The Adsorption of Durene and Prehnitene on Metal–Organic Frameworks
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Analysis
3.1. Simulation
3.1.1. Structure Optimization
3.1.2. Simulation Methods
3.1.3. Adsorption Heat
3.2. Experiment
3.2.1. Synthesis
UIO-66
UIO-66-NH2
ZU-61
Mg-MOF-74
3.2.2. Batch Adsorption
3.2.3. Selectivity
3.2.4. Regeneration
4. Results and Discussion
4.1. Validation of Force Field Parameters
4.2. Structure
4.3. Adsorption of Pure Components
4.3.1. Isotherms of DR
4.3.2. Isotherms of PR
4.3.3. Adsorption Heats of Pure Components
4.4. Adsorption of Mixture
4.4.1. Isotherms of Mixture
4.4.2. Adsorption Heats of Mixture
4.5. Experimental Results
5. Conclusions Implications and Future Works
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oh, J.; Choi, Y.; Shin, J.; Kim, K.; Lee, J.K. Synergistic shape selectivity of H-Beta and H-ZSM-5 for Xylene-rich BTX production by hydrocracking of heavy-aromatic compounds. Fuel Process. Technol. 2023, 249, 107856. [Google Scholar] [CrossRef]
- Goncalves, J.C.; Ferreira, A.F.P.; Rodrigues, A.E. Minimum Cross Diameter for C6–C10 Aromatic Compounds. Chem. Eng. Technol. 2019, 42, 1169–1173. [Google Scholar] [CrossRef]
- Ke, D.; Wang, M.J.; Ruan, J.C.; Chen, X.Z.; Zhou, S.D. Efficient, continuous oxidation of durene to pyromellitic dianhydride mediated by a V-Ti-P ternary catalyst: The remarkable doping effect. Chinese J. Chem. Eng. 2023, 55, 156–164. [Google Scholar] [CrossRef]
- Li, M.Z.; Jiao, L.K.; Nawaz, M.A.; Cheng, L.K.; Meng, C.; Yang, T.H.; Tariq, M.; Liu, D.H. A one-step synthesis method of durene directly from syngas using integrated catalyst of Cu/ZnO/Al2O3 and Co-Nb/HZSM-5. Chem. Eng. Sci. 2019, 200, 103–112. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.S.; Chen, C.H.; Jiang, Q.S.; Liu, D.H. Efficient synthesis of durene from syngas utilizing composite catalyst of Zr/Al activity-regulated CuZn oxides and alkali-treated HZSM-5-PEG. Fuel 2024, 378, 132800. [Google Scholar] [CrossRef]
- Lai, Y.J.; Hong, B.; Zhou, W.; Wen, D.L.; Xie, Y.F.; Luo, F.; Ye, L.M.; Zuo, J.C.; Yuan, Y.Z. Upgrading Trimethylbenzene to Durene by CO2-Mediated Methylation over Cu-Boosted ZnZrOx Integrated with HZSM-5. ACS Catal. 2024, 14, 11780–11793. [Google Scholar] [CrossRef]
- Hayek, A.; Yahaya, G.O.; Alsamah, A.; Alghannam, A.A.; Jutaily, S.A.; Mokhtari, I. Pure-and sour mixed-gas transport properties of 4,4′-methylenebis(2,6-diethylaniline)-based copolyimide membranes. Polymer 2019, 166, 184–195. [Google Scholar] [CrossRef]
- Li, G.Z.; Si, A.H.; Zhuang, Y.; Pang, S.Y.; Cui, Y.H.; Baeyens, J.; Qin, P.Y. A defects-free ZIF-90/6FDA-Durene membrane based on the hydrogen bonding/covalent bonding interaction for gas separation. J. Membr. Sci. 2022, 661, 120910. [Google Scholar] [CrossRef]
- Yu, S.; Lim, C.S.; Seo, B. Tuning the free volume of polynorbornene-based membranes by blending 6FDA-durene to improve H2 permselectivity. J. Ind. Eng. Chem. 2018, 62, 197–208. [Google Scholar] [CrossRef]
- Hossain, I.; Al Munsur, A.; Kim, T.H. A Facile Synthesis of (PIM-Polyimide)-(6FDA-Durene-Polyimide) Copolymer as Novel Polymer Membranes for CO2 Separation. Membranes 2019, 9, 113. [Google Scholar] [CrossRef]
- Jusoh, N.; Yeong, Y.F.; Lau, K.K.; Shariff, A.M. Enhanced gas separation performance using mixed matrix membranes containing zeolite T and 6FDA-durene polyimide. J. Membr. Sci. 2017, 525, 175–186. [Google Scholar] [CrossRef]
- Lyu, Q.M.; Cai, Y.F.; Wang, S.L.; Sun, W.Z.; Zhao, L. Experiments and Kinetic Modeling on the Co/Mn/Br Catalyzed Oxidation of Prehnitene to Mellophanic Acid in the Liquid Phase. Ind. Eng. Chem. Res. 2020, 59, 19226–19234. [Google Scholar] [CrossRef]
- Merkelbach, J.; Frank, W. Synthesis, detailed geometric analysis and bond-valence method evaluation of the strength of pi-arene bonding of two isotypic cationic prehnitene tin(II) complexes: [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2] [MCl4]2 (M = Al and Ga). Acta Crystallogr. Sect. E Crystallogr. Commun. 2019, 75, 1051–1056. [Google Scholar] [CrossRef]
- Lyu, Q.M.; Sun, W.Z.; Zhao, L. Thermodynamic analysis and kinetic simulation of liquid phase oxidation of prehnitene to mellophanic acid. CIESC J. 2021, 72, 1009–1017. [Google Scholar] [CrossRef]
- Ma, L.; Hou, M.; Wang, Y.M.; Tong, W.Y.; Zheng, J.L. Organosiloxane membranes for heavy aromatic oil fractionation. Chem. Commun. 2024, 60, 8083–8086. [Google Scholar] [CrossRef]
- Guan, Y. Domestic and Foreign C10 Comprehensive Utilization Technology and Development trend. Chem. Ind. 2017, 35, 32–37. [Google Scholar] [CrossRef]
- Mao, X.X.; Wu, Y.Y.; Zhang, X.C.; Cai, Y.Q.; Wu, B.; Chen, K.; Ji, L.J. Separation of durene and prehnitene by metal-organic framework UIO-66. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 641, 127904. [Google Scholar] [CrossRef]
- Shiau, L.D. Purification of durene from the mixture of durene and isodurene by stripping crystallization. Korean J. Chem. Eng. 2021, 38, 2510–2518. [Google Scholar] [CrossRef]
- Wen, D.L.; Zuo, J.C.; Han, X.Q.; Liu, J.; Ye, L.M.; Yuan, Y.Z. Synthesis of durene by methylation of 1,2,4-trimethylbenzene with syngas over bifunctional CuZnZrOx-HZSM-5 catalysts. Catal. Sci. Technol. 2022, 12, 2555–2565. [Google Scholar] [CrossRef]
- Ren, H.; Yang, W.; Zhang, B. Opportunities for separation and utilization of C9+ heavy aromatics from reformation in China. Mod. Chem. Ind. 2020, 40, 11–14. [Google Scholar] [CrossRef]
- Cong, S.; Liu, Y.; Li, H.; Li, X.G.; Zhang, L.H.; Wang, L. Purification and separation of durene by static melt crystallization. Chin. J. Chem. Eng. 2015, 23, 505–509. [Google Scholar] [CrossRef]
- Zhu, M.H.; Liu, Y.D.; Wang, L.T.; Huang, Z.B.; Yuan, P.Q. Selective extraction of aromatics from residual oil with subcritical water. Chem. Eng. Res. Des. 2024, 202, 444–454. [Google Scholar] [CrossRef]
- Li, J. Production Technology and Industry Progress Research of 1,2,4,5-Tetramethylbenzene. Shandong Chem. Ind. 2023, 52, 113–115. [Google Scholar] [CrossRef]
- Li, X.G.; Liu, Y.; Li, H.; Cong, S.; Xu, C.; Wang, L. Purification of by-product durene in methanol synthetic oil by crystallization. Chem. Eng. 2013, 41, 14–18. [Google Scholar]
- Jusoh, N.; Yeong, Y.F.; Cheong, W.L.; Lau, K.K.; Shariff, A.M. Facile fabrication of mixed matrix membranes containing 6FDA-durene polyimide and ZIF-8 nanofillers for CO2 capture Petrochemical Technology. J. Ind. Eng. Chem. 2016, 44, 164–173. [Google Scholar] [CrossRef]
- Rezki, M.; Septinai, N.L.W.; Iqbal, M.; Adhika, D.R.; Wenten, I.G.; Yuliarto, B. Review-Recent Advance in Multi-Metallic Metal Organic Frameworks(MM-MOFs) and Their Derivatives for Electrochemical Biosensor Application. J. Electrochem. Soc. 2022, 169, 017504. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Li, X.J.; Ding, X.M.; Hua, K.; Sun, A.L.; Hu, X.X.; Nie, Z.W.; Zhang, Y.S.; Wang, J.C.; Li, R.L.; et al. Progress and opportunities for metal-organic framework composites in electrochemical sensors. RSC Adv. 2023, 13, 10800–10817. [Google Scholar] [CrossRef]
- Kulak, H.; Polat, H.M.; Kavak, S.; Keskin, S.; Uzun, A. Improving CO2 Separation performance of MIL-53(Al) by incorporating 1-n-butyl-3-methylimidazolium methyl sulfate. Energy Technol. 2019, 7, 1900157. [Google Scholar] [CrossRef]
- Sun, Y.X.; Jia, X.; Huang, H.L.; Guo, X.Y.; Qiao, Z.H.; Zhong, C.L. Solvent-free mechanochemical route for the construction of ionic liquid and mixed-metal MOF composites for synergistic CO2 fixation. J. Mater. Chem. A 2020, 8, 3180–3185. [Google Scholar] [CrossRef]
- Skarmoutsos, I.; Eddaoudi, M.; Maurin, G. Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks. Microporous Mesoporous Mater. 2019, 281, 44–49. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.X.; Zhao, G.X.; Chen, C.L.; Chai, Z.F.; Alsaedi, A.; Hayat, T.; Wang, X.K. Metal-organic framework-based materials superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356. [Google Scholar] [CrossRef] [PubMed]
- Konneryh, H.; Matsagar, B.M.; Chen, S.S.; Prechtl, M.H.G.; Shieh, F.K.; Wu, K.C.W. Metal-organic framework(MOF) derived catalysts for fine chemical production. Coordin. Chem. Rev. 2020, 416, 213319. [Google Scholar] [CrossRef]
- Jiang, J.X.; Shi, Y.; Wu, M.J.; Rezakazemi, M.; Aminabhavi, T.M.; Huang, R.Z.; Jia, C.; Ge, S.B. Biomass-MOF composites in wastewater treatment, air purification, and electromagnetic radiation adsorption—A review. Chem. Eng. J. 2024, 494, 152932. [Google Scholar] [CrossRef]
- Liu, C.; Qiao, J.; Zhang, X.; Xu, D.M.; Wu, N.N.; Lv, L.F.; Liu, W.; Liu, J.R. Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. New J. Chem. 2019, 43, 16546–16554. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Zhao, H.F.; Liu, D.H. Selective Adsorption and Separation of o-Xylene Using an Aluminum-Based Metal-Organic Framework. Ind. Eng. Chem. Res. 2021, 60, 17143–17149. [Google Scholar] [CrossRef]
- He, Z.J.; Yang, Y.X.; Bai, P.; Guo, X.H. Metal-organic framework MIL-53(Cr) as a superior adsorbent: Highly 8 efficient separation of xylene isomers in liquid phase. J. Ind. Eng. Chem. 2019, 77, 262–272. [Google Scholar] [CrossRef]
- Bae, H.J.; Kim, S.I.; Choi, Y.; Kim, K.M.; Bae, Y.S. High p-xylene selectivity in aluminum-based metal-organic framework with 1-D channels. J. Ind. Eng. Chem. 2023, 117, 333–341. [Google Scholar] [CrossRef]
- Lin, Y.H.; Zhang, J.; Pandey, H.; Dong, X.L.; Gong, Q.H.; Wang, H.; Yu, L.; Zhou, K.; Yu, W.; Huang, X.X.; et al. Efficient separation of xylene isomers by using a robust calcium-based metal-organic framework through a synergetic thermodynamically and kinetically controlled mechanism. J. Mater. Chem. A. 2021, 9, 26202–26207. [Google Scholar] [CrossRef]
- Yang, L.P.; Liu, H.B.; Yuan, D.H.; Xing, J.C.; Xu, Y.P.; Liu, Z.M. Efficient Separation of Xylene Isomers by a Pillar-Layer Metal-Organic Framework. ACS Appl. Mater. Interfaces 2021, 13, 41600–41608. [Google Scholar] [CrossRef]
- Feng, L.; Liu, J.J.; Abu-Hamdeh, N.H.; Bezzina, S.; Malekshah, R.E. Molecular dynamics and quantum simulation of different cationic dyes removal from contaminated water using UiO-66-(COOH)2 metal-organic framework. J. Mol. Liq. 2022, 349, 118085. [Google Scholar] [CrossRef]
- Kim, S.I.; Lee, S.; Chung, Y.G.; Bae, Y.S. The Origin of p-Xylene Selectivity in a DABCO Pillar-Layered Metal-Organic Framework: A Combined Experimental and Computational Investigation. ACS Appl. Mater. Interfaces 2019, 11, 31227–31236. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.J.; Xiang, T.; Zhou, X.Q.; Chen, L.; Zhang, Z.H.; Lu, B.B.; Zhou, X.J. Molecular dynamics simulation of adsorption and separation of xylene isomers by Cu-HKUST-1. RSC Adv. 2022, 12, 35290–35299. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W.T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Sun, A.Q.; Wu, Y.; He, Z.J.; Bai, P.; Lyu, J.F.; Guo, X.H. Manipulated adsorption of C8 aromatics in MIL-53(Cr) through pre-adsorbing water molecules. J. Taiwan Inst. Chem. E 2021, 122, 222–230. [Google Scholar] [CrossRef]
- Chen, K.M.; Liu, P.X.; Wang, Y.; Ren, Y.H.; Liu, J.H.; Chen, Y.; Li, J.P.; Li, L.B. Structural functionalization in robust metal-organic frameworks for p-xylene separation with superior adsorption capacity. Microporous Mesoporous Mater. 2023, 360, 112705. [Google Scholar] [CrossRef]
- Ribeiro, R.P.P.L.; Mota, J.P.B. Surface Area and Porosity of Co3(ndc)3(dabco) Metal-Organic Framework and Its Methane Storage Capacity: A Combined Experimental and Simulation Study. J. Phys. Chem. C 2021, 125, 2411–2423. [Google Scholar] [CrossRef]
- Xu, Z.W.; Ni, K.Y.; Mao, J.M.; Luo, T.K.; Lin, W.B. Monte Carlo Simulations Reveal New Design Principles for Efficient Nanoradiosensitizers Based on Nanoscale Metal-Organic Frameworks. Adv. Mater. 2021, 33, 2104249. [Google Scholar] [CrossRef]
- Yuvaraj, A.R.; Jayarama, A.; Sharma, D.; Nagarkar, S.S.; Duttagupta, S.P.; Pinto, R. Role of metal-organic framework in hydrogen gas storage: A critical review. Int. J. Hydrogen. Energ. 2024, 59, 1434–1458. [Google Scholar] [CrossRef]
- Han, B.; Chakraborty, A. Tailoring Zirconium-based metal organic frameworks for enhancing Hydrophilic/Hydrophobic Characteristics: Simulation and experimental investigation. J. Mol. Liq. 2021, 341, 117381. [Google Scholar] [CrossRef]
- Jing, B.Y.; Xia, D.; Wang, G.Q. Adsorption and Self-Diffusion of R32/R1234yf in MOF-200 Nanoparticles by Molecular Dynamics Simulation. Processes 2022, 10, 1714. [Google Scholar] [CrossRef]
- Mao, M.; Wu, X.X.; Hu, Y.; Yuan, Q.H.; He, Y.B.; Kang, F.Y. Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J. Energy Chem. 2021, 52, 277–283. [Google Scholar] [CrossRef]
- Vo, T.K.; Bae, Y.S.; Chang, B.J.; Moon, S.Y.; Kim, J.H.; Kim, J. Highly CO Selective Cu(I)-Doped MIL-100(Fe) Adsorbent with High CO/CO2 Selectivity due to π Complexation: Effects of Cu(I) Loading and Activation Temperature. Microporous Mesoporous Mater. 2019, 274, 17–24. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Hu, G.F.; Gao, X.T.; Zhang, Z.X.; Cui, P. Simulation study on functional group-modified Ni-MOF-74 for CH4/N2 adsorption separation. J. Comp. Chem. 2024, 45, 1515–1524. [Google Scholar] [CrossRef]
- Chen, Y.B.; Tang, J.L.; Wang, S.X.; Zhang, L.B. Facile preparation of a remarkable MOF adsorbent for Au(III) selective separation from wastewater: Adsorption, regeneration and mechanism. J. Mol. Liq. 2022, 349, 118137. [Google Scholar] [CrossRef]
- Li, Y.; Lin, H.; Yu, Q.L.; Ma, N.; Dai, W. UiO-66-NH2 nanoparticles supported on layered double hydroxides as an excellent adsorbent for levofloxacin capture. Particuology 2024, 92, 155–165. [Google Scholar] [CrossRef]
- Li, Y.J.; Cui, J.Y.; Wang, Q.J.; Yang, L.F.; Chen, L.Y.; Xing, H.B.; Cui, X.L. Responsive shape recognition of styrene over ethylbenzene with excellent selectivity and capacity in a hybrid porous material. Chem. Eng. J. 2023, 453, 139456. [Google Scholar] [CrossRef]
- Zhou, J.W.; Liu, M.; Chen, X.; Bai, S.Y.; Sun, J.H. Interfacial growth strategy for synthesizing Mg-MOF-74@clinoptilolites with hierarchical structures for enhancing adsorptive separation performance of CO2/CH4, CH4/N2 and CO2/N2. Surf. Interfaces 2024, 54, 105106. [Google Scholar] [CrossRef]
- Li, L.C.; Xu, Y.L.; Zhong, D.J.; Zhong, N.B. CTAB-surface-functionalized magnetic MOF@MOF composite adsorbent for Cr(VI) efficient removal from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124255. [Google Scholar] [CrossRef]
- Yu, K.; Ahmed, I.; Wong, D.I.; Lee, W.I.; Ahn, W.S. Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545. Chemosphere 2020, 250, 126133. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhou, W.; Yildirim, T. High-Capacity Methane Storage in Metal−Organic Frameworks M2(dhtp): The Important Role of Open Metal Sites. J. Am. Chem. Soc. 2009, 131, 4995–5000. [Google Scholar] [CrossRef]
- Chen, S.; Li, Y.J.; Yang, L.F.; Zhang, X.M.; Yang, Z.L.; Zhou, L.; Cui, X.L.; Xing, H.B. Anion-pillared porous materials with suitable pore size for the efficient discrimination of cyclohexene from cyclohexane. Sep. Purif. Technol. 2022, 302, 122095. [Google Scholar] [CrossRef]
- Li, T.; Cheng, C.X.; Zhang, K.F.; Yang, J.; Han, G.S.; Wang, X.J.; Wang, Z.P.; Wang, L.G. UiO-66-NH2 nanocomposites incorporated cellulose acetate for forward osmosis membranes of high desalination performance. Environ. Technol. 2024, 45, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.Z.; Anstine, D.M.; Boulfelfel, S.E.; Gu, C.K.; Colina, C.M.; Sholl, D.S. Incorporating Flexibility Effects into Metal-Organic Framework Adsorption Simulations Using Different Models. ACS Appl. Mater. Interfaces 2021, 13, 61305–61315. [Google Scholar] [CrossRef] [PubMed]
- Yeganegi, S.; Gholami, M.; Sokhanvaran, V. Molecular simulations of adsorption and separation of acetylene and methane and their binary mixture on MOF-5, HKUST-1 and MOF-505 metal-organic frameworks. Mol. Sim. 2017, 43, 260–266. [Google Scholar] [CrossRef]
- Chen, B.; Li, Y.H.; Li, M.X.; Cui, M.F.; Xu, W.S.; Li, L.B.; Sun, Y.H.; Wang, M.Z.; Zhang, Y.; Chen, K.W. Rapid adsorption of tetracycline in aqueous solution by using MOF-525/graphene oxide composite. Microporous Mesoporous Mater. 2021, 328, 111457. [Google Scholar] [CrossRef]
- Cui, X.L.; Niu, Z.; Shan, C.; Yang, L.F.; Hu, J.B.; Wang, Q.J.; Lan, P.C.; Li, Y.J.; Wojtas, L.; Ma, S.Q.; et al. Efficient separation of xylene isomers by a guest-responsive metal-organic framework with rotational anionic sites. Nat. Commun. 2020, 11, 5456. [Google Scholar] [CrossRef]
- Bai, Y.H.; Chen, H.H.; Cheng, H.; Ding, Z.X.; Yuan, R.S.; Li, Z.H. Coupling physical adsorption and photocatalysis over CdS/UiO-66-NH2 for efficient removal of hydrogen sulfide. Sep. Purif. Technol. 2024, 341, 126956. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.; Xiarchos, I.; Doulia, D. Treatment of contaminated water with pesticides via adsorption. Int. J. Environ. Technol. Manag. 2006, 6, 515–524. [Google Scholar] [CrossRef]
- Song, W.H.; Yao, J.; Ma, J.S.; Li, A.F.; Li, Y.; Sun, H.; Zhang, L. Grand canonical Monte Carlo simulations of pore structure influence on methane adsorption in micro-porous carbons with applications to coal and shale systems. Fuel 2018, 215, 196–203. [Google Scholar] [CrossRef]
- Frank, H.O.; Paesani, F. Molecular driving forces for water adsorption in MOF-808: A comparative analysis with UiO-66. J. Chem. Phys. 2024, 160, 094703. [Google Scholar] [CrossRef]
Atom Type | LJ Parameters | Atom Type | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cj | Hj | Nj | Oj | Zrj | Fj | Nij | Mgj | Alj | Crj | ||
Ci | ε (kcal/mol) | 0.105 | 0.068 | 0.085 | 0.072 | 0.085 | 0.072 | 0.040 | 0.108 | 0.230 | 0.040 |
σ (Å) | 3.851 | 3.369 | 3.756 | 3.676 | 3.488 | 3.608 | 3.343 | 3.436 | 4.175 | 3.437 | |
Hi | ε (kcal/mol) | 0.068 | 0.044 | 0.055 | 0.051 | 0.055 | 0.047 | 0.026 | 0.070 | 0.149 | 0.026 |
σ (Å) | 3.369 | 2.886 | 3.273 | 3.193 | 3.005 | 3.125 | 2.860 | 2.954 | 3.693 | 2.955 |
Charges/e | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
DR | 0.0938 | −0.0962 | 0.0334 | −0.4018 | 0.1223 | - | - | - |
PR | 0.0959 | −0.1104 | 0.0341 | −0.4023 | 0.1212 | 0.0462 | −0.3972 | 0.1170 |
ZU-61 | MIL-101 | UIO-66-NH2 | Al-MIL-53 | Mg-MOF-74 | UIO-66 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Capacity (mg/g) | DR | PR | DR | PR | DR | PR | DR | PR | DR | PR | DR | PR |
110.85 | 261.39 | 196.20 | 204.05 | 80.03 | 48.38 | 241.48 | 324.58 | 100.14 | 176.67 | 158.81 | 83.44 | |
Capacity difference (mg/g) | 150.54 | 7.85 | 31.65 | 83.10 | 76.53 | 75.37 | ||||||
α | 2.36 | 1.04 | 1.65 | 1.34 | 1.76 | 1.90 |
MOFs | UIO-66 | UIO-66-NH2 | ZU-61 | Mg-MOF-74 |
---|---|---|---|---|
Adsorption capacity of DR (mg/g) | 146.27 | 70.58 | 103.75 | 95.82 |
Adsorption capacity of PR (mg/g) | 79.49 | 44.39 | 239.66 | 165.77 |
α | 1.84 | 1.59 | 2.31 | 1.73 |
n | 3 | 3 | 3 | 3 |
SD of DR | 0.17 | 0.15 | 0.21 | 0.16 |
SD of PR | 0.20 | 0.09 | 0.08 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wu, Y.; Rao, J.; Wang, X.; Wu, B.; Chen, K.; Ji, L. The Adsorption of Durene and Prehnitene on Metal–Organic Frameworks. Processes 2024, 12, 2331. https://doi.org/10.3390/pr12112331
Wang T, Wu Y, Rao J, Wang X, Wu B, Chen K, Ji L. The Adsorption of Durene and Prehnitene on Metal–Organic Frameworks. Processes. 2024; 12(11):2331. https://doi.org/10.3390/pr12112331
Chicago/Turabian StyleWang, Tianyou, Yanyang Wu, Jiabo Rao, Xudong Wang, Bin Wu, Kui Chen, and Lijun Ji. 2024. "The Adsorption of Durene and Prehnitene on Metal–Organic Frameworks" Processes 12, no. 11: 2331. https://doi.org/10.3390/pr12112331
APA StyleWang, T., Wu, Y., Rao, J., Wang, X., Wu, B., Chen, K., & Ji, L. (2024). The Adsorption of Durene and Prehnitene on Metal–Organic Frameworks. Processes, 12(11), 2331. https://doi.org/10.3390/pr12112331