Growth Optimizer Algorithm for Economic Load Dispatch Problem: Analysis and Evaluation
Abstract
:1. Introduction
- The Growth Optimizer (GO), a novel metaheuristic method, is utilized to address the ELD problem.
- Talk about ELD for the 6-, 10-, and 20-unit systems network studies.
- The Rime-ice algorithm (RIME), Tunicate Swarm Algorithm (TSA), Grey Wolf Optimizer (GWO), and Elephant Herding Optimization (EHO) are compared with the proposed GO approach for the identical case study.
- Also, the GO algorithm is compared with various approaches in the literature such as Monarch butterfly optimization (MBO), the Sine Cosine algorithm (SCA), the chimp optimization algorithm (ChOA), the moth search algorithm (MSA), and the snow ablation algorithm (SAO).
- For the statistical data of all used methods, the mean, standard deviation, maximum, and minimum fitness function values over 30 runs are utilized.
- The power imbalance between the unit’s generated power and the load demand is used to evaluate GO and all other approaches.
- Every method is tested over thirty runs based on the robustness and convergence statistics.
- The effectiveness of GO and all other approaches is determined by the power differential between the unit’s generated power and the load demand.
2. Economic Load Dispatch Problem
3. Growth Optimizer
3.1. The GO Process
3.1.1. The Learning Phase
3.1.2. The Reflection Phase
3.2. The GO Pseudocode
Algorithm 1: This is the GO algorithm pseudocode. |
Input: N, , D, , , = 0.3, = 0.001, = 0.3 Result: worldwide ideal outcome Use = lb + (ub − lb) − rand(N, D) to initialize the population and then evaluate (i = 1, ……, N) while FEs <= MaxFEs = X(ind(1).:) for i = 1 : N Calculate Gapk using Equation (6). Calculate using Equation (7). Calculate using Equation (8). Calculate using Equation (9). As Equation (10), finish the learning process for the ith individual once. Finalize the ith individual’s update in accordance with Equation (11) Real-time update end for i = 1: N Follow Equations (12) and (13) to finish the reflection process for the ith individual once. Finalize the ith individual’s update in accordance with Equation (11) Real-time update End End Export |
4. ELD Results
- Six generators operating at a load of 1000 MW comprise the first case study.
- There are 10 generators in the second case study operating at a 2000 MW load.
- The third case study has 20 generators operating at a 3000 MW load.
4.1. Analysis Results of Six Generators
4.2. Analysis Results of Ten Generators
4.3. Analysis Results of Twenty Generators
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Said, M.; Shaheen, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Estimating Parameters of Photovoltaic Models Using Accurate Turbulent Flow of Water Optimizer. Processes 2021, 9, 627. [Google Scholar] [CrossRef]
- Ben Aribia, H.; El-Rifaie, A.M.; Tolba, M.A.; Shaheen, A.; Moustafa, G.; Elsayed, F.; Elshahed, M. Growth Optimizer for Parameter Identification of Solar Photovoltaic Cells and Modules. Sustainability 2023, 15, 7896. [Google Scholar] [CrossRef]
- Houssein, E.H.; Samee, N.A.; Alabdulhafith, M.; Said, M. Extraction of PEM Fuel Cell Parameters using Walrus Optimizer. AIMS Math. 2024, 9, 12726–12750. [Google Scholar] [CrossRef]
- Ismaeel, A.A.; Houssein, E.H.; Khafaga, D.S.; Aldakheel, E.A.; Said, M. Performance of rime-ice algorithm for estimating the PEM fuel cell parameters. Energy Rep. 2024, 11, 3641–3652. [Google Scholar] [CrossRef]
- Said, M.; Houssein, E.H.; Deb, S.; Alhussan, A.A.; Ghoniem, R.M. A Novel Gradient Based Optimizer for Solving Unit Commitment Problem. IEEE Access 2022, 10, 18081–18092. [Google Scholar] [CrossRef]
- Houssein, E.H.; Deb, S.; Oliva, D.; Rezk, H.; Alhumade, H.; Said, M. Performance of Gradient-Based Optimizer on Charging Station Placement Problem. Mathematics 2021, 9, 2821. [Google Scholar] [CrossRef]
- Deb, S.; Abdelminaam, D.S.; Said, M.; Houssein, E.H. Recent methodology-based gradient-based optimizer for economic load dispatch problem. IEEE Access 2021, 9, 44322–44338. [Google Scholar] [CrossRef]
- Singh, N.; Chakrabarti, T.; Chakrabarti, P.; Margala, M.; Gupta, A.; Praveen, S.P.; Krishnan, S.B.; Unhelkar, B. Novel heuristic optimization technique to solve economic load dispatch and economic emission load dispatch problems. Electronics 2023, 12, 2921. [Google Scholar] [CrossRef]
- Chen, C.; Qu, L.; Tseng, M.L.; Li, L.; Chen, C.C.; Lim, M.K. Reducing fuel cost and enhancing the resource utilization rate in energy economic load dispatch problem. J. Clean. Prod. 2022, 364, 132709. [Google Scholar] [CrossRef]
- Braik, M.; Awadallah, M.A.; Al-Betar, M.A.; Hammouri, A.I. A hybrid capuchin search algorithm with gradient search algorithm for economic dispatch problem. Soft Comput. 2023, 27, 16809–16841. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Eid, A.; Nasrat, L.; Jurado, F.; Elnaggar, M.F. A developed eagle-strategy supply-demand optimizer for solving economic load dispatch problems. Ain Shams Eng. J. 2023, 14, 102083. [Google Scholar] [CrossRef]
- Said, M.; Houssein, E.H.; Aldakheel, E.A.; Khafaga, D.S.; Ismaeel, A.A.K. Performance of the Walrus Optimizer for solving an economic load dispatch problem. AIMS Math. 2024, 9, 10095–10120. [Google Scholar] [CrossRef]
- Mohammadi, F.; Abdi, H. A modified crow search algorithm (MCSA) for solving economic load dispatch problem. Appl. Soft Comput. 2018, 71, 51–65. [Google Scholar] [CrossRef]
- He, X.; Rao, Y.; Huang, J. A novel algorithm for economic load dispatch of power systems. Neurocomputing 2016, 171, 1454–1461. [Google Scholar] [CrossRef]
- Ali, M.H.; El-Rifaie, A.M.; Youssef, A.A.F.; Tulsky, V.N.; Tolba, M.A. Techno-Economic Strategy for the Load Dispatch and Power Flow in Power Grids Using Peafowl Optimization Algorithm. Energies 2023, 16, 846. [Google Scholar] [CrossRef]
- Ismaeel, A.A.K.; Houssein, E.H.; Khafaga, D.S.; Aldakheel, E.A.; AbdElrazek, A.S.; Said, M. Performance of Snow Ablation Optimization for Solving Optimum Allocation of Generator Units. IEEE Access 2024, 12, 17690–17707. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Jurado, F.; Desideri, U. Global optimization of economic load dispatch in large scale power systems using an enhanced social network search algorithm. Int. J. Electr. Power Energy Syst. 2024, 156, 109719. [Google Scholar] [CrossRef]
- Jabr, R.; Coonick, A.; Cory, B. A homogeneous linear programming algorithm for the security constrained economic dispatch problem. IEEE Trans. Power Syst. 2000, 15, 930–936. [Google Scholar] [CrossRef]
- Raj, V.M.; Chanana, S. Analysis of unit commitment problem through Lagrange relaxation and priority listing method. In Proceedings of the 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, 5–7 December 2014. [Google Scholar]
- Xu, Y.; Zhang, W.; Liu, W. Distributed Dynamic Programming-Based Approach for Economic Dispatch in Smart Grids. IEEE Trans. Ind. Inform. 2015, 11, 166–175. [Google Scholar] [CrossRef]
- Papageorgiou, L.G.; Fraga, E.S. A mixed integer quadratic programming formulation for the economic dispatch of generators with prohibited operating zones. Electr. Power Syst. Res. 2007, 77, 1292–1296. [Google Scholar] [CrossRef]
- Lin, W.-M.; Chen, S.-J. Bid-based dynamic economic dispatch with an efficient interior point algorithm. Int. J. Electr. Power Energy Syst. 2002, 24, 51–57. [Google Scholar] [CrossRef]
- Mishra, S.; Shaik, A.G. Solving bi-objective economic-emission load dispatch of diesel-wind-solar microgrid using African vulture optimization algorithm. Heliyon 2024, 10, e24993. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Ouyang, H.; Zhang, C.; Li, S.; Mohamed, A.W. A constrained cooperative adaptive multi-population differential evolutionary algorithm for economic load dispatch problems. Appl. Soft Comput. 2022, 121, 108719. [Google Scholar] [CrossRef]
- Sharifzadeh, H. Two efficient logarithmic formulations to solve nonconvex economic dispatch. Electr. Power Syst. Res. 2024, 229, 110123. [Google Scholar] [CrossRef]
- Hu, Z.; Dai, C.; Su, Q. Adaptive backtracking search optimization algorithm with a dual-learning strategy for dynamic economic dispatch with valve-point effects. Energy 2022, 248, 123558. [Google Scholar] [CrossRef]
- Sharifian, Y.; Abdi, H. Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm. Energy 2023, 267, 126550. [Google Scholar] [CrossRef]
- Ragunathan, R.; Ramadoss, B. Golden jackal optimization for economic load dispatch problems with complex constraints. Bull. Electr. Eng. Inform. 2024, 13, 781–793. [Google Scholar] [CrossRef]
- Jain, A.K.; Gidwani, L. Dynamic economic load dispatch in microgrid using hybrid moth-flame optimization algorithm. Electr. Eng. 2024, 106, 3721–3741. [Google Scholar] [CrossRef]
- Wadood, A.; Ghani, A. An application of Gorilla troops optimizer in solving the problem of economic load dispatch considering valve point loading effect. Eng. Res. Express 2024, 6, 015310. [Google Scholar] [CrossRef]
- Brar, M.S.; Brar, G.S. Economic Load Dispatch using IYSGA. Eur. J. Theor. Appl. Sci. 2024, 2, 595–606. [Google Scholar] [CrossRef]
- Nagarajan, K.; Rajagopalan, A.; Bajaj, M.; Sitharthan, R.; Mohammadi, S.A.D.; Blazek, V. Optimizing dynamic economic dispatch through an enhanced Cheetah-inspired algorithm for integrated renewable energy and demand-side management. Sci. Rep. 2024, 14, 3091. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Mishra, V.N.; Parouha, R.P. Optimization of economic dispatch using updated differential evolution algorithm. Int. J. Inf. Technol. 2024, 16, 2315–2329. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Jurado, F.; Ebeed, M.; Elnaggar, M.F. Economic load dispatch solution of large-scale power systems using an enhanced beluga whale optimizer. Alex. Eng. J. 2023, 72, 573–591. [Google Scholar] [CrossRef]
- Ismaeel, A.A.K.; Houssein, E.H.; Khafaga, D.S.; Aldakheel, E.A.; AbdElrazek, A.S.; Said, M. Performance of osprey optimization algorithm for solving economic load dispatch problem. Mathematics 2023, 11, 4107. [Google Scholar] [CrossRef]
- Singh, P.; Singh, S.; Paprzycki, M. DICO: Dingo coot optimization-based ZF net for pansharpening. Int. J. Knowl.-Based Intell. Eng. Syst. 2022, 26, 271–288. [Google Scholar] [CrossRef]
- Bisoi, R.; Parhi, P.; Dash, P. Hybrid modified weighted water cycle algorithm and Deep Analytic Network for forecasting and trend detection of forex market indices. Int. J. Knowl.-Based Intell. Eng. Syst. 2022, 26, 249–269. [Google Scholar] [CrossRef]
- Al-Betar, M.A.; Awadallah, M.A.; Makhadmeh, S.N.; Abu Doush, I.; Abu Zitar, R.; Alshathri, S.; Elaziz, M.A. A hybrid Harris Hawks optimizer for economic load dispatch problems. Alex. Eng. J. 2023, 64, 365–389. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Domínguez-García, J.L.; El-Naggar, M.F. MSSA-DEED: A multi-objective salp swarm algorithm for solving dynamic economic emission dispatch problems. Sustainability 2022, 14, 9785. [Google Scholar] [CrossRef]
- Said, M.; Houssein, E.H.; Deb, S.; Ghoniem, R.M.; Elsayed, A.G. Economic load dispatch problem based on search and rescue optimization algorithm. IEEE Access 2022, 10, 47109–47123. [Google Scholar] [CrossRef]
- Iqbal, M.N.; Bhatti, A.R.; Butt, A.D.; Sheikh, Y.A.; Paracha, K.N.; Ashique, R.H. Solution of economic dispatch problem using hybrid multi-verse optimizer. Electr. Power Syst. Res. 2022, 208, 107912. [Google Scholar] [CrossRef]
- Kabir, A.M.; Kamal, M.; Ahmad, F.; Ullah, Z.; Albogamy, F.R.; Hafeez, G.; Mehmood, F. Optimized economic load dispatch with multiple fuels and valve-point effects using hybrid genetic–artificial fish swarm algorithm. Sustainability 2021, 13, 10609. [Google Scholar] [CrossRef]
- Al-Bahrani, L.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A. Solving the real power limitations in the dynamic economic dispatch of large-scale thermal power units under the effects of valve-point loading and ramp-rate limitations. Sustainability 2021, 13, 1274. [Google Scholar] [CrossRef]
- Said, M.; El-Rifaie, A.M.; Tolba, M.A.; Houssein, E.H.; Deb, S. An efficient chameleon swarm algorithm for economic load dispatch problem. Mathematics 2021, 9, 2770. [Google Scholar] [CrossRef]
- Deb, S.; Houssein, E.H.; Said, M.; Abdelminaam, D.S. Performance of Turbulent Flow of Water Optimization on Economic Load Dispatch Problem. IEEE Access 2021, 9, 77882–77893. [Google Scholar] [CrossRef]
- Salaria, U.A.; Menhas, M.I.; Manzoor, S. Quasi Oppositional Population Based Global Particle Swarm Optimizer With Inertial Weights (QPGPSO-W) for Solving Economic Load Dispatch Problem. IEEE Access 2021, 9, 134081–134095. [Google Scholar] [CrossRef]
- Yu, J.; Kim, C.-H.; Rhee, S.-B. Clustering cuckoo search optimization for economic load dispatch problem. Neural Comput. Appl. 2020, 32, 16951–16969. [Google Scholar] [CrossRef]
- Fu, C.; Zhang, S.; Chao, K.-H. Energy management of a power system for economic load dispatch using the artificial intelligent algorithm. Electronics 2020, 9, 108. [Google Scholar] [CrossRef]
- Kaboli, S.H.A.; Alqallaf, A.K. Solving non-convex economic load dispatch problem via artificial cooperative search algorithm. Expert Syst. Appl. 2019, 128, 14–27. [Google Scholar] [CrossRef]
- Gholamghasemi, M.; Akbari, E.; Asadpoor, M.B.; Ghasemi, M. A new solution to the non-convex economic load dispatch problems using phasor particle swarm optimization. Appl. Soft Comput. 2019, 79, 111–124. [Google Scholar] [CrossRef]
- Xu, J.; Yan, F.; Yun, K.; Su, L.; Li, F.; Guan, J. Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems. Energies 2019, 12, 2274. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Dhiman, G. MOSHEPO: A hybrid multi-objective approach to solve economic load dispatch and micro grid problems. Appl. Intell. 2020, 50, 119–137. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, H.; Zhan, Z.-H.; Li, J.; Zhang, H. Growth Optimizer: A powerful metaheuristic algorithm for solving continuous and discrete global optimization problems. Knowl.-Based Syst. 2022, 261, 110206. [Google Scholar] [CrossRef]
- Su, H.; Zhao, D.; Heidari, A.A.; Liu, L.; Zhang, X.; Mafarja, M.; Chen, H. RIME: A physics-based optimization. Neurocomputing 2023, 532, 183–214. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Coelho, L.D.S. Elephant herding optimization. In Proceedings of the 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December 2015; pp. 1–5. [Google Scholar]
Year | Ref. | Brief Summary |
---|---|---|
2024 | [17] | The Enhanced Social Network Search (ESNS) optimizer is used for solving the ELD problem. The algorithm is applied on four test cases containing 11, 15, 40, and 110 generating units. The outcomes of the ESNS are compared with the results of well-known algorithms. The ESNS demonstrated better performance in terms of the speed of convergence and solution quality. |
2024 | [28] | The golden jackal optimization (GJO) is used for solving the ELD problem considering the two constraints restricted operating zones and valve point loading effect (VPL). To assess the effectiveness of the suggested GJO method, six distinct test systems, each comprising 6, 10, 13, 40, or 140 units with several constraints, are employed. The results of the GTO algorithm showed minimum fuel costs and good convergence compared with the results of other used algorithms for comparison. |
2024 | [29] | The paper proposed the hybrid moth-flame and mayfly optimization algorithm (MFMFOA) to solve the complex problem of ELD and emission dispatch. When the results of MFMFOA are in comparison with the results of other approaches presented in the literature for different case studies, it demonstrated minimum operational costs, better convergence, and a closer optimum point. |
2024 | [30] | Gorilla Troop Optimization (GTO) is applied for addressing the ELD problem with and without the VPL. The performance of the GTO is assessed using four distinct IEEE unit systems, with 3, 6, 10, and 40-units.GTO consistently outperforms other algorithms in minimizing total fuel costs, accelerating convergence, and reducing the computation time to reach the global optima across all case studies. |
2024 | [12] | Walrus Optimizer (WO) is used for addressing the ELD problem. In order to test its reliability, the performance of the WO is in comparison with the performance of other MH algorithms in the same case study with different scenarios including 6, 10, 20, and 30 generators at different load demands. The WO algorithm demonstrated superior performance compared to all other algorithms, as confirmed by the comparative analysis |
2024 | [31] | An Improved Yellow Saddle Goat Fish Algorithm (IYSGA) is proposed for resolving ELD issues. The objective of the proposed algorithm is to minimize the difference between the generated load and the required demand along with the unit cost. The performance of IYSGA showed an enhanced solution quality, convergence rate, and exploring ability over the other tested algorithm. |
2024 | [32] | Enhanced Cheetah Optimization Algorithm (ECOA) is utilized for solving the dynamic ELD problem. The study also includes renewable energy resources along with conventional resources. The Efficacy of the algorithm is evaluated using two test cases using 10 units and 20 units and the comparative analysis of the results is conducted with COA and GWA. The comparison revealed that ECOA has better reliability and adaptability. |
2024 | [33] | The updated differential evolution (UDE) algorithm is used for resolving the ELD issue. The UDE is investigated using a collection of bench-mark suites of IEEE CEC2006. The simulation outputs revealed that UDE surpasses other modern approaches used in the comparison. |
2024 | [16] | The snow ablation optimizer (SAO) is used for tackling the ELD issue. The SAO’s reliability is evaluated by comparing its performance to that of other techniques using the same six case studies. The results obtained for the test cases indicate that the SAO significantly outperforms the other algorithms, thus proving its excellence. |
2023 | [34] | The enhanced beluga whale optimizer (EBWO) is utilized for tackling the complex ELD problem on a large scale. To validate EBWO, seven benchmark functions are used in the simulation; then, it is applied on systems with 11, 40, and 110 generating units, and a comparative analysis of performance is conducted against literature algorithms. From the comparison results, it is clear that EBWO is very competitive in obtaining a low fuel cost. |
2023 | [35] | The osprey optimizer algorithm (OOA) is utilized for solving both the ELD problem and emission dispatch problem. The algorithm is validated by carrying out simulations on six case studies for ELD and six case studies for emission dispatch, and the algorithm showed superiority over the other algorithms for the same case studies. |
2023 | [11] | The eagle strategy supply–demand optimizer with chaotic (ESCSDO) is utilized for tackling the ELD issue. The algorithm’s ability to produce accurate results for ELD issues with generator constraints, power loss, VPL, and restricted operating zones is proven using four test studies including 6, 13, 15, and 40 generators. |
2023 | [27] | The ELD problem is solved using a hybrid exchange market and grasshopper algorithm. The research also considered the constrains of VPL, the restricted operating zones, the limits of the ramp rate, and the power loss. The robustness and solution quality are proven by the comparison of the results with those of other well-known algorithms. |
2023 | [38] | A hybrid algorithm of the Harris hawks optimizer and adaptive hill-climbing optimizer is provided for resolving the ELD problem. To evaluate its efficiency, six different case studies are utilized, and the results are compared against the results of the optimizers presented in published research for the same case study. |
2023 | [10] | A hybrid algorithm of the capuchin search algorithm and gradient search algorithm is applied for the ELD issue; the algorithm is assessed by applying it to six different case studies with 3, 13, 40, 80, and 140 units. The algorithm proved its superiority over the other test algorithms for large-scale systems (80 and 140 units). |
2023 | [8] | Modified particle swarm optimization (MPSO) is used for solving both ELD and economic emission load dispatch (EELD) considering the power loss and generator limit constraints. The algorithm was applied to three different cases with 6, 13, and 15 units. From the comparative results from other algorithms, this algorithm demonstrated superior performance. |
2022 | [26] | An adaptive backtracking algorithm with a dual learning strategy (DABSA) is utilized for solving the ELD problem with a valve point effect. The algorithm is tested for four different cases with 5, 10, and 30 units. The results showed a low cost with high robustness compared to other algorithms. |
2022 | [9] | An improved manta ray foraging optimization (IMRFO) algorithm is utilized for assessing the ELD issue. Three test cases are utilized to test the efficiency of the IMRFO algorithm. The outputs revealed that the IMRFO algorithm produced the best strategy for scheduling the unit compared with the other techniques. |
2022 | [39] | The salp swarm algorithm (SSA) is utilized for tackling the dynamic economic emission dispatch (DEED), taking into account realistic considerations such as the VPL, power loss, and ramp rate limitations. Three cases are studied to prove the efficiency of the algorithm; these cases are the IEEE 30-bus six-unit, New England power system consisting of a 39-bus 10-unit, and the IEEE 118-bus 14-unit system. The proposed algorithm’s robustness and efficacy were demonstrated by the results. |
2022 | [24] | The CCAM-PDE algorithm is used for solving the ELD problem. Eight ELD problems are solved using the algorithm, and the outcomes are contrasted by those of other popular algorithms to validate the algorithm. The outcomes comparison showed that the suggested algorithm has a better global searching capability, higher accuracy, and faster convergence speed. |
2022 | [40] | The Search and Rescue (SAR) algorithm is proposed for resolving the Combined Emission and Economic load Dispatch problem (CEED). The algorithm is verified by applying it to seven different cases with three and six generating units. The results approved the efficiency of the SAR optimizer in identifying the minimum fuel cost over the other used algorithms. |
2022 | [41] | The hybrid algorithm (MVO-SQP) is utilized for solving the ELD problem. This algorithm is validated on standard typical test systems containing 6, 13, 15, and 40 units, and the simulation results are compared with those of the literature techniques, showing higher savings in fuel costs. |
2021 | [42] | The hybrid algorithm (HGAFSA) is provided for solving the ELD problem, taking into account the valve point loading and multi-fuels. The validity of HGAFSA is verified using five test case studies with 13, 40, 110, 140, and 160 units. The results demonstrated higher cost savings than the approaches used in the literature. |
2021 | [7] | The GBO algorithm is provided for resolving the Combined Emission and Economic load Dispatch problem (CEED) and ELD, taking into account the VPL and transmission line losses. The experimental results indicated that GBO outperformed eight other metaheuristic algorithms. |
2021 | [43] | The MG-PSO algorithm is used for solving the ELD problem considering the VPL and ramp rate limitations. The algorithm’s authentication was demonstrated on five power systems, ranging from a medium to very large scale. Four case studies incorporating five generators are utilized for demonstrating the efficacy of the algorithm. |
2021 | [44] | The CSA algorithm is utilized for resolving ELD and CEED. The effectiveness of the CSA was in comparison with that of some advanced approaches in resolving the CEED and ELD problems, and it provided the minimum power mismatch. Three test cases are provided for both ELD and CEED. |
2021 | [45] | The TFWO algorithm is applied for addressing both the ELD and CEED problems, incorporating VPL and power losses. In comparison with seven meta-heuristic algorithms, TFWO provides the minimum cost and a robust solution for all test cases. The ELD and CEED are tested three times under different loading conditions. |
2021 | [46] | The QPGPSO-w algorithm is used to solve the ELD problem. The validation of the algorithm is carried out on IEEE standards with 3, 6, 13, 15, 40, and 140 generating units on the Korean grid. The simulation results showed an excellent cost reduction compared to other recent algorithms. |
2020 | [53] | The (MOSHEPO) algorithm is suggested for solving ELD problems, taking into account practical constraints such as VPL, transmission losses, and restricted operating zones. To assess MOSHEPO’s effectiveness, it was tested on various benchmarks, and its performance was compared to that of other well-known approaches. The comparison shows that MOSHEPO outperforms other algorithms in solving economic and microgrid power dispatch problems while requiring less computational effort. |
2020 | [47] | A clustering cuckoo search optimizer (CCSO) is used for tackling the ELD issue. CCSO’s effectiveness was verified on six benchmark functions along with ELD problems with 6, 10, 13, 15, and 40 generators. A comparative analysis of CCSO and CSO is conducted, focusing on the rate of convergence, the value of the objective function, and the robustness. CCSO is much better than CSO for the same test conditions |
2020 | [48] | An Improved Bird Swarm Algorithm (IBSA) is proposed for resolving the ELD problem. IBSA’s performance was verified on two systems with 6 and 15 units, considering generator limits, prohibited operating zones, and the ramp rate. The simulation results demonstrate IBSA’s excellent performance and robustness, making it a reliable solution for ELD. |
2019 | [49] | The artificial cooperative search (ACS) algorithm is utilized for tackling the ELD problem, considering practical constraints such as the VPL, generation limits, and demand constraint. The ACS is applied on medium- to relatively large-scale power systems and demonstrated its efficiency and robustness in tackling ELD problems compared to other methods in the literature. |
2019 | [50] | The (PPSO) algorithm is applied for solving the ELD problem in multiple benchmark power systems comprising 10, 15, 80, and 140 generating units, taking into account the restricted operating zones, VPL, and power losses. Based on the comparative results, PPSO is a reliable algorithm for resolving the ELD problem with higher quality. |
2019 | [51] | The novel grey wolf optimizer (NGWO) is used for solving the ELD problem. The suggested NGWO technique was tested on five different case studies and compared to other techniques in terms of the solution quality, robustness, and rate of convergence. The results indicate that NGWO efficiently solves ELD problems with superior solutions |
Demand (MW) | Algorithm | Minimum | SD | Mean | Maximum |
---|---|---|---|---|---|
1000 | GO | 12,119.3355 | 11.623137 | 12,140.19891 | 12,165.96105 |
GWO | 84,448.79838 | 15,832,763.49 | 15,078,181.51 | 66,411,534.85 | |
EHO | 1,088,084.879 | 51,872,221 | 49,024,054.01 | 230,237,965 | |
TSA | 19,012.95471 | 18,026,304.71 | 16,185,322.44 | 83,109,107.03 | |
RIME | 318,009.0467 | 89,701,754.01 | 71,123,668.37 | 367,689,162.8 |
Algorithm | 1000 MW |
---|---|
GO | 12,119.28644 |
GWO | 12,176.17786 |
EHO | 13,765.64252 |
TSA | 12,473.50544 |
RIME | 12,628.2995 |
GO | GWO | EHO | TSA | RIME |
---|---|---|---|---|
397.1006415 | 348.7262731 | 81.83572392 | 500 | 175.5031567 |
122.4463005 | 120.7549638 | 97.55273028 | 192.3015638 | 160.2451283 |
225.3470349 | 230.7033553 | 123.0450571 | 80 | 300 |
100.9570662 | 91.71239042 | 138.5778957 | 59.71743169 | 143.7008257 |
118.2791771 | 182.6622628 | 237.6468176 | 70.03386672 | 166.9615517 |
59.47821052 | 50.75167398 | 346.2136911 | 120 | 82.05115898 |
Unit 1 | Unit 2 | Unit 3 | Unit 4 | Unit 5 | Unit 6 |
---|---|---|---|---|---|
430.8358487 | 129.2546847 | 213.6102669 | 75.38423107 | 96.59531029 | 77.12548932 |
410.6400887 | 118.3408164 | 187.8061594 | 129.570654 | 119.9441025 | 57.05322438 |
400.9699598 | 142.2327289 | 185.5932559 | 91.78501966 | 136.2576008 | 66.67548157 |
414.2817848 | 155.3612806 | 213.2447778 | 64.9857365 | 124.8192019 | 50.46736454 |
413.0616712 | 160.3041676 | 202.1317533 | 55.03198666 | 141.7421743 | 51.08214766 |
390.0561863 | 110.8082995 | 232.4863322 | 129.1651389 | 104.1232874 | 57.1184943 |
394.0318994 | 153.5156338 | 176.4458905 | 111.9300222 | 119.3969844 | 68.06671545 |
393.1467777 | 122.261174 | 244.0560595 | 75.27733429 | 136.0871546 | 53.18367501 |
415.8312482 | 164.762351 | 191.0984513 | 82.16187174 | 94.6658883 | 74.25947916 |
384.0366828 | 140.2183982 | 217.1301621 | 100.1398789 | 112.9649275 | 69.15215532 |
407.4535841 | 97.99122461 | 248.4397975 | 119.1577658 | 100.5591362 | 50.01059831 |
442.3959205 | 143.7183225 | 200.682306 | 76.52947254 | 104.9318622 | 54.21100516 |
408.7413629 | 146.2226372 | 228.8318035 | 68.52761141 | 98.58081813 | 72.26552271 |
412.3015743 | 92.87959688 | 197.9060904 | 117.1533216 | 137.0571367 | 66.50433164 |
429.9549046 | 148.4895731 | 180.4859517 | 92.30747803 | 107.4818767 | 63.93795414 |
388.9500522 | 112.8676999 | 232.7344667 | 88.53688165 | 131.0756609 | 69.89694002 |
365.2263045 | 132.1840528 | 242.9768841 | 91.20497302 | 118.8705867 | 73.78324518 |
390.6331267 | 100.7957729 | 217.3316904 | 120.5736453 | 126.7290362 | 67.97175834 |
409.2320312 | 125.320755 | 221.6630875 | 92.40251911 | 95.3741223 | 79.21863624 |
387.8497325 | 132.3743384 | 218.1615536 | 106.916623 | 113.8488235 | 64.47739293 |
418.1116178 | 162.1247676 | 195.3764796 | 72.06570765 | 123.4064202 | 51.89322157 |
397.1006415 | 122.4463005 | 225.3470349 | 100.9570662 | 118.2791771 | 59.47821052 |
376.1792134 | 137.4335834 | 226.5624419 | 86.01676132 | 105.2123449 | 92.4929281 |
389.5617582 | 165.4196117 | 181.6106999 | 101.6665181 | 125.6937288 | 59.48528249 |
383.9548808 | 106.3390585 | 224.6387014 | 98.33858186 | 135.7331075 | 75.2387894 |
398.4834552 | 120.2498329 | 210.3584183 | 93.06238595 | 110.2871115 | 91.1668325 |
410.3303361 | 113.7569697 | 231.0584326 | 55.22596366 | 137.8247161 | 75.68047151 |
449.0598655 | 143.6256636 | 209.5269709 | 66.77603426 | 91.35725282 | 61.96214444 |
377.5594302 | 141.0882913 | 194.4608049 | 139.5141836 | 98.73853642 | 72.27467699 |
428.145696 | 110.7854683 | 229.4498195 | 101.2197572 | 101.4360572 | 51.96212016 |
Demand (MW) | Algorithm | Minimum | SD | Mean | Maximum |
---|---|---|---|---|---|
2000 | GO | 403,459,385.3 | 16,662,253.57 | 433,268,828.7 | 462,151,691.8 |
GWO | 527,874,749.6 | 35,406,315.44 | 600,680,060.3 | 661,612,752.3 | |
EHO | 1,404,633,410 | 49,679,972,836 | 57,284,262,895 | 1.77439 E+11 | |
TSA | 525,137,956.4 | 42,260,639.63 | 618,326,865.6 | 744,209,124 | |
RIME | 496,656,222.7 | 83,146,797.78 | 618,351,049.1 | 811,012,244.4 |
Algorithm | 2000 MW |
---|---|
GO | 402,837,175.9 |
GWO | 520,113,057.2 |
EHO | 361,676,723.3 |
TSA | 491,249,989.9 |
RIME | 496,561,378.6 |
GO | GWO | EHO | TSA | RIME |
---|---|---|---|---|
376.2896401 | 437.8309716 | 22.42124296 | 470 | 470 |
267.1462651 | 379.5989515 | 36.24554906 | 312.3805006 | 309.239895 |
337.6176172 | 318.2497487 | 71.82349206 | 292.4108881 | 330.4433964 |
292.881171 | 249.8132669 | 104.3039646 | 300 | 291.7305541 |
241.3085143 | 243 | 119.3405633 | 243 | 227.8630641 |
157.4291746 | 159.831227 | 240.9191078 | 160 | 160 |
125.6344364 | 129.9919094 | 297.8761914 | 66.45297466 | 37.09020184 |
118.9334149 | 56.69647937 | 323.9950929 | 120 | 120 |
78.64883769 | 20.23780916 | 408.9081539 | 63.68512281 | 39.26091535 |
43.01758534 | 52.78954207 | 418.9084655 | 14.46714971 | 55 |
Unit 1 | Unit 2 | Unit 3 | Unit 4 | Unit 5 |
---|---|---|---|---|
380.2494914 | 331.8006265 | 301.6774621 | 297.8671518 | 229.0491311 |
449.6441249 | 263.0092621 | 331.6238948 | 270.6563075 | 234.1253704 |
364.453935 | 309.3232555 | 336.1288937 | 297.1636285 | 225.0922042 |
419.6653232 | 285.3448651 | 339.7774821 | 261.4387284 | 224.8880913 |
416.5108903 | 253.6906765 | 335.9493243 | 273.6601303 | 238.6826124 |
449.4454276 | 288.4422758 | 288.8694957 | 297.2300037 | 223.5472982 |
425.5633808 | 273.2725331 | 334.210842 | 297.4948363 | 242.6106644 |
410.9640604 | 304.9725913 | 330.755091 | 277.5056006 | 232.8629403 |
388.4499093 | 288.6528381 | 335.1453611 | 298.8031111 | 239.6495138 |
399.9018278 | 327.2431035 | 314.8593363 | 256.7404665 | 206.8329373 |
379.6820635 | 334.3543131 | 339.8859414 | 284.449539 | 219.6040339 |
373.3812304 | 299.0848993 | 336.5529262 | 290.1078815 | 220.1613079 |
391.0516328 | 280.1120505 | 321.0139149 | 277.2181002 | 239.0124535 |
312.7340947 | 356.2391644 | 321.2342631 | 298.7572993 | 240.2354473 |
401.9600621 | 357.8271587 | 268.0777811 | 274.0577876 | 231.8798377 |
376.6919422 | 319.4697901 | 303.8616384 | 288.7822861 | 242.8600135 |
396.5516752 | 291.5967522 | 334.357437 | 288.3458404 | 236.0239482 |
399.0583109 | 290.1611223 | 304.816709 | 297.4329539 | 236.7615549 |
449.0294732 | 272.4804372 | 285.4993883 | 292.9300515 | 222.6425763 |
427.2825971 | 281.4435153 | 325.3946603 | 281.3832356 | 220.3409501 |
421.8321927 | 301.9801493 | 333.4973204 | 276.4360542 | 239.0311975 |
384.0303609 | 335.4695756 | 318.899372 | 292.8099183 | 234.5810609 |
410.577226 | 248.4549836 | 321.311956 | 294.8992057 | 240.6532707 |
423.0858666 | 314.1088467 | 337.4104893 | 286.9632695 | 233.2014233 |
401.826815 | 270.379897 | 311.6007366 | 292.9928131 | 242.949654 |
376.2896401 | 267.1462651 | 337.6176172 | 292.881171 | 241.3085143 |
457.8899305 | 299.0812389 | 254.628556 | 298.4213924 | 236.9314229 |
402.2268267 | 266.3001613 | 322.7044322 | 291.949112 | 236.9276004 |
383.2168299 | 277.3121047 | 339.962803 | 299.1078492 | 239.991673 |
407.0242638 | 274.1393198 | 314.7458724 | 270.9477607 | 241.0491811 |
Unit 6 | Unit 7 | Unit 8 | Unit 9 | Unit 10 |
159.4569064 | 129.853415 | 108.242392 | 50.93769854 | 53.32468654 |
157.411427 | 126.64102 | 114.684804 | 36.94022687 | 54.6785473 |
150.5674262 | 125.0177997 | 117.1590238 | 78.49931754 | 36.63504968 |
159.3766901 | 127.2063103 | 109.3614042 | 65.0718616 | 47.87149283 |
158.7791947 | 124.1957045 | 104.5299225 | 78.43210062 | 54.99231309 |
139.4129798 | 127.150023 | 119.5319801 | 74.9648049 | 32.62447842 |
154.140504 | 128.7871698 | 93.0974785 | 42.43281351 | 49.0936045 |
142.1677855 | 112.4177676 | 112.390836 | 77.58970605 | 38.68361299 |
128.18861 | 129.9045099 | 119.8454978 | 59.915201 | 50.64081774 |
159.8197165 | 128.9324752 | 119.9595004 | 76.75304776 | 50.18568946 |
158.3919978 | 129.2207257 | 70.55081666 | 73.40010727 | 53.99476675 |
158.5515875 | 129.5822262 | 110.7294932 | 68.92351527 | 52.96221859 |
156.8307277 | 127.329371 | 117.2883623 | 78.61205062 | 51.25367877 |
143.6750386 | 129.2642016 | 115.7467834 | 74.2924709 | 50.55050269 |
133.2087174 | 127.8495872 | 119.0589103 | 79.15631528 | 51.0839217 |
157.5928295 | 109.4706138 | 119.6317868 | 68.10216496 | 54.757631 |
154.5997747 | 120.9885881 | 105.1859792 | 78.82865531 | 33.96049925 |
147.4869951 | 125.3670511 | 116.5563324 | 75.78767695 | 46.95688553 |
156.6833142 | 115.7275079 | 118.1498797 | 73.21682997 | 54.40650337 |
135.5568776 | 126.7370231 | 109.9697745 | 79.85449189 | 51.85508029 |
149.9174467 | 126.4986958 | 100.7584385 | 61.68995964 | 29.7267201 |
159.2504086 | 115.078768 | 91.83096287 | 55.94309955 | 54.99096611 |
153.6581912 | 127.6778879 | 107.570689 | 79.80984479 | 54.71422371 |
134.8109135 | 126.9920915 | 53.13837667 | 79.99346304 | 54.27427682 |
160 | 129.3163684 | 108.5247872 | 69.59540598 | 53.05668684 |
157.4291746 | 125.6344364 | 118.9334149 | 78.64883769 | 43.01758534 |
159.5863288 | 128.9864765 | 94.04349532 | 70.08927694 | 45.11184526 |
156.3784049 | 124.9686671 | 112.8541446 | 71.27226791 | 53.82234183 |
158.4730228 | 128.7299932 | 108.81357 | 75.33234482 | 28.95000466 |
155.0357049 | 129.5728585 | 119.8837052 | 74.46841746 | 52.82509064 |
Demand (MW) | Algorithm | Minimum | SD | Mean | Maximum |
---|---|---|---|---|---|
3000 | GO | 324,261,971.3 | 5,647,315.714 | 330,118,085.8 | 344,637,144.1 |
GWO | 582,356,264.7 | 86,555,080.36 | 720,998,567.9 | 863,176,003.3 | |
EHO | 494,550,252.6 | 56,173,293.3 | 610,979,905.4 | 729,867,203.6 | |
TSA | 488,707,354.5 | 100,431,720.7 | 683,484,980.6 | 836,449,616.9 | |
RIME | 444,191,182.2 | 85,324,517.25 | 653,856,793.2 | 800,012,129.5 |
Algorithm | 2000 MW |
---|---|
GO | 324,256,382 |
GWO | 572,724,405.9 |
EHO | 372,737,291.7 |
TSA | 423,002,638.7 |
RIME | 433,885,024.3 |
GO | GWO | EHO | TSA | RIME |
---|---|---|---|---|
150.1347081 | 303.6540949 | 38.11359116 | 239.213034 | 204.46305 |
137.8538918 | 144.3846906 | 48.36819253 | 195.0223431 | 147.4943195 |
214.5679581 | 122.4871829 | 50.08283235 | 142.8655093 | 315.8349621 |
219.9859496 | 97.8294482 | 65.22808351 | 297.1640127 | 109.3843499 |
229.4665139 | 150.0030124 | 65.50766671 | 93.69698485 | 148.0017622 |
159.9864227 | 119.40088 | 76.3925957 | 160 | 111.0190778 |
127.9731519 | 130 | 88.8522563 | 116.6391609 | 105.6950967 |
118.4152685 | 68.44361801 | 99.84109626 | 120 | 98.34335255 |
79.70725448 | 26.79155925 | 116.2162892 | 49.55703185 | 55.10157814 |
54.994804 | 19.52133913 | 118.2380752 | 34.18869257 | 48.52283803 |
150.3492831 | 303.548469 | 146.8093287 | 293.4601473 | 292.3427023 |
143.1246464 | 388.2926001 | 159.1722972 | 201.1054248 | 180.9273613 |
171.2109225 | 340 | 165.4529989 | 184.8154601 | 340 |
262.8101639 | 223.672651 | 178.6073159 | 222.1119065 | 279.7630038 |
242.7260986 | 158.9818987 | 191.6397931 | 221.9981631 | 135.2156712 |
156.8841445 | 85.68947992 | 205.403052 | 108.9005199 | 125.8035734 |
129.9911335 | 130 | 264.7240765 | 107.2258899 | 108.9980269 |
117.0045176 | 70.6942127 | 271.4257399 | 104.2166573 | 112.8727886 |
79.84316302 | 67.24758355 | 319.8807624 | 80 | 27.1361492 |
52.97000441 | 49.35824278 | 330.035887 | 27.82563243 | 53.07930548 |
Unit 1 | Unit 2 | Unit 3 | Unit 4 | Unit 5 |
---|---|---|---|---|
179.5807021 | 143.6533007 | 202.4957511 | 285.4635644 | 242.6052033 |
150.0217934 | 135.1487191 | 186.0876065 | 250.5781886 | 236.7853441 |
152.6374569 | 137.0632346 | 218.7851029 | 239.137835 | 228.8101049 |
150.2353164 | 135.3110578 | 219.2274789 | 190.1959436 | 239.5341889 |
151.9276018 | 135.0039869 | 218.3096582 | 219.4628714 | 242.1344252 |
150.3004969 | 138.608888 | 189.3471362 | 250.6519157 | 174.8402066 |
151.0400241 | 137.2149477 | 199.0675424 | 292.7432751 | 239.0177953 |
151.8651819 | 135.0000574 | 188.4943644 | 257.299267 | 240.2900648 |
157.6300365 | 141.2615827 | 169.2282857 | 232.9094678 | 230.5825914 |
150.0089723 | 135.0219135 | 180.1450282 | 277.5909378 | 241.2463306 |
152.20423 | 135.0003903 | 214.8993561 | 276.337515 | 242.9985665 |
179.8652364 | 157.6705445 | 246.5103097 | 259.7617037 | 242.9986903 |
152.2588436 | 135.0243436 | 180.6444875 | 279.2688473 | 232.0368129 |
150.0366853 | 135.400814 | 232.0835246 | 270.0495706 | 201.2728638 |
174.3436904 | 135.9967003 | 215.8148177 | 217.7171134 | 242.9910283 |
150.0476747 | 135.0012754 | 200.0366356 | 299.98183 | 212.7870825 |
150.01002 | 135.0248993 | 246.1622037 | 255.4358481 | 201.6441658 |
155.5138367 | 139.4908169 | 189.0083715 | 285.0175362 | 238.9551059 |
150.0987074 | 135.0030777 | 175.0958843 | 267.2164568 | 229.222801 |
150.1457417 | 135.101566 | 216.346181 | 281.8146651 | 242.5765715 |
152.6853664 | 135.1452853 | 187.4796828 | 232.4793472 | 202.3543068 |
150.1117258 | 135.1422721 | 181.1973826 | 201.1472388 | 231.6877228 |
150.0141091 | 136.1428412 | 205.8272704 | 263.0081496 | 216.157885 |
150.6815783 | 139.0834407 | 184.2996395 | 263.3111516 | 233.5688791 |
163.8852015 | 135.1540293 | 197.3977402 | 283.3810965 | 202.4146275 |
151.4486276 | 135.0104964 | 217.4682192 | 262.0665143 | 241.7933881 |
152.7862739 | 135.1410224 | 216.4417993 | 265.2573983 | 214.0861293 |
151.2837259 | 135.2773683 | 179.0233647 | 279.578706 | 230.3200586 |
150.1462752 | 135.2255805 | 244.6975715 | 291.1316338 | 242.8308342 |
150.1347081 | 137.8538918 | 214.5679581 | 219.9859496 | 229.4665139 |
Unit 6 | Unit 7 | Unit 8 | Unit 9 | Unit 10 |
159.6071133 | 128.2248201 | 119.4124548 | 60.91914713 | 22.25343163 |
156.2458253 | 129.998044 | 109.6200171 | 79.87804246 | 54.99962846 |
153.1173496 | 129.5324935 | 71.18090214 | 79.94056181 | 54.91304993 |
147.1801462 | 129.981923 | 119.9891841 | 79.99975864 | 54.91059276 |
141.014391 | 129.979635 | 119.9586348 | 79.91477434 | 46.7459475 |
152.3942434 | 129.8322517 | 119.9430452 | 79.99465516 | 53.42403429 |
158.7472358 | 127.9300113 | 119.4997268 | 76.09004008 | 52.94271817 |
143.4551017 | 128.5212054 | 119.9824995 | 74.86549321 | 54.99356614 |
144.294757 | 117.3979839 | 119.8123728 | 78.64604198 | 54.90345637 |
159.9967153 | 120.7338181 | 92.99050245 | 79.82093832 | 54.70211983 |
158.6077299 | 129.9998999 | 119.9930963 | 79.85358939 | 16.48794946 |
119.3645573 | 128.1154723 | 119.9033619 | 79.97970775 | 54.86715214 |
157.8686626 | 129.6454432 | 119.9994058 | 79.99855469 | 54.23922039 |
155.2511123 | 129.2655473 | 104.5943985 | 79.94855241 | 54.99269654 |
142.3902517 | 129.991262 | 107.5894664 | 79.99278626 | 54.52099243 |
152.9434074 | 129.85067 | 118.7725406 | 22.6756818 | 54.30300161 |
159.9622766 | 126.8940207 | 119.9809484 | 79.95953834 | 54.82704351 |
159.9298982 | 129.9860725 | 104.7849709 | 58.05408257 | 54.25152691 |
145.0748375 | 129.4372678 | 119.1684663 | 79.99060116 | 40.98013232 |
122.6832857 | 129.989344 | 119.4265741 | 79.48591947 | 46.56445201 |
153.9102491 | 126.2093543 | 107.9021566 | 79.94607009 | 50.68969523 |
131.8863195 | 108.4068981 | 111.0375095 | 75.31006561 | 54.85476363 |
159.8272413 | 127.2417015 | 119.2895085 | 79.99351723 | 48.51668141 |
159.97221 | 129.984346 | 116.2241695 | 79.99865875 | 34.68278715 |
158.076051 | 129.945586 | 114.1048311 | 77.80840032 | 53.6657387 |
159.9790266 | 129.0847428 | 119.9083217 | 77.03823278 | 53.99889027 |
156.4948638 | 129.7824241 | 119.8325973 | 37.52825929 | 54.88312116 |
159.9322747 | 129.4839435 | 119.1097508 | 22.8890206 | 54.99791032 |
158.3260423 | 129.8925387 | 52.77458653 | 79.97735491 | 44.7843366 |
159.9864227 | 127.9731519 | 118.4152685 | 79.70725448 | 54.994804 |
Unit 11 | Unit 12 | Unit 13 | Unit 14 | Unit 15 |
163.9714219 | 135.2857218 | 226.8835763 | 253.8607253 | 218.3425489 |
150.1073911 | 135.0069405 | 239.4990776 | 241.83748 | 211.3983519 |
165.4211208 | 135.1763477 | 209.2265595 | 299.8641235 | 192.9770205 |
151.6567153 | 151.092975 | 195.6860209 | 278.9956422 | 242.9998245 |
164.4830205 | 135.1304851 | 177.8301433 | 257.55773 | 242.8966889 |
167.9131672 | 137.2493631 | 230.4827677 | 251.9429259 | 236.3931901 |
155.9612027 | 135.0422724 | 180.4341837 | 203.2142802 | 226.5626607 |
150.0010082 | 136.0622371 | 191.13657 | 293.0957233 | 216.2115426 |
152.5359708 | 135.1487893 | 251.107523 | 261.0659056 | 233.1404916 |
150.0003557 | 144.5522934 | 195.5011934 | 283.8063539 | 195.1444996 |
161.3714465 | 138.6959055 | 201.7071607 | 250.2727825 | 210.6681699 |
163.3672551 | 135.1865186 | 167.2094506 | 265.2657888 | 234.571584 |
150.4006307 | 135.0491182 | 194.9220775 | 248.2108678 | 223.723122 |
150.0674432 | 135.0031397 | 209.9860468 | 252.26862 | 220.8399793 |
151.0287309 | 135.0615175 | 183.1769845 | 246.3623588 | 238.051573 |
153.1286326 | 135.0015821 | 207.5830441 | 299.7925328 | 242.936154 |
150.036499 | 135.5345527 | 183.8706041 | 299.3815277 | 242.9788396 |
153.3524219 | 135.1443598 | 180.8035128 | 245.3192621 | 227.4360925 |
150.9989258 | 135.0008874 | 182.4898976 | 286.0980579 | 239.4184178 |
150.0025446 | 135.0017993 | 200.9379405 | 222.9370261 | 228.8781296 |
150.1806045 | 135.0207224 | 226.3587728 | 282.4387782 | 242.6676528 |
185.5805862 | 135.7915104 | 240.862454 | 285.1801767 | 242.9896496 |
150.0003818 | 136.459248 | 219.0233956 | 245.8566655 | 242.9367538 |
152.3737494 | 135.6004609 | 198.2873227 | 250.6099577 | 242.7592839 |
150.1935987 | 135.0315858 | 206.3861712 | 236.8870903 | 233.108755 |
150.0691408 | 135.1762192 | 206.1210885 | 257.9775751 | 160.3210936 |
164.3192048 | 136.0036645 | 205.9741368 | 236.5811709 | 242.9894127 |
150.0913954 | 135.0232752 | 221.4542619 | 258.6821827 | 241.644435 |
169.0346926 | 135.2602349 | 189.4649965 | 254.692806 | 242.9804725 |
150.3492831 | 143.1246464 | 171.2109225 | 262.8101639 | 242.7260986 |
Unit 16 | Unit 17 | Unit 18 | Unit 19 | Unit 20 |
75.10666095 | 129.9699161 | 119.9976748 | 79.34286911 | 53.02341349 |
157.897968 | 129.9564725 | 110.0887966 | 79.85007859 | 54.99423415 |
159.3319587 | 129.8315905 | 110.7556589 | 77.31112192 | 54.98640407 |
153.5321558 | 129.9935616 | 119.4203311 | 79.926004 | 30.13117879 |
157.7831465 | 129.9688278 | 117.5473528 | 77.44673689 | 54.90394198 |
159.936876 | 129.9966044 | 113.9797422 | 79.87625256 | 52.89223678 |
159.8412134 | 129.8432973 | 119.8762583 | 79.9731166 | 54.9581964 |
153.5296836 | 111.70183 | 119.9663708 | 78.53822942 | 54.99000339 |
159.9914986 | 123.0710183 | 102.453988 | 79.92361234 | 54.89462543 |
155.6313734 | 128.1253351 | 119.9934744 | 79.99130983 | 54.99653496 |
159.3828433 | 129.9991128 | 86.53490834 | 79.99650443 | 54.98884311 |
107.3895089 | 127.2421504 | 76.1702518 | 79.6275584 | 54.93321042 |
159.9993451 | 128.9258557 | 119.9782111 | 79.99073262 | 37.8154179 |
137.0933932 | 129.9175857 | 117.5910793 | 79.44822881 | 54.88871871 |
159.9938017 | 129.9844538 | 119.9974571 | 79.99540443 | 54.99960931 |
159.9477476 | 96.52686227 | 93.79477532 | 79.95413321 | 54.93473633 |
109.9394483 | 118.362048 | 102.9601578 | 72.53454485 | 54.50081514 |
159.9927371 | 129.3049782 | 119.9395241 | 78.91880927 | 54.79608051 |
156.2077493 | 129.5070589 | 119.975307 | 74.25426091 | 54.76120082 |
159.6995205 | 128.224356 | 115.1913172 | 79.99348043 | 54.999584 |
159.9803278 | 129.0824742 | 112.9596571 | 77.83183647 | 54.67766056 |
158.3190154 | 129.9870703 | 112.1086855 | 73.99304911 | 54.40590394 |
159.672906 | 100.7382081 | 111.2466859 | 79.95467174 | 48.09217884 |
159.9875307 | 129.9984778 | 119.9954921 | 79.99956673 | 38.58129767 |
159.2488955 | 129.1460247 | 119.9531889 | 59.86115919 | 54.35022834 |
159.7734066 | 129.8243007 | 119.3587511 | 79.96244497 | 53.61951966 |
159.9103087 | 126.6175612 | 118.7560734 | 78.14206084 | 48.47252174 |
159.9987868 | 116.250261 | 119.9995921 | 79.97012243 | 54.98956435 |
117.437771 | 108.7568617 | 117.6333203 | 79.98976621 | 54.9623243 |
156.8841445 | 129.9911335 | 117.0045176 | 79.84316302 | 52.97000441 |
Case | Algorithm | 1000 MW |
6-Generators unit | GO | 3.82627 × 10−12 |
GWO | 7.22726 × 10−6 | |
EHO | 11.52188186 | |
TSA | 6.53945 × 10−7 | |
RIME | 3.05381 × 10−5 | |
MSA [5] | 12.80174784 | |
ChOA [5] | 0.000232386 | |
SAO [5] | 4.85414 × 10−10 | |
MBO [5] | 10.11850299 | |
SCA [5] | 0.000182 | |
Case | Algorithm | 2000 MW |
10-Generators unit | GO | 6.22209 × 10−5 |
GWO | 0.000776169 | |
EHO | 14.83826809 | |
TSA | 0.003388797 | |
RIME | 9.48441 × 10−6 | |
MSA [5] | ||
ChOA [5] | ||
SAO [5] | ||
Case | Algorithm | 3000 MW |
20-Generators unit | GO | 5.58934 × 10−7 |
GWO | 0.000963186 | |
EHO | 0.008069445 | |
TSA | 0.006570472 | |
RIME | 0.001030616 | |
MSA [5] | 4.47608 × 10−6 | |
ChOA [5] | 0.00868658 | |
SAO [5] | 0.000356058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaban, A.E.; Ismaeel, A.A.K.; Farhan, A.; Said, M.; El-Rifaie, A.M. Growth Optimizer Algorithm for Economic Load Dispatch Problem: Analysis and Evaluation. Processes 2024, 12, 2593. https://doi.org/10.3390/pr12112593
Shaban AE, Ismaeel AAK, Farhan A, Said M, El-Rifaie AM. Growth Optimizer Algorithm for Economic Load Dispatch Problem: Analysis and Evaluation. Processes. 2024; 12(11):2593. https://doi.org/10.3390/pr12112593
Chicago/Turabian StyleShaban, Ahmed Ewis, Alaa A. K. Ismaeel, Ahmed Farhan, Mokhtar Said, and Ali M. El-Rifaie. 2024. "Growth Optimizer Algorithm for Economic Load Dispatch Problem: Analysis and Evaluation" Processes 12, no. 11: 2593. https://doi.org/10.3390/pr12112593
APA StyleShaban, A. E., Ismaeel, A. A. K., Farhan, A., Said, M., & El-Rifaie, A. M. (2024). Growth Optimizer Algorithm for Economic Load Dispatch Problem: Analysis and Evaluation. Processes, 12(11), 2593. https://doi.org/10.3390/pr12112593