The Ascorbic Acid-Modified Fenton System for the Degradation of Bisphenol A: Kinetics, Parameters, and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Degradation Experiment
2.3. Quenching Experiment
2.4. Analysis Methods
3. Results and Discussion
3.1. Kinetics of BPA Degradation in Different Systems
3.2. The Effect of Vc/Fe(III) Ratio on the Degradation of BPA
3.3. The Effect of Initial pH Value on the Degradation of BPA
3.4. Identification of ROS
3.5. Reaction Mechanism
3.6. BPA Degradation Pathways and Product Toxicity Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Céspedes, R.; Petrovic, M.; Raldúa, D.; Saura, Ú.; Piña, B.; Lacorte, S.; Viana, P.; Barceló, D. Integrated procedure for determination of endocrine-disrupting activity in surface waters and sediments by use of the biological technique recombinant yeast assay and chemical analysis by LC-ESI-MS. Anal. Bioanal. Chem. 2004, 378, 697–708. [Google Scholar] [PubMed]
- Mohapatra, D.P.; Brar, S.K.; Tyagi, R.D.; Surampalli, R.Y. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge—Fate of bisphenol A. Chemosphere 2010, 78, 923–941. [Google Scholar] [CrossRef] [PubMed]
- Malaisé, Y.; Ménard, S.; Cartier, C.; Lencina, C.; Sommer, C.; Gaultier, E.; Houdeau, E.; Guzylack-Piriou, L. Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice. Arch. Toxicol. 2018, 92, 347–358. [Google Scholar] [CrossRef]
- Pivonello, C.; Muscogiuri, G.; Nardone, A.; Garifalos, F.; Provvisiero, D.P.; Verde, N.; de Angelis, C.; Conforti, A.; Piscopo, M.; Auriemma, R.S.; et al. Bisphenol A: An emerging threat to female fertility. Reprod. Biol. Endocrinol. 2020, 18, 22. [Google Scholar] [CrossRef]
- Wu, W.; Li, M.; Liu, A.; Wu, C.; Li, D.; Deng, Q.; Zhang, B.; Du, J.; Gao, X.; Hong, Y. Bisphenol A and the Risk of Obesity a Systematic Review with Meta-Analysis of the Epidemiological Evidence. Dose Response 2020, 18, 1559325820916949. [Google Scholar] [CrossRef]
- Luo, D.; Tang, X.; Wang, Y.; Ying, S.; He, Y.; Lin, H.; Khoso, P.A.; Li, S. Selenium deficiency exacerbated Bisphenol A-induced intestinal toxicity in chickens: Apoptosis and cell cycle arrest mediated by ROS/P53. Sci. Total Environ. 2024, 913, 169730. [Google Scholar] [CrossRef]
- Gorini, F.; Bustaffa, E.; Coi, A.; Iervasi, G.; Bianchi, F. Bisphenols as environmental triggers of thyroid dysfunction: Clues and evidence. Int. J. Environ. Res. Public Health 2020, 17, 2654. [Google Scholar] [CrossRef] [PubMed]
- Vethaak, A.D.; Lahr, J.; Schrap, S.M.; Belfroid, A.C.; Rijs, G.B.; Gerritsen, A.; Boer, J.; Bulder, A.S.; Grinwis, G.C.M.; Kuiper, R.V.; et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of the Netherlands. Chemosphere 2005, 59, 511–524. [Google Scholar] [CrossRef]
- Zimmers, S.M.; Browne, E.P.; O’keefe, P.W.; Anderton, D.L.; Kramer, L.; Rechhow, D.A.; Arcaro, K.F. Determination of free Bisphenol A (BPA) concentrations in breast milk of U.S. women using a sensitive LC/MS/MS method. J. Chemosphere 2014, 104, 237–243. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Wu, M.; Shi, Y.; Yang, J.; Shan, J.; Liu, L. Simultaneous Determination of Bisphenol A and Bisphenol S Using Multi-Walled Carbon Nanotubes Modified Electrode. Int. J. Electrochem. Sci. 2018, 13, 11906–11922. [Google Scholar] [CrossRef]
- Salgueiro-Gonzalez, N.; Castiglioni, S.; Zuccato, E.; Turnes-Carou, I.; Lopez-Mahia, P.; Muniategui-Lorenzo, S. Recent advances in analytical methods for the determination of 4-alkylphenols and bisphenol A in solid environmental matrices: Acritical review. Anal. Chim. Acta 2018, 1024, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Liu, Z.; Yin, H.; Dang, Z.; Wu, P.; Zhu, N.; Lin, Z. Bisphenol A concentrations in human urine, human intakes across six continents, and annual trends of average intakes in adult and child populations worldwide: A thorough literature review. Sci. Total Environ. 2018, 626, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Tanatti, N.P.; Balkaya, E.; Sengil, I.A. Kinetic and statistical analysis of Bisphenol A in wastewaters by ozonation and electrooxidation-ozonation processes. Desalination Water Treat. 2020, 204, 429–437. [Google Scholar] [CrossRef]
- Porcar-Santos, O.; Cruz-Alcalde, A.; Sans, C. Aqueous oxidation of bisphenol analogues by ozone: Relevance of substituents on reactivity. J. Environ. Chem. Eng. 2023, 11, 110849. [Google Scholar] [CrossRef]
- Porcar-Santos, O.; Cruz-Alcalde, A.; Bayarri, B.; Sans, C. Reactions of bisphenol F and bisphenol S with ozone and hydroxyl radical: Kinetics and mechanisms. Sci. Total Environ. 2022, 846, 157173. [Google Scholar] [CrossRef]
- Reddy, P.V.L.; Kim, K.H.; Kavitha, B.; Kumar, V.; Raza, N.; Kalagara, S. Photocatalytic degradation of bisphenol A in aqueous media: A review. J. Environ. Manag. 2018, 213, 189–205. [Google Scholar] [CrossRef]
- Guo, J.; Sun, H.; Yuan, X.; Jiang, L.; Wu, Z.; Yu, H.; Tang, N.; Yu, M.; Yan, M.; Liang, J. Photocatalytic degradation of persistent organic pollutants by Co-Cl bond reinforced CoAl-LDH/Bi12O17Cl2 photocatalyst: Mechanism and application prospect evaluation. Water Res. 2022, 219, 118558. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yu, H.; Wang, L.; Liu, X.; Ren, S.; Liu, J. Ferrocene-modified Uio-66-NH2 hybrids with g-C3N4 as enhanced photocatalysts for degradation of bisphenol A under visible light. J. Hazard. Mater. 2022, 436, 129052. [Google Scholar] [CrossRef]
- Ji, M.; Xia, J.; Di, J.; Liu, Y.; Chen, R.; Chen, Z.; Yin, S.; Li, H. Graphene-like boron nitride induced accelerated charge transfer for boosting the photocatalytic behavior of Bi4O5I2 towards bisphenol a removal. Chem. Eng. J. 2018, 331, 355–363. [Google Scholar] [CrossRef]
- Tong, T.; Li, R.; Chen, J.; Ke, Y.; Xie, S. Bisphenol A biodegradation differs between mudflat and mangrove forest sediments. Chemosphere 2021, 270, 128664. [Google Scholar] [CrossRef]
- Frankowski, R.; Zgola-Grzeskowiak, A.; Smulek, W.; Grzeskowiak, T. Removal of Bisphenol A and Its Potential Substitutes by Biodegradation. Appl. Biochem. Biotechnol. 2020, 191, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Gao, J.; Niu, S.; Wang, X.; Li, T.; Liu, S.; Lin, Y.; Xie, T.; Dong, S. Comparing dark- and photo-Fenton-like degradation of emerging pollutant over photo-switchable Bi2WO6/CuFe2O4: Investigation on dominant reactive oxidation species. J. Environ. Sci. 2021, 106, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhu, M.; Peng, J. Fenton-like degradation of bisphenol A by Fe3O4 rhombic dodecahedrons. New J. Chem. 2023, 47, 10857–10865. [Google Scholar] [CrossRef]
- Aguiar, A.; Ferraz, A.; Contreras, D.; Rodríguez, J. Mechanism and applications of the Fenton reaction assisted by iron-reducing phenolic compounds. Quim. Nova 2007, 30, 623–628. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, C.; Liu, H. Fenton-like degradation of dimethyl phthalate enhanced by quinone species. J. Hazard. Mater. 2020, 382, 121007. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, J.; Li, X.; Zang, J.; Fang, J.; Guan, Y.; Xie, P. Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environ. Sci. Technol. 2011, 45, 3925–3930. [Google Scholar] [CrossRef] [PubMed]
- Borsook, H.; Keighley, G. Oxidation-Reduction Potential of Ascorbic Acid (Vitamin C). J. Proc. Natl. Acad. Sci. USA 1933, 19, 875–878. [Google Scholar] [CrossRef] [PubMed]
- Buxton, G.V.; Greenstock, C.L.; Helman, P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Hart, E.J.; Gordon, S.; Thomas, J.K. Rate Constants of Hydrated Electron Reactions with Organic Compounds1. J. Phys. Chem. 1964, 68, 1271–1274. [Google Scholar] [CrossRef]
- Webb, J.D.; Czanderna, A.W. End-Group Effects on the Wavelength Dependence of Laser-Induced Photodegradation in Bisphenol-A Polycarbonate. J. Macromol. 1986, 19, 2810–2825. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, W.; Li, J.; Chang, Y.; Wang, Y.; Zhang, J.; Zhang, B.; Gao, X. Simultaneous determination of catechin, epicatechin and epicatechin gallate in rat plasma by LC-ESI-MS/MS for pharmacokinetic studies after oral administration of Cynomorium songaricum extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 880, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Bautista, P.; Mohedane, A.F.; Casas, A.; Zazo, J.A. An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biot. 2008, 83, 1323–1338. [Google Scholar] [CrossRef]
- Lynch, S.R.; Stoltzfus, R.J. Iron and Ascorbic Acid: Proposed Fortification Levels and Recommended Iron Compounds. J. Nutr. 2003, 133, 2978S–2984S. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.L.; Zhu, G.; He, H.; Huang, B.; Xiong, Z.; Lai, B. Research prospect of single-atom catalysts for Fenton-like water treatment. J. Appl. Chem. 2019, 41, 217–229. [Google Scholar]
- Molla, M.A.I.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Mineralization of Diazinon with nanosized-photocatalyst TiO2 in water under sunlight irradiation: Optimization of degradation conditions and reaction pathway. Environ. Technol. 2020, 41, 3524–3533. [Google Scholar] [CrossRef]
- Schöneshöfer, M. Pulsradiolytische Untersuchung zur Oxidation der Ascorbinsäure durch OH-Radikale und Halogen-Radikal-Komplexe in wäßriger Lösung/Pulse Radiolysis Studies of the Oxidation of Ascorbic Acid by OH-radicals and Halide Radical Anion Complexes in Aqueous Solution. J. Zeitschrift für Naturforschung B. 2014, 27, 649–659. [Google Scholar]
- Choi, Y.J.; Lee, L.S. Partitioning Behavior of Bisphenol Alternatives BPS and BPAF Compared to BPA. Environ. Sci. Technol. 2017, 51, 3725–3732. [Google Scholar] [CrossRef]
- Gu, T.; Dong, H.; Lu, T.; Han, L.; Zhang, Y. Fluoride ion accelerating degradation of organic pollutants by Cu(II)-catalyzed Fenton-like reaction at wide pH range. J. Hazard. Mater. 2019, 377, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Han, X.L.; Wang, N.N.; Zhang, W.; Liu, X.D.; Yu, Q.; Lei, J.Y.; Zhou, L.; Xiu, G.L. Ascorbic acid promoted sulfamethoxazole degradation in MIL-88B(Fe)/H2O2 Fenton-like system. J. Environ. Chem. Eng. 2023, 11, 109144. [Google Scholar] [CrossRef]
- Yuan, Y.; Shi, J.X.; Xie, W.S.; Wang, G.W.; Wang, Y.; Tang, J.; Lu, H.J. Enhancing the Fenton-like degradation of organic contaminants with silicate-iron in aquifer media by ascorbic acid. Colloid. Surface. Asp. 2024, 685, 133307. [Google Scholar] [CrossRef]
- Sun, H.W.; Xie, G.H.; He, D.; Zhang, L.Z. Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling. Appl. Catal. B Environ. 2020, 267, 118383. [Google Scholar] [CrossRef]
- Wu, T.T.; Wu, C.H.; Xiang, Y.C.; Huang, J.Q.; Luan, L.L.; Chen, S.G.; Hu, Y.Q. Kinetics and mechanism of degradation of chitosan by combining sonolysis with H2O2/ascorbic acid. RSC Adv. 2016, 6, 76280–76287. [Google Scholar] [CrossRef]
- Han, C.; Yu, H.; Ma, L. Degradation of atrazine in water by ascorbic acid activated persulfate. Environ. Sci. Technol. 2021, 34, 33–37. [Google Scholar]
- Cheng, Y.; Zhang, G.; Liu, H.; Qu, J. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes. Angew. Chem. Int. Ed. 2019, 58, 8134–8138. [Google Scholar] [CrossRef]
- Ivanov, V.L.; Lyashkevich, S.Y. Effect of Electron Scavengers on the Chain Reaction of Sulfo-Group Substitution for Bromine in 1-Bromo-2-hydroxynaphthalene Photosensitized with Tris (2,2′-bipyridyl) ruthenium(II). J. High Energy Chem. 2005, 39, 304–308. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, J.; Li, Y.; Wang, Y.; Qiu, T.; Wu, Y.; Dong, W.; Mailhot, G. Improving Fenton-like system with Catechin, an environmental-friendly polyphenol: Effects and mechanism. Chem. Eng. J. 2021, 426, 127946. [Google Scholar] [CrossRef]
- Dorn, P.B.; Chou, C.S.; Gentempo, J.J. Degradation of bisphenol A in natural waters. Chemosphere 1987, 16, 1501–1507. [Google Scholar] [CrossRef]
- Lu, Z.; Fan, Y.; Chen, J.; Yang, J.; Wu, C.; Sun, Q. Prediction and toxicity assessment of halogenated flame retardants by ultraviolet/hypochlorous acid system based on Gaussian and ECOSAR models. J. Environ. Chem. 2024, 43, 82–91. [Google Scholar]
- Chen, J.; Fan, Y.; Yang, J.; Cai, K.; Zheng, Y.; Wang, F.; Sun, Q. Degradation Pathway and Toxicity prediction of nitrogen and phosphorus flame retardants based on Guassian, Multiwfn and ECOSAR in UV/PDS system. J. Environ. Sci. 2022, 12, 39–48. [Google Scholar]
- Tarko, L.; Putz, M.V.; Ionascu, C.; Putz, A.M. QSTR studies regarding the ECOSAR toxicity of benzene-carboxylic acid’ esters to fathead minnow fish (Pimephales promelas). Curr. Comput. Aided Drug Des. 2014, 10, 99–106. [Google Scholar] [CrossRef]
Compounds | Concentration (mg/L) | ||
---|---|---|---|
Fish (96h-LC50) | Daphnid (48h-LC50) | Green Algae (96h-EC50) | |
BPA (P0) | 6.27 | 4.15 | 5.78 |
MW244 (P1) | 18.1 | 11.5 | 13.3 |
MW136 (P2) | 15.1 | 10.37 | 10.1 |
MW152 (P3) | 377 | 204 | 124 |
MW134 (P4) | 15.1 | 9.35 | 10.1 |
MW138 (P5) | 874 | 453 | 232 |
MW122 (P6) | 286 | 155 | 105.2 |
MW132 (P7) | 593 | 313 | 171 |
MW120 (P8) | 194 | 107 | 70.2 |
MW110 (P9) | 669 | 347 | 179 |
MW94 (P10) | 212 | 115 | 71.1 |
MW108 (P11) | 3330 | 1610 | 614 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Gu, J.; Fang, Z.; Shan, Y.; Guan, J. The Ascorbic Acid-Modified Fenton System for the Degradation of Bisphenol A: Kinetics, Parameters, and Mechanism. Processes 2024, 12, 2588. https://doi.org/10.3390/pr12112588
Wu Y, Gu J, Fang Z, Shan Y, Guan J. The Ascorbic Acid-Modified Fenton System for the Degradation of Bisphenol A: Kinetics, Parameters, and Mechanism. Processes. 2024; 12(11):2588. https://doi.org/10.3390/pr12112588
Chicago/Turabian StyleWu, Yanlin, Jiawei Gu, Zhongyi Fang, Yuang Shan, and Jie Guan. 2024. "The Ascorbic Acid-Modified Fenton System for the Degradation of Bisphenol A: Kinetics, Parameters, and Mechanism" Processes 12, no. 11: 2588. https://doi.org/10.3390/pr12112588
APA StyleWu, Y., Gu, J., Fang, Z., Shan, Y., & Guan, J. (2024). The Ascorbic Acid-Modified Fenton System for the Degradation of Bisphenol A: Kinetics, Parameters, and Mechanism. Processes, 12(11), 2588. https://doi.org/10.3390/pr12112588