Optimizing Fermentation Strategies for Enhanced Tryptophan Production in Escherichia coli: Integrating Genetic and Environmental Controls for Industrial Applications
Abstract
:1. Introduction
2. Obtention of Overproducer Strains
2.1. Generation of Overproducing Strains from Random Mutagenesis
2.2. Rational Design of Strains
3. Fermentation Process for Tryptophan Production
3.1. Fermentation Preparations
3.2. Acetate Metabolism
3.2.1. Overloaded Metabolism Driving Acetate Accumulation
3.2.2. Acetate Production Is Regulated by pH
3.2.3. Dissolved-Oxygen Affects the Acetate Metabolism
3.3. Lag Phase of Fermentation
3.4. Early Exponential Phase
3.4.1. Growth Rate Affects Plasmid Stability and By-Product Formation
3.4.2. High Phosphate Boosts Glucose Uptake
3.4.3. Sodium Citrate Boosts Cofactor Production, Enhancing Biomass Growth
3.5. Feeding Strategies During Fermentations
3.5.1. Exponential Feeding
3.5.2. Glucose-Stat Feeding
3.5.3. DO Feedback Control
3.5.4. DO-Stat Control
3.5.5. DO Stage Control Strategy
3.5.6. pH-Stat Control
3.5.7. pH Stage Control Strategy
3.6. Mid-Exponential Phase
3.6.1. Escherichia coli Metabolism Lowers pH, Impacting Glucose Uptake and Tryptophan Production
3.6.2. Balanced Precursor Supplementation Is Essential for Tryptophan Production
3.7. Late Exponential Phase
3.7.1. Accumulation of Toxic Compounds
3.7.2. Surfactants Reduce Intracellular Accumulation of Tryptophan
3.8. Stationary Phase
4. Industrial Purification of Tryptophan
5. Fermentation Parameters and Genetics Modifications as Complementary Approaches to Achieve High Tryptophan Production
5.1. Activation of the Final Branch of Tryptophan Production
5.2. Reduction in Tryptophan Degradation
5.3. Modifications to the Central Metabolic Pathways
5.4. Reduction in Acetate Accumulation
5.5. Activation of the Common Aromatic Amino Acid Pathway
5.6. Supply of Tryptophan Precursors
5.6.1. Glutamine
5.6.2. Serine
5.7. Silencing of Transcriptional Regulators
5.8. Modulating Pathways Competing for Precursors
6. Models for Tryptophan Production
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohamed, H.; El Nady, G.; Ali, A.; Abdel-Razik, A.; Ibrahim, S. Production of L-Tryptophan by Mutants of Corynebacterium glutamicum. Arab. Univ. J. Agric. Sci. 2018, 26, 1187–2018. [Google Scholar] [CrossRef]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009, 2, 42–60. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Zhu, Y.; Tian, D.; Jiang, S.; Fan, X.; Ma, Q.; Wu, H.; Xie, X. Flux Redistribution of Central Carbon Metabolism for Efficient Production of L-tryptophan in Escherichia coli. Biotechnol. Bioeng. 2021, 118, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Sadeghiyan-Rizi, T.; Fooladi, J.; Sadrai, S. Preliminary Study on Cost-Effective L-Tryptophan Production from Indole and L-Serine by E. coli Cells. Avicenna J. Med. Biotechnol. 2016, 8, 188–192. [Google Scholar] [PubMed]
- Ding, D.; Bai, D.; Li, J.; Mao, Z.; Zhu, Y.; Liu, P.; Lin, J.; Ma, H.; Zhang, D. Analyzing the Genetic Characteristics of a Tryptophan-Overproducing Escherichia coli. Bioprocess. Biosyst. Eng. 2021, 44, 1685–1697. [Google Scholar] [CrossRef]
- Minliang, C.; Chengwei, M.; Lin, C.; Zeng, A.-P. Integrated Laboratory Evolution and Rational Engineering of GalP/Glk-Dependent Escherichia coli for Higher Yield and Productivity of L-Tryptophan Biosynthesis. Metab. Eng. Commun. 2021, 12, e00167. [Google Scholar] [CrossRef]
- Bang, W.; Lang, S.; Sahm, H.; Wagner, F. Production L-tryptophan by Escherichia coli Cells. Biotechnol. Bioeng. 1983, 25, 999–1011. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Xiong, X.; Gao, Y.-Z.; Zhou, H.-D. Tryptophan Metabolism in Human Diseases. In Tryptophan in Animal Nutrition and Human Health; Springer Nature Singapore: Singapore, 2024; pp. 159–180. [Google Scholar]
- Hołubiec, P.; Leończyk, M.; Staszewski, F.; Łazarczyk, A.; Jaworek, A.K.; Wojas-Pelc, A. Pathophysiology and Clinical Management of Pellagra—A Review. Folia Med. Cracoviensia 2023, LXI, 125–137. [Google Scholar] [CrossRef]
- Pellagra Treated with Tryptophan. Nutr. Rev. 2009, 45, 142–148. [CrossRef]
- Cooper, A.J. Tryptophan Antidepressant ‘Physiological Sedative’: Fact or Fancy? Psychopharmacology 1979, 61, 97–102. [Google Scholar] [CrossRef]
- Sharma, V.; Barrett, C. Tryptophan for Treatment of Rapid-Cycling Bipolar Disorder Comorbid with Fibromyalgia. Can. J. Psychiatry 2001, 46, 452–453. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Xu, Q.; Liang, J.; Xie, X.; Zhang, C.; Chen, N. Control Strategy of Specific Growth Rate in L-Tryptophan Production by Escherichia coli. In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012), Tianjin, China, 18–19 October 2012; Springer: Berlin/Heidelberg, Germany, 2014; pp. 241–249. [Google Scholar]
- Lu, N.; Zhang, B.; Cheng, L.; Wang, J.; Zhang, S.; Fu, S.; Xiao, Y.; Liu, H. Gene Modification of Escherichia coli and Incorporation of Process Control to Decrease Acetate Accumulation and Increase l-Tryptophan Production. Ann. Microbiol. 2017, 67, 567–576. [Google Scholar] [CrossRef]
- Liu, S.; Wang, B.-B.; Xu, J.-Z.; Zhang, W.-G. Engineering of Shikimate Pathway and Terminal Branch for Efficient Production of L-Tryptophan in Escherichia coli. Int. J. Mol. Sci. 2023, 24, 11866. [Google Scholar] [CrossRef] [PubMed]
- Yanofsky, C.; Horn, V.; Gollnick, P. Physiological Studies of Tryptophan Transport and Tryptophanase Operon Induction in Escherichia coli. J. Bacteriol. 1991, 173, 6009–6017. [Google Scholar] [CrossRef] [PubMed]
- Deal, I.; Macauley, M.; Davies, R. Boolean Models of the Transport, Synthesis, and Metabolism of Tryptophan in Escherichia coli. Bull. Math. Biol. 2023, 85, 29. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, L.; Chen, L.; Zhuo, Z.; Liu, C.; Jin, S.; Yin, J.; Yang, H.; He, L.; Yin, Y. Application of Tryptophan in Swine Production. In Tryptophan in Animal Nutrition and Human Health; Springer Nature: Singapore, 2024; pp. 111–125. [Google Scholar]
- Lu, C.; Deng, Y.; Ma, W.; Wang, W.; Li, P.; Shi, P.; Yan, T.; Yin, Y.; Huang, P. Tryptophan Nutrition in Poultry and Ruminant Animals. In Tryptophan in Animal Nutrition and Human Health; Springer Nature Singapore: Singapore, 2024; pp. 127–157. [Google Scholar]
- Seo, C., II; Kim, S.Y.; Kim, S.W. Industrial Production of Tryptophan. In Tryptophan in Animal Nutrition and Human Health; Springer Nature: Singapore, 2024; pp. 181–197. [Google Scholar]
- Gang, S.; Sharma, S.; Saraf, M.; Buck, M.; Schumacher, J. Analysis of Indole-3-Acetic Acid (IAA) Production in Klebsiella by LC-MS/MS and the Salkowski Method. Bio-Protocol 2019, 9, e3230. [Google Scholar] [CrossRef]
- Mustafa, A.; Imran, M.; Ashraf, M.; Mahmood, K. Perspectives of Using L-Tryptophan for Improving Productivity of Agricultural Crops: A Review. Pedosphere 2018, 28, 16–34. [Google Scholar] [CrossRef]
- Rosa, R.; Hajko, L.; Franczuk, J.; Zaniewicz-Bajkowska, A.; Andrejiová, A.; Mezeyová, I. Effect of L-Tryptophan and L-Glutamic Acid on Carrot Yield and Its Quality. Agronomy 2023, 13, 562. [Google Scholar] [CrossRef]
- Sano, K.; Yokozeki, K.; Eguchi, C.; Kagawa, T.; Noda, I.; Mitsugi, K. Enzymatic Production of L-Tryptophan from l- and Dl-5-Indolyl-Methylhydantoin by Newly Isolated Bacterium. Agric. Biol. Chem. 1977, 41, 819–825. [Google Scholar] [CrossRef]
- Masumi, F.; Takeuchi, H.; Kondo, S.; Suzuki, K.; Yamada, S. Synthesis of L-Tryptophan from L-Glutamic Acid. Chem. Pharm. Bull. 1982, 30, 3831–3833. [Google Scholar] [CrossRef]
- Eto, H.; Eguchi, C.; Kagawa, T. Production of l-Tryptophan from γ-Glutamaldehydic Acid. Bull. Chem. Soc. Jpn. 1989, 62, 961–963. [Google Scholar] [CrossRef]
- Schoppel, K.; Trachtmann, N.; Korzin, E.J.; Tzanavari, A.; Sprenger, G.A.; Weuster-Botz, D. Metabolic Control Analysis Enables Rational Improvement of E. coli L-Tryptophan Producers but Methylglyoxal Formation Limits Glycerol-Based Production. Microb. Cell Fact. 2022, 21, 201. [Google Scholar] [CrossRef] [PubMed]
- Xiu, Z.-L.; Zeng, A.-P.; Deckwer, W.-D. Model Analysis Concerning the Effects of Growth Rate and Intracellular Tryptophan Level on the Stability and Dynamics of Tryptophan Biosynthesis in Bacteria. J. Biotechnol. 1997, 58, 125–140. [Google Scholar] [CrossRef]
- Ikeda, M. Towards Bacterial Strains Overproducing L-Tryptophan and Other Aromatics by Metabolic Engineering. Appl. Microbiol. Biotechnol. 2006, 69, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Roy, A. Enzymatic Production of L-Tryptophan by a Thermophilic Strain of Bacillus licheniformis Isolated from a Local Hot Spring of Paniphala, Asansol Area of West Bengal. J. Pure Appl. Microbiol. 2023, 17, 2307–2315. [Google Scholar] [CrossRef]
- Chen, X.; Jin, Z.W.; Li, X.; Wang, Z. Effect of Yeast Extract on L-Tryptophan Production in Batch Culture of Escherichia coli. Adv. Mat. Res. 2013, 807–809, 2009–2013. [Google Scholar] [CrossRef]
- Varma, A.; Boesch, B.W.; Palsson, B.O. Biochemical Production Capabilities of Escherichia coli. Biotechnol. Bioeng. 1993, 42, 59–73. [Google Scholar] [CrossRef]
- Tribe, D.E.; Pittard, J. Hyperproduction of Tryptophan by Escherichia coli: Genetic Manipulation of the Pathways Leading to Tryptophan Formation. Appl. Environ. Microbiol. 1979, 38, 181–190. [Google Scholar] [CrossRef]
- Niu, H.; Li, R.; Liang, Q.; Qi, Q.; Li, Q.; Gu, P. Metabolic Engineering for Improving l-Tryptophan Production in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2019, 46, 55–65. [Google Scholar] [CrossRef]
- Schmid, J.W.; Mauch, K.; Reuss, M.; Gilles, E.D.; Kremling, A. Metabolic Design Based on a Coupled Gene Expression—Metabolic Network Model of Tryptophan Production in Escherichia coli. Metab. Eng. 2004, 6, 364–377. [Google Scholar] [CrossRef]
- Guo, L.; Ding, S.; Liu, Y.; Gao, C.; Hu, G.; Song, W.; Liu, J.; Chen, X.; Liu, L. Enhancing Tryptophan Production by Balancing Precursors in Escherichia coli. Biotechnol. Bioeng. 2022, 119, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Mukhopadhyay, S.K. L-Tryptophan Production by Auxotrophic and Analogue Resistant Mutants of Aureobacterium flavescens. Int. J. Tryptophan Res. 2011, 4, IJTR.S5984. [Google Scholar] [CrossRef] [PubMed]
- Dodge, T.C.; Gerstner, J.M. Optimization of the Glucose Feed Rate Profile for the Production of Tryptophan from Recombinant E. coli. J. Chem. Technol. Biotechnol. 2002, 77, 1238–1245. [Google Scholar] [CrossRef]
- Aiba, S.; Tsunekawa, H.; Imanaka, T. New Approach to Tryptophan Production by Escherichia coli: Genetic Manipulation of Composite Plasmids in Vitro. Appl. Environ. Microbiol. 1982, 43, 289–297. [Google Scholar] [CrossRef]
- Malin, B.; Westhead, J. Production of L-tryptophan in Submerged Culture. J. Biochem. Microbiol. Technol. Eng. 1959, 1, 49–57. [Google Scholar] [CrossRef]
- Deshpande, A.; Vue, J.; Morgan, J. Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in Synechocystis sp. Strain PCC 6803. Appl. Env. Microbiol 2020, 86, e02816-19. [Google Scholar] [CrossRef]
- Liu, S.; Xu, J.-Z.; Zhang, W.-G. Advances and Prospects in Metabolic Engineering of Escherichia coli for L-Tryptophan Production. World J. Microbiol. Biotechnol. 2022, 38, 22. [Google Scholar] [CrossRef]
- Ikeda, M.; Nakanishi, K.; Kino, K.; Katsumata, R. Fermentative Production of Tryptophan by a Stable Recombinant Strain of Corynebacterium glutamicum with a Modified Serine-Biosynthetic Pathway. Biosci. Biotechnol. Biochem. 1994, 58, 674–678. [Google Scholar] [CrossRef]
- Plachý, J.; Ulbert, S. Production of L-tryptophan. Acta Biotechnol. 1990, 10, 517–522. [Google Scholar] [CrossRef]
- Brune, I.; Jochmann, N.; Brinkrolf, K.; Hüser, A.T.; Gerstmeir, R.; Eikmanns, B.J.; Kalinowski, J.; Pühler, A.; Tauch, A. The IclR-Type Transcriptional Repressor LtbR Regulates the Expression of Leucine and Tryptophan Biosynthesis Genes in the Amino Acid Producer Corynebacterium glutamicum. J. Bacteriol. 2007, 189, 2720–2733. [Google Scholar] [CrossRef]
- Ogara, J.P.; Dunican, L.K. Direct Evidence for a Constitutive Internal Promoter in the Tryptophan Operon of Corynebacterium glutamicum. Biochem. Biophys. Res. Commun. 1994, 203, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Sgobba, E.; Stumpf, A.K.; Vortmann, M.; Jagmann, N.; Krehenbrink, M.; Dirks-Hofmeister, M.E.; Moerschbacher, B.; Philipp, B.; Wendisch, V.F. Synthetic Escherichia coli-Corynebacterium glutamicum Consortia for l-Lysine Production from Starch and Sucrose. Bioresour. Technol. 2018, 260, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Katsumata, R. Hyperproduction of Tryptophan by Corynebacterium glutamicum with the Modified Pentose Phosphate Pathway. Appl. Environ. Microbiol. 1999, 65, 2497–2502. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, R.; Ikeda, M. Hyperproduction of Tryptophan in Corynebacterium glutamicum by Pathway Engineering. Nat. Biotechnol. 1993, 11, 921–925. [Google Scholar] [CrossRef]
- Ikeda, M.; Katsumata, R. Tryptophan Production by Transport Mutants of Corynebacterium glutamicum. Biosci. Biotechnol. Biochem. 1995, 59, 1600–1602. [Google Scholar] [CrossRef]
- Herry, D.M.; Dunican, L.K. Cloning of the Trp Gene Cluster from a Tryptophan-Hyperproducing Strain of Corynebacterium glutamicum: Identification of a Mutation in the Trp Leader Sequence. Appl. Environ. Microbiol. 1993, 59, 791–799. [Google Scholar] [CrossRef]
- Hagino, H.; Nakayama, K. l-Tryptophan Production by Analog-Resistant Mutants Derived from a Phenylalanine and Tyrosine Double Auxotroph of Corynebacterium glutamicum. Agric. Biol. Chem. 1975, 39, 343–349. [Google Scholar] [CrossRef]
- Heery, D.M.; Fitzpatrick, R.; Dunican, L.K. A Sequence from a Tryptophan-Hyperproducing Strain of Corynebacterium glutamicum Encoding Resistance to 5-Methyltryptophan. Biochem. Biophys. Res. Commun. 1994, 201, 1255–1262. [Google Scholar] [CrossRef]
- Yu, H.; Liu, X.; Liu, J.; Wang, Y.; Hu, Y. Overexpression of the Tryptophan Cluster in Corynebacterium glutamicum; Atlantis Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- O’Gara, J.P.; Dunican, L.K. Mutations in the TrpD Gene of Corynebacterium glutamicum Confer 5-Methyltryptophan Resistance by Encoding a Feedback-Resistant Anthranilate Phosphoribosyltransferase. Appl. Environ. Microbiol. 1995, 61, 4477–4479. [Google Scholar] [CrossRef]
- Ikeda, M.; Okamoto, K.; Katsumata, R. Cloning of the Transketolase Gene and the Effect of Its Dosage on Aromatic Amino Acid Production in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 1999, 51, 201–206. [Google Scholar] [CrossRef]
- Shiio, I.; Sugimoto, S.; Kawamura, K. Production of l-Tryptophan by Sulfonamide-Resistant Mutants. Agric. Biol. Chem. 1984, 48, 2073–2080. [Google Scholar] [CrossRef]
- Hagino, H.; Nakayama, K. DAHP Synthetase and Its Control in Corynebacterium glutamicum. Agric. Biol. Chem. 1974, 38, 2125–2134. [Google Scholar] [CrossRef]
- Mutz, M.; Brüning, V.; Brüsseler, C.; Müller, M.; Noack, S.; Marienhagen, J. Metabolic Engineering of Corynebacterium glutamicum for the Production of Anthranilate from Glucose and Xylose. Microb. Biotechnol. 2024, 17, e14388. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, S.; Wu, J. Phosphoenolpyruvate:Glucose Phosphotransferase System Modification Increases the Conversion Rate during l-Tryptophan Production in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2017, 44, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Berry, A. Improving Production of Aromatic Compounds in Escherichia coli by Metabolic Engineering. Trends Biotechnol. 1996, 14, 250–256. [Google Scholar] [CrossRef]
- Chen, L.; Chen, M.; Ma, C.; Zeng, A.-P. Discovery of Feed-Forward Regulation in L-Tryptophan Biosynthesis and Its Use in Metabolic Engineering of E. coli for Efficient Tryptophan Bioproduction. Metab. Eng. 2018, 47, 434–444. [Google Scholar] [CrossRef]
- Castro-López, D.A.; González de la Vara, L.E.; Santillán, M.; Martínez-Antonio, A. A Molecular Dynamic Model of Tryptophan Overproduction in Escherichia coli. Fermentation 2022, 8, 560. [Google Scholar] [CrossRef]
- Santillán, M.; Mackey, M.C. Dynamic Regulation of the Tryptophan Operon: A Modeling Study and Comparison with Experimental Data. Proc. Natl. Acad. Sci. USA 2001, 98, 1364–1369. [Google Scholar] [CrossRef]
- Zhao, C.; Cheng, L.; Wang, J.; Shen, Z.; Chen, N. Impact of Deletion of the Genes Encoding Acetate Kinase on Production of L-Tryptophan by Escherichia coli. Ann. Microbiol. 2016, 66, 261–269. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Zou, C.; Zhu, Y.-X.; Dai, J.; Chen, S.; Wu, D.; Wu, J.; Chen, J. Development of L-Tryptophan Production Strains by Defined Genetic Modification in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2011, 38, 1921–1929. [Google Scholar] [CrossRef]
- Liu, L.; Duan, X.; Wu, J. L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway. PLoS ONE 2016, 11, e0158200. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Fang, H.; Wang, J.; Zhang, S.; Zhao, X.; Li, Z.; Lin, C.; Shen, Z.; Cheng, L. Application of Fermentation Process Control to Increase l-tryptophan Production in Escherichia coli. Biotechnol. Prog. 2020, 36, e2944. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-Y.; Wu, W.-J.; Xu, Y.-Y.; Zhou, B.; Niu, K.; Liu, Z.-Q.; Zheng, Y.-G. Calcium Carbonate Addition Improves L-Methionine Biosynthesis by Metabolically Engineered Escherichia coli W3110-BL. Front. Bioeng. Biotechnol. 2020, 8, 300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xiong, H.; Xu, Q. L-Tryptophan Fermentation by High Cell Density Culture of Escherichia coli. Food Ferment. Ind. 2019, 45, 15–20. [Google Scholar]
- Mears, L.; Stocks, S.M.; Sin, G.; Gernaey, K.V. A Review of Control Strategies for Manipulating the Feed Rate in Fed-Batch Fermentation Processes. J. Biotechnol. 2017, 245, 34–46. [Google Scholar] [CrossRef]
- Panichkin, V.B.; Livshits, V.A.; Biryukova, I.V.; Mashko, S.V. Metabolic Engineering of Escherichia coli for L-Tryptophan Production. Appl. Biochem. Microbiol. 2016, 52, 783–809. [Google Scholar] [CrossRef]
- Liu, L.; Bilal, M.; Luo, H.; Zhao, Y.; Iqbal, H.M.N. Metabolic Engineering and Fermentation Process Strategies for L-Tryptophan Production by Escherichia coli. Processes 2019, 7, 213. [Google Scholar] [CrossRef]
- Dragosits, M.; Mattanovich, D. Adaptive Laboratory Evolution—Principles and Applications for Biotechnology. Microb. Cell Fact. 2013, 12. [Google Scholar] [CrossRef]
- Bandiera, M.; Morpurgo, G.; Ricci, R. Tryptophan Production by Mutant Strains of Escherichia coli K 12. Experientia 1967, 23, 724–725. [Google Scholar] [CrossRef]
- Bacher, J.M.; Ellington, A.D. Selection and Characterization of Escherichia coli Variants Capable of Growth on an Otherwise Toxic Tryptophan Analogue. J. Bacteriol. 2001, 183, 5414–5425. [Google Scholar] [CrossRef]
- Agostini, F.; Sinn, L.; Petras, D.; Schipp, C.J.; Kubyshkin, V.; Berger, A.A.; Dorrestein, P.C.; Rappsilber, J.; Budisa, N.; Koksch, B. Multiomics Analysis Provides Insight into the Laboratory Evolution of Escherichia coli toward the Metabolic Usage of Fluorinated Indoles. ACS Cent. Sci. 2021, 7, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Pauley, R.J.; Fredricks, W.W.; Smith, O.H. Effect of Tryptophan Analogs on Derepression of the Escherichia coli Tryptophan Operon by Indole-3-Propionic Acid. J. Bacteriol. 1978, 136, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.; Yanofsky, C. Anthranilate Synthetase, an Enzyme Specified by the Tryptophan Operon of Escherichia coli: Comparative Studies on the Complex and the Subunits. J. Bacteriol. 1969, 97, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Nord, E.F. Advances in Enzymology and Related Areas of Molecular Biology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1973; Volume 38. [Google Scholar]
- Baker, T.I.; Crawford, I.P. Anthranilate Synthetase. J. Biol. Chem. 1966, 241, 5577–5584. [Google Scholar] [CrossRef] [PubMed]
- Pabst, M.J.; Kuhn, J.C.; Somerville, R.L. Feedback Regulation in the Anthranilate Aggregate from Wild Type and Mutant Strains of Escherichia coli. J. Biol. Chem. 1973, 248, 901–914. [Google Scholar] [CrossRef]
- Kwak, J.H.; Hong, K.W.; Lee, S.H.; Hong, J.H.; Lee, S.Y. Identification of Amino Acid Residues Involved in Feedback Inhibition of the Anthranilate Synthase in Escherichia coli. J. Biochem. Mol. Biol. 1999, 32, 20–24. [Google Scholar]
- Tang, M.; Pan, X.; Yang, T.; You, J.; Zhu, R.; Yang, T.; Zhang, X.; Xu, M.; Rao, Z. Multidimensional Engineering of Escherichia coli for Efficient Synthesis of L-Tryptophan. Bioresour. Technol. 2023, 386, 129475. [Google Scholar] [CrossRef]
- Chen, M.; Chen, L.; Zeng, A.-P. CRISPR/Cas9-Facilitated Engineering with Growth-Coupled and Sensor-Guided in Vivo Screening of Enzyme Variants for a More Efficient Chorismate Pathway in E. coli. Metab. Eng. Commun. 2019, 9, e00094. [Google Scholar] [CrossRef]
- Du, L.; Zhang, Z.; Xu, Q.; Chen, N. New Strategy for Removing Acetic Acid as a By-Product during L-Tryptophan Production. Biotechnol. Biotechnol. Equip. 2019, 33, 1471–1480. [Google Scholar] [CrossRef]
- Du, L.; Zhang, Z.; Xu, Q.; Chen, N. Central Metabolic Pathway Modification to Improve L-Tryptophan Production in Escherichia coli. Bioengineered 2019, 10, 59–70. [Google Scholar] [CrossRef]
- Liu, L.; Duan, X.; Wu, J. Modulating the Direction of Carbon Flow in Escherichia coli to Improve l-Tryptophan Production by Inactivating the Global Regulator FruR. J. Biotechnol. 2016, 231, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Tröndle, J.; Schoppel, K.; Bleidt, A.; Trachtmann, N.; Sprenger, G.A.; Weuster-Botz, D. Metabolic Control Analysis of L-Tryptophan Production with Escherichia coli Based on Data from Short-Term Perturbation Experiments. J. Biotechnol. 2020, 307, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Yang, F.; Li, F.; Liang, Q.; Qi, Q. Knocking out Analysis of Tryptophan Permeases in Escherichia coli for Improving L-Tryptophan Production. Appl. Microbiol. Biotechnol. 2013, 97, 6677–6683. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cheng, Y.; Xie, X.; Xu, Q.; Chen, N. Modification of Tryptophan Transport System and Its Impact on Production of L-Tryptophan in Escherichia coli. Bioresour. Technol. 2012, 114, 549–554. [Google Scholar] [CrossRef]
- Ramos-Valdovinos, M.A.; Salas-Navarrete, P.C.; Amores, G.R.; Hernández-Orihuela, A.L.; Martínez-Antonio, A. Qualitative Perturbation Analysis and Machine Learning: Elucidating Bacterial Optimization of Tryptophan Production. Algorithms 2024, 17, 282. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Shi, J.; Xu, Q.; Xie, X.; Chen, N. Fermentation Characterization of an L-Tryptophan Producing Escherichia coli Strain with Inactivated Phosphotransacetylase. Ann. Microbiol. 2013, 63, 1219–1224. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Z.; Liu, Z.; Xu, Q. Using Enzymatic Hydrolyzate as New Nitrogen Source for L-Tryptophan Fermentation by E. coli. Bioengineered 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Lee, J.H.; Sung, B.H.; Kim, M.S.; Blattner, F.R.; Yoon, B.H.; Kim, J.H.; Kim, S.C. Metabolic Engineering of a Reduced-Genome Strain of Escherichia coli for L-Threonine Production. Microb. Cell Fact. 2009, 8, 2. [Google Scholar] [CrossRef]
- Tran, K.-N.T.; Eom, G.T.; Hong, S.H. Improving L-Serine Production in Escherichia coli via Synthetic Protein Scaffold of SerB, SerC, and EamA. Biochem. Eng. J. 2019, 148, 138–142. [Google Scholar] [CrossRef]
- Gecse, G.; Labunskaite, R.; Pedersen, M.; Kilstrup, M.; Johanson, T. Minimizing Acetate Formation from Overflow Metabolism in Escherichia coli: Comparison of Genetic Engineering Strategies to Improve Robustness toward Sugar Gradients in Large-Scale Fermentation Processes. Front. Bioeng. Biotechnol. 2024, 12, 1339054. [Google Scholar] [CrossRef]
- Zhao, C.; Cheng, L.; Xu, Q.; Wang, J.; Shen, Z.; Chen, N. Improvement of the Production of L-Tryptophan in Escherichia coli by Application of a Dissolved Oxygen Stage Control Strategy. Ann. Microbiol. 2016, 66, 843–854. [Google Scholar] [CrossRef]
- Schütze, A.; Benndorf, D.; Püttker, S.; Kohrs, F.; Bettenbrock, K. The Impact of AckA, Pta, and AckA-Pta Mutations on Growth, Gene Expression and Protein Acetylation in Escherichia coli K-12. Front. Microbiol. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Phue, J.-N.; Shiloach, J. Impact of Dissolved Oxygen Concentration on Acetate Accumulation and Physiology of E. coli BL21, Evaluating Transcription Levels of Key Genes at Different Dissolved Oxygen Conditions. Metab. Eng. 2005, 7, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Jung, J.; Jang, I.-A.; Madsen, E.L.; Park, W. Role of Glyoxylate Shunt in Oxidative Stress Response. J. Biol. Chem. 2016, 291, 11928–11938. [Google Scholar] [CrossRef]
- Yang, P.; Liu, W.; Chen, Y.; Gong, A.-D. Engineering the Glyoxylate Cycle for Chemical Bioproduction. Front. Bioeng. Biotechnol. 2022, 10, 1066651. [Google Scholar] [CrossRef]
- Li, Z.; Ding, D.; Wang, H.; Liu, L.; Fang, H.; Chen, T.; Zhang, D. Engineering Escherichia coli to Improve Tryptophan Production via Genetic Manipulation of Precursor and Cofactor Pathways. Synth. Syst. Biotechnol. 2020, 5, 200–205. [Google Scholar] [CrossRef]
- Rui, B.; Shen, T.; Zhou, H.; Liu, J.; Chen, J.; Pan, X.; Liu, H.; Wu, J.; Zheng, H.; Shi, Y. A Systematic Investigation of Escherichia coli Central Carbon Metabolism in Response to Superoxide Stress. BMC Syst. Biol. 2010, 4, 122. [Google Scholar] [CrossRef]
- Cheng, L.-K.; Wang, J.; Xu, Q.-Y.; Zhao, C.-G.; Shen, Z.-Q.; Xie, X.-X.; Chen, N. Strategy for PH Control and PH Feedback-Controlled Substrate Feeding for High-Level Production of l-Tryptophan by Escherichia coli. World J. Microbiol. Biotechnol. 2013, 29, 883–890. [Google Scholar] [CrossRef]
- Jing, K.; Tang, Y.; Yao, C.; del Rio-Chanona, E.A.; Ling, X.; Zhang, D. Overproduction of L-tryptophan via Simultaneous Feed of Glucose and Anthranilic Acid from Recombinant Escherichia coli W3110: Kinetic Modeling and Process Scale-up. Biotechnol. Bioeng. 2018, 115, 371–381. [Google Scholar] [CrossRef]
- Cheng, L.-K.; Wang, J.; Xu, Q.-Y.; Xie, X.-X.; Zhang, Y.-J.; Zhao, C.-G.; Chen, N. Effect of Feeding Strategy on L-Tryptophan Production by Recombinant Escherichia coli. Ann. Microbiol. 2012, 62, 1625–1634. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Ding, D.; Cong, L.; Zhang, D. Rational Design and Analysis of an Escherichia coli Strain for High-Efficiency Tryptophan Production. J. Ind. Microbiol. Biotechnol. 2018, 45, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Millard, P.; Enjalbert, B.; Uttenweiler-Joseph, S.; Portais, J.-C.; Létisse, F. Control and Regulation of Acetate Overflow in Escherichia coli. eLife 2021, 10, e63661. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, D.; Cai, N.; Han, C.; Mao, Q.; Wang, T.; Zhou, Q.; Chen, N.; Xie, X. Betaine Supplementation Improved L-Threonine Fermentation of Escherichia coli THRD by Upregulating Zwf (Glucose-6-Phosphate Dehydrogenase) Expression. Electron. J. Biotechnol. 2019, 39, 67–73. [Google Scholar] [CrossRef]
- Cayley, S.; Lewis, B.A.; Record, M.T. Origins of the Osmoprotective Properties of Betaine and Proline in Escherichia coli K-12. J. Bacteriol. 1992, 174, 1586–1595. [Google Scholar] [CrossRef]
- Xu, Q.; Cheng, L.; Xie, X.; Zhang, C.; Li, Y.; Ning, C. Effect of Sodium Citrate on L-Tryptophan Fermentation by Escherichia coli. In Advances in Applied Biotechnology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 335–342. [Google Scholar]
- Luo, W.; Huang, J.; Zhu, X.; Huang, L.; Cai, J.; Xu, Z. Enhanced Production of L-Tryptophan with Glucose Feeding and Surfactant Addition and Related Metabolic Flux Redistribution in the Recombinant Escherichia coli. Food Sci. Biotechnol. 2013, 22, 207–214. [Google Scholar] [CrossRef]
- Gauthier, M.J.; Flatau, G.N.; Le Rudulier, D.; Clément, R.L.; Combarro Combarro, M.P. Intracellular Accumulation of Potassium and Glutamate Specifically Enhances Survival of Escherichia coli in Seawater. Appl. Environ. Microbiol. 1991, 57, 272–276. [Google Scholar] [CrossRef]
- McLaggan, D.; Naprstek, J.; Buurman, E.T.; Epstein, W. Interdependence of K+ and Glutamate Accumulation during Osmotic Adaptation of Escherichia coli. J. Biol. Chem. 1994, 269, 1911–1917. [Google Scholar] [CrossRef]
- Tazuya-Murayama, K.; Aramaki, H.; Mishima, M.; Saito, K.; Ishida, S.; Yamada, K. Effect of L-Serine on the Biosynthesis of Aromatic Amino Acids in Escherichia coli. J. Nutr. Sci. Vitaminol. 2006, 52, 256–260. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, A.-P. Rational Design and Metabolic Analysis of Escherichia coli for Effective Production of L-Tryptophan at High Concentration. Appl. Microbiol. Biotechnol. 2017, 101, 559–568. [Google Scholar] [CrossRef]
- Xu, Q.; Bai, F.; Chen, N.; Bai, G. Gene Modification of the Acetate Biosynthesis Pathway in Escherichia coli and Implementation of the Cell Recycling Technology to Increase L-Tryptophan Production. PLoS ONE 2017, 12, e0179240. [Google Scholar] [CrossRef]
- Xu, Q.; Bai, F.; Chen, N.; Bai, G. Removing the By-Products Acetic Acid and NH 4 + from the l -Tryptophan Broth by Vacuum Thin Film Evaporation during l-Tryptophan Production. Electron. J. Biotechnol. 2018, 33, 46–51. [Google Scholar] [CrossRef]
- Bertrand, R.L. Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division. J. Bacteriol. 2019, 201, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S. Theoretical Study of Tryptophan Operon: Application in Microbial Technology. Biotechnol. Bioeng. 1988, 31, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, C.P.; Imanaka, T.; Aiba, S. Instability of Plasmid-harboring Strain of E. coli in Continuous Culture. Biotechnol. Bioeng. 1982, 24, 1465–1468. [Google Scholar] [CrossRef]
- Shen, T.; Liu, Q.; Xie, X.; Xu, Q.; Chen, N. Improved Production of Tryptophan in Genetically Engineered Escherichia coli with TktA and PpsA Overexpression. J. Biomed. Biotechnol. 2012, 2012, 605219. [Google Scholar] [CrossRef]
- Li, X.; Kang, Y.; Yu, C.; Dai, J.; Wang, Z.; Li, Z.; Yao, J.; Li, P.; Zheng, G.; Chen, X. Exponential Feeding Strategy of High-Density Cultivation of a Salt-Tolerant Aroma-Producing Yeast Zygosaccharomyces rouxii in Stirred Fermenter. Biochem. Eng. J. 2016, 111, 18–23. [Google Scholar] [CrossRef]
- Gu, P.; Yang, F.; Kang, J.; Wang, Q.; Qi, Q. One-Step of Tryptophan Attenuator Inactivation and Promoter Swapping to Improve the Production of L-Tryptophan in Escherichia coli. Microb. Cell Fact. 2012, 11, 30. [Google Scholar] [CrossRef]
- Azuma, S.; Tsunekawa, H.; Okabe, M.; Okamoto, R.; Aiba, S. Hyper-Production of l-Trytophan via Fermentation with Crystallization. Appl. Microbiol. Biotechnol. 1993, 39, 471–476. [Google Scholar] [CrossRef]
- Ashworth, D.J.; Chen, C.S.; Mascarenhas, D. Direct Observation of Tryptophan Biosynthesis in Escherichia coli by Carbon-13 Nuclear Magnetic Resonance Spectroscopy. Anal. Chem. 1986, 58, 526–532. [Google Scholar] [CrossRef]
- Yuan, J.; Doucette, C.D.; Fowler, W.U.; Feng, X.; Piazza, M.; Rabitz, H.A.; Wingreen, N.S.; Rabinowitz, J.D. Metabolomics-driven Quantitative Analysis of Ammonia Assimilation in E. coli. Mol. Syst. Biol. 2009, 5, 302. [Google Scholar] [CrossRef]
- Buurman, E.T.; Joost Teixeira de Mattos, M.; Neijssel, O.M. Futile Cycling of Ammonium Ions via the High Affinity Potassium Uptake System (Kdp) of Escherichia coli. Arch. Microbiol. 1991, 155, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Shimizu, K. Metabolic Regulation of Escherichia coli and Its GdhA, GlnL, GltB, D Mutants under Different Carbon and Nitrogen Limitations in the Continuous Culture. Microb. Cell Fact. 2010, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Drakulic, T.; Temple, M.; Guido, R.; Jarolim, S.; Breitenbach, M.; Attfield, P.; Dawes, I. Involvement of Oxidative Stress Response Genes in Redox Homeostasis, the Level of Reactive Oxygen Species, and Ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.-K.; Lee, I.-S.; Kwak, W.-S.; Yoo, J.-H.; Hong, J.-T.; Kang, J.-H. Method for Preparing Amino Acid Granules from Fermented Liquid. KR Patent 10-2022-0000845; filed 25 June 2021, and issued 4 January 2022,
- Li, G.; Young, K.D. Indole Production by the Tryptophanase TnaA in Escherichia coli Is Determined by the Amount of Exogenous Tryptophan. Microbiology 2013, 159, 402–410. [Google Scholar] [CrossRef] [PubMed]
- von Kamp, A.; Klamt, S. Growth-Coupled Overproduction Is Feasible for Almost All Metabolites in Five Major Production Organisms. Nat. Commun. 2017, 8, 15956. [Google Scholar] [CrossRef]
- Chang, D.-E.; Jung, H.-C.; Rhee, J.-S.; Pan, J.-G. Homofermentative Production of D- or L-Lactate in Metabolically Engineered Escherichia coli RR1. Appl. Environ. Microbiol. 1999, 65, 1384–1389. [Google Scholar] [CrossRef]
- Wray, L.V.; Fisher, S.H. Functional Roles of the Conserved Glu304 Loop of Bacillus subtilis Glutamine Synthetase. J. Bacteriol. 2010, 192, 5018–5025. [Google Scholar] [CrossRef]
- Sen, A.K.; Liu, W. Dynamic Analysis of Genetic Control and Regulation of Amino Acid Synthesis: The Tryptophan Operon in Escherichia coli. Biotechnol. Bioeng. 1990, 35, 185–194. [Google Scholar] [CrossRef]
- Santillán, M.; Zeron, E.S. Dynamic Influence of Feedback Enzyme Inhibition and Transcription Attenuation on the Tryptophan Operon Response to Nutritional Shifts. J. Theor. Biol. 2004, 231, 287–298. [Google Scholar] [CrossRef]
- Bhartiya, S.; Rawool, S.; Venkatesh, K.V. Dynamic Model of Escherichia coli Tryptophan Operon Shows an Optimal Structural Design. Eur. J. Biochem. 2003, 270, 2644–2651. [Google Scholar] [CrossRef]
- Xiu, Z.; Chang, Z.; Zeng, A. Nonlinear Dynamics of Regulation of Bacterial Trp Operon: Model Analysis of Integrated Effects of Repression, Feedback Inhibition, and Attenuation. Biotechnol. Prog. 2002, 18, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Gómez, D.I.; Sosa-Hernández, J.E.; Gallardo-Navarro, Ó.A.; Santana-Solano, J.; Santillán, M. Bistable Behaviour and Medium-Dependent Post-Translational Regulation of the Tryptophanase Operon Regulatory Pathway in Echerichia coli. Sci. Rep. 2019, 9, 5451. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Mu, X.; Li, Z.; Teng, H.; Xiu, Z. Robustness and Nonlinear Dynamic Analysis for Trp Operon and Optimization of Tryptophan Production: An Integrated Model Considering Gene Regulation, Genes Interaction and Product Excretion. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; IEEE: New York, NY, USA; pp. 1–7. [Google Scholar]
- Zhang, J.; Petersen, S.D.; Radivojevic, T.; Ramirez, A.; Pérez-Manríquez, A.; Abeliuk, E.; Sánchez, B.J.; Costello, Z.; Chen, Y.; Fero, M.J.; et al. Combining Mechanistic and Machine Learning Models for Predictive Engineering and Optimization of Tryptophan Metabolism. Nat. Commun. 2020, 11, 4880. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Xu, Y.; Xu, F.; Shao, M.; Huang, M. Machine Learning Algorithms for In-Line Monitoring during Yeast Fermentations Based on Raman Spectroscopy. Vib. Spectrosc. 2024, 132, 103672. [Google Scholar] [CrossRef]
Parameter | Pathways | Genes * | Effect | Ref. |
---|---|---|---|---|
Low DO | Acetate, glyoxylate shunt, TCA cycle | pta, ackA, poxB, tdcD, gltA, icd | Acetyl-CoA, pyruvate, lactate, and acetate accumulation. | [14,65,68,93,98,99,100] |
High DO | Acetate degradation, glycolysis, gluconeogenesis, PTS, PPP, glutamate and tryptophan | fba, rpoS, acs, pckA, ppsA, ppc, maeA, pfk, zwf, pgl, tktA, araD, aroG, aroK, trpEDCBA, gdhA, pntAB | Acetate consumption, production of PEP, E4P, NADPH, tryptophan, and glutamate, reduction in glucose consumption, and oxidative stress. | [14,65,68,98,101,102,103,104] |
Low pH | Glycolysis, acetate, and TCA cycle | pfk, sucB, sucC | Low growth rate, stable plasmids, low acetate production, and tryptophan crystallization. | [14,37,44,68,105] |
High pH | Acetate, shikimate, and tryptophan | pta, aroK, tnaA, tnaB | Accumulation of acetate, NH4+, and K+, and tryptophan production. | [7,68,105] |
Low growth rate | Glycolysis, acetate | Plasmid stability, low acetate production, increased tryptophan production. | [13,28,91,105] | |
High growth rate | Glycolysis, acetate | Biomass and acetate accumulation. | [13,97,105,106,107] | |
Low feed rate | Glycolysis, acetate, and tryptophan | Low production of acetate, biomass, and tryptophan. | [14,38,65,68,93,98,106,107,108] | |
High feed rate | Acetate and glutamate | gdhA | Acetate and glutamate accumulation. | [14,38,86,97,100,105,107,109] |
Calcium | TCA cycle | gltA, icd, sucC | Increase ATP and biomass production | [67,69] |
Betaine | PPP, stress response, and K+ uptake | zwf | The activation of PPP, osmotic stress relief, reduced glutamate accumulation, and reduced K+ uptake. | [110,111] |
Citrate | Ca2+ uptake, glycolysis, PPP, and TCA cycle | pykAF, zwf, gltA | Reduce production of acetate and glutamate while increasing accumulation of PEP, NADH, NADPH, and ATP. | [87,112] |
High organic nitrogen | Increase acetate and biomass production. | [94,112] | ||
Inorganic nitrogen | Glutamate, tryptophan, glutamine | glnA | Increase energy waste, change pH, affect ionic strength, provide NH4+ for tryptophan production, and reduce plasmid stability. | [13] |
Phosphate | Glycolysis | Increase growth rate, increase acetate accumulation. | [7,70,113] | |
Surfactants | PPP, tryptophan transport, glutamate | zwf, yddG, trpBA | Enhance crystallization and secretion of tryptophan, reduce inhibition, and make it a sink for indole. | [4,7,113] |
Cation’s accumulation | Changing pH and ionic strength makes the purification of tryptophan difficult and increases glutamate accumulation. | [68,105,111,114,115] | ||
Precursors | Tryptophan, isoleucine, threonine | trpC, serA, thrA | Improve tryptophan production and feedback inhibition of precursor pathway. | [4,68,106] |
Phenylalanine | Relieves serine inhibition and blocks common pathways of aromatic amino acids. | [15,116] | ||
Leucine | Relieves serine inhibition. | [116] | ||
Isoleucine | Isoleucine | Relieves serine inhibition. | [116] | |
Methionine | Methionine | Increase production of proteins and reduce accumulation of acetate. | [3,31,84,107,112] | |
The high volume of inoculum | Increase rate growth and reduce lag-phase. | [70,117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Valdovinos, M.A.; Martínez-Antonio, A. Optimizing Fermentation Strategies for Enhanced Tryptophan Production in Escherichia coli: Integrating Genetic and Environmental Controls for Industrial Applications. Processes 2024, 12, 2422. https://doi.org/10.3390/pr12112422
Ramos-Valdovinos MA, Martínez-Antonio A. Optimizing Fermentation Strategies for Enhanced Tryptophan Production in Escherichia coli: Integrating Genetic and Environmental Controls for Industrial Applications. Processes. 2024; 12(11):2422. https://doi.org/10.3390/pr12112422
Chicago/Turabian StyleRamos-Valdovinos, Miguel Angel, and Agustino Martínez-Antonio. 2024. "Optimizing Fermentation Strategies for Enhanced Tryptophan Production in Escherichia coli: Integrating Genetic and Environmental Controls for Industrial Applications" Processes 12, no. 11: 2422. https://doi.org/10.3390/pr12112422
APA StyleRamos-Valdovinos, M. A., & Martínez-Antonio, A. (2024). Optimizing Fermentation Strategies for Enhanced Tryptophan Production in Escherichia coli: Integrating Genetic and Environmental Controls for Industrial Applications. Processes, 12(11), 2422. https://doi.org/10.3390/pr12112422