri, I. Scaling Methane Oxidation: From Laboratory Incubation Experiments to Landfill Cover Field Conditions. Waste Manag. 2011, 31, 978–986. [Google Scholar] [CrossRef]
- Spokas, K.; Bogner, J.; Chanton, J. A Process-Based Inventory Model for Landfill CH4 Emissions Inclusive of Seasonal Soil Microclimate and CH4 Oxidation. J. Geophys. Res. 2011, 116, G04017. [Google Scholar] [CrossRef]
- Xiao, D.K.; Chen, Y.M.; Xu, W.J.; Zhan, L.T.; Ke, H.; Li, K. Biochemical-Thermal-Hydro-Mechanical Coupling Model for Aerobic Degradation of Landfilled Municipal Solid Waste. Waste Manag. 2022, 144, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Ratner, B. The Correlation Coefficient: Its Values Range between +1/−1, or Do They? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Tong Zhan, T.L.; Xu, X.B.; Chen, Y.M.; Ma, X.F.; Lan, J.W. Dependence of Gas Collection Efficiency on Leachate Level at Wet Municipal Solid Waste Landfills and Its Improvement Methods in China. J. Geotech. Geoenviron. Eng. 2015, 141, 04015002. [Google Scholar] [CrossRef]
- Xu, H.; Chen, T.-H.; Zhu, G.; Peng, M.-Q.; Zhan, L.-T. Semi-Quantitative Study on the Secondary Compression Characteristics of Municipal Solid Waste in Aerobic and Anaerobic Bioreactors. Waste Manag. 2024, 176, 74–84. [Google Scholar] [CrossRef]
- Mohaibes, M.; Vuorinen, H.; Heinonen-Tanski, H. Effect of Temperature on Microbial Population and Performance of an Aerobic Thermophilic Reactor Treating Cattle Slurry and Waste Food. Environ. Technol. 2011, 32, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, L.; Xue, Q.; Yang, Y.; Zhang, Y.; Fei, X. A Systematic Assessment of Aeration Rate Effect on Aerobic Degradation of Municipal Solid Waste Based on Leachate Chemical Oxygen Demand Removal. Chemosphere 2021, 263, 128218. [Google Scholar] [CrossRef]
- Gourc, J.-P.; Staub, M.J.; Conte, M. Decoupling MSW Settlement into Mechanical and Biochemical Processes—Modelling and Validation on Large-Scale Setups. Waste Manag. 2010, 30, 1556–1568. [Google Scholar] [CrossRef]
Component | Substrate | |||||
---|---|---|---|---|---|---|
Hemicellulose [12,38] | Non-Cellulosic Sugars [12,38] | Proteins [12,38] | Lipids [12,38] | Lignin [11,42] | Others | |
Food waste | 8–20 (15/13.5) | 31–41 (35/35) | 17–22 (20/20) | 14–25 (20/20) | 2–3 (2/0) | 3–13 (0/0) |
Paper | 52–96 (75/60) | 0 | 0 | 0 | 0–26 (14/0) | 0–48 (0/0) |
Yard waste | 21–68 (50/25) | 0–34 (5/0) | 1–12 (3/0) | 1–8 (3/0) | 4–42 (31/0) | 0–53 (0/0) |
Textiles | 0–98 (50/50) | 0 | 0 | 0 | 0 | 2–100 (0/0) |
(d−1) | (d−1) | (d−1) | (d−1) | (d−1) | |
---|---|---|---|---|---|
Aerobic reaction | 0.02 | 0.04 | 0.05 | 0.04 | 0.01 |
Anaerobic reaction | 0.001 | 0.002 | 0.004 | 0.003 | - |
Component | Food Waste | Yard Waste | Paper | Fabrics | Plastics | Others |
---|---|---|---|---|---|---|
Content (%, dry basis) | 21.0 | 0.0 | 18.2 | 0.0 | 19.8 | 41.0 |
Substrate | Holocellulose | Non-cellulosic Sugars | Lipids | Proteins | Lignin | Others |
Initial Content (kg/m3) | 84.5 | 37.0 | 21.1 | 21.1 | 14.9 | 324.3 |
Holocellulose | Non-Cellulosic Sugars | Lipids | Proteins | Lignin | Others | |
---|---|---|---|---|---|---|
Initial Content (kg/m3) | 9.6 | 5.8 | 4.0 | 0 | 4.0 | 3.2 |
Level | Anaerobic Age (d) | Temperature (°C) | Aeration Rate (L/min/kg DM) |
---|---|---|---|
1 | 0 | 24 | 0.08 |
2 | 250 | 32 | 0.12 |
3 | 500 | 40 | 0.16 |
4 | 750 | 48 | 0.20 |
5 | 1000 | 56 | 0.24 |
No. | Temperature (°C) | Anaerobic Age (d) | Aeration Rate (L/min/kg DM) | ||
---|---|---|---|---|---|
1 | 24 | 0 | 0.08 | 0.590 | 0.5830 |
2 | 24 | 250 | 0.12 | 0.657 | 0.6409 |
3 | 24 | 500 | 0.16 | 0.694 | 0.5938 |
4 | 24 | 750 | 0.20 | 0.680 | 0.4893 |
5 | 24 | 1000 | 0.24 | 0.504 | 0.3802 |
6 | 32 | 0 | 0.12 | 0.685 | 0.6397 |
7 | 32 | 250 | 0.16 | 0.723 | 0.6422 |
8 | 32 | 500 | 0.20 | 0.501 | 0.5748 |
9 | 32 | 750 | 0.24 | 0.367 | 0.4933 |
10 | 32 | 1000 | 0.08 | 0.584 | 0.3849 |
11 | 40 | 0 | 0.16 | 0.755 | 0.6818 |
12 | 40 | 250 | 0.20 | 0.644 | 0.6412 |
13 | 40 | 500 | 0.24 | 0.487 | 0.5645 |
14 | 40 | 750 | 0.08 | 0.549 | 0.3936 |
15 | 40 | 1000 | 0.12 | 0.382 | 0.4263 |
16 | 48 | 0 | 0.20 | 0.822 | 0.6969 |
17 | 48 | 250 | 0.24 | 0.690 | 0.6430 |
18 | 48 | 500 | 0.08 | 0.662 | 0.3672 |
19 | 48 | 750 | 0.12 | 0.576 | 0.4680 |
20 | 48 | 1000 | 0.16 | 0.486 | 0.4756 |
21 | 54 | 0 | 0.24 | 0.812 | 0.6436 |
22 | 54 | 250 | 0.08 | 0.845 | 0.5363 |
23 | 54 | 500 | 0.12 | 0.826 | 0.4993 |
24 | 54 | 750 | 0.16 | 0.730 | 0.5807 |
25 | 54 | 1000 | 0.20 | 0.655 | 0.5811 |
Factor | Temperature (°C) | Anaerobic Age (d) | Aeration Rate (L/min/kg DM) |
---|---|---|---|
0.625/0.537 | 0.733/0.649 | 0.646/0.453 | |
0.572/0.547 | 0.712/0.621 | 0.625/0.535 | |
0.577/0.545 | 0.634/0.520 | 0.678/0.595 | |
0.647/0.530 | 0.580/0.485 | 0.660/0.597 | |
0.774/0.568 | 0.522/0.450 | 0.572/0.545 | |
Very Poor | 0.202/0.038 | 0.211/0.199 | 0.106/0.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, M.-Q.; Chen, T.-H.; Jin, T.; Su, Y.-C.; Luo, S.-T.; Xu, H. A Novel First-Order Kinetic Model for Simultaneous Anaerobic–Aerobic Degradation of Municipal Solid Waste in Landfills. Processes 2024, 12, 2225. https://doi.org/10.3390/pr12102225
Peng M-Q, Chen T-H, Jin T, Su Y-C, Luo S-T, Xu H. A Novel First-Order Kinetic Model for Simultaneous Anaerobic–Aerobic Degradation of Municipal Solid Waste in Landfills. Processes. 2024; 12(10):2225. https://doi.org/10.3390/pr12102225
Chicago/Turabian StylePeng, Ming-Qing, Tian-Hao Chen, Taohui Jin, Yi-Cong Su, Sheng-Tao Luo, and Hui Xu. 2024. "A Novel First-Order Kinetic Model for Simultaneous Anaerobic–Aerobic Degradation of Municipal Solid Waste in Landfills" Processes 12, no. 10: 2225. https://doi.org/10.3390/pr12102225
APA StylePeng, M. -Q., Chen, T. -H., Jin, T., Su, Y. -C., Luo, S. -T., & Xu, H. (2024). A Novel First-Order Kinetic Model for Simultaneous Anaerobic–Aerobic Degradation of Municipal Solid Waste in Landfills. Processes, 12(10), 2225. https://doi.org/10.3390/pr12102225