Chemical Composition, Structural Properties, and Bioactivity of Carrageenan from Field-Cultivated Betaphycus gelatinus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Biomass Measurement of Field-Cultivated B. gelatinus
2.2.2. Carrageenan Extraction Method from Raw Alga
2.2.3. Chemical Composition Analysis of Carrageenan
2.2.4. Methods for Determining Biological Activity
3. Results
3.1. Biomass and Carrageenan Content Fluctuations in Field-Cultivated B. gelatinus
3.2. Structural Characterization of Carrageenan Extracted from Field-Cultivated B. gelatinus
3.2.1. Chemical Composition of Carrageenan
3.2.2. IR Spectral Analysis of Carrageenan Extracted from Field-Cultivated B. gelatinus
3.2.3. Results of Analyzing NMR Spectroscopy
3.3. Bioactivities of Carrageenan from B. gelatinus
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Laurienzo, P. Marine Polysaccharides in Pharmaceutical Applications: An Overview. Mar. Drugs 2010, 8, 2435–2465. [Google Scholar] [CrossRef]
- Usov, A.I. Polysaccharides of the Red Algae. Adv. Carbohydr. Chem. Biochem. 2011, 65, 115–217. [Google Scholar]
- Hung, L.D.; Nguyen, H.T.T.; Trang, V.T.D.; Nghia, L.T.; Trung, D.T.; Thuy, T.T.T. Hybrid Beta/Kappa/Gamma-Carrageenan from the Red Alga Betaphycus gelatinus in Vietnam. J. Appl. Phycol. 2024, 1–7. [Google Scholar] [CrossRef]
- Phang, S.M.; Yeong, H.Y.; Ganzon-Fortes, E.T.; Lewmanomont, K.; Prathep, A.; Gerung, G.S.; Tan, K.S. Marine Algae of the South China Sea Bordered by Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam. Raffles Bull. Zool. 2016, 34, 13–59. [Google Scholar]
- Dumilag, R.V. Betaphycus gelatinus and B. philippinensis (Gigartinales, Rhodophyta) Are Conspecific. Phytotaxa 2018, 372, 22–34. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Le, N.H.; Lin, S.M.; Steen, F.; De Clerck, O. Checklist of the Marine Macroalgae of Vietnam. Bot. Mar. 2013, 56, 207–227. [Google Scholar] [CrossRef]
- Bui Minh Ly, L.N.H. Potential of Vietnam Seaweed Biomass Production for Biofuel. In Proceedings of the Scientific Conference Celebrating the 35th Anniversary of the Vietnam Academy of Science and Technology, Ha Noi, Vietnam, 25–26 October 2010; pp. 1–12. [Google Scholar]
- Campo, V.L.; Kawano, D.F.; da Silva, D.B.; Carvalho, I. Carrageenans: Biological Properties, Chemical Modifications and Structural Analysis—A Review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Préchoux, A.; Genicot, S.; Rogniaux, H.; Helbert, W. Controlling Carrageenan Structure Using a Novel Formylglycine-Dependent Sulfatase, an Endo-4S-Iota-Carrageenan Sulfatase. Mar. Biotechnol. 2013, 15, 265–274. [Google Scholar] [CrossRef]
- Udo, T.; Mummaleti, G.; Mohan, A.; Singh, R.K.; Kong, F. Current and Emerging Applications of Carrageenan in the Food Industry. Food Res. Int. 2023, 173, 113369. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Quito, E.M.; Ruiz-Caro, R.; Veiga, M.D. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar. Drugs 2020, 18, 583. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.T.; Cuong, D.X.; Thuy, L.H.; Thuan, P.T.; Tuyen, D.T.T.; Mo, V.T.; Dong, D.H. Carrageenan of Red Algae Eucheuma gelatinae: Extraction, Antioxidant Activity, Rheology Characteristics, and Physicochemistry Characterization. Molecules 2022, 27, 1268. [Google Scholar] [CrossRef] [PubMed]
- Udayakumar, S.; Girigoswami, A.; Girigoswami, K. Biological Activities of Carrageenan from Red Algae: A Mini Review. Curr. Pharmacol. Rep. 2024, 10, 12–26. [Google Scholar] [CrossRef]
- Lim Lai Huat; Noor Bashar Alali; Regina Leong Zhi Ling; Su Shao Feng; Swee-Sen Teo Analysis of Antimicrobial Activity of Carrageenan Extracted from Kappaphycus alvarezii. Appl. Microbiol. Theory Technol. 2023, 4, 61–72.
- Yuan, H.; Song, J.; Zhang, W.; Li, X.; Li, N.; Gao, X. Antioxidant Activity and Cytoprotective Effect of κ-Carrageenan Oligosaccharides and Their Different Derivatives. Bioorg Med. Chem. Lett. 2006, 16, 1329–1334. [Google Scholar] [CrossRef]
- Pinheiro, J.L.S.; Rodrigues, L.H.M.; da Silva, L.D.; dos Santos, V.M.R.; Gomes, D.A.; da Silva Chagas, F.D.; de Sousa Chaves, L.; Melo, M.R.S.; Freitas, A.L.P.; Souza, M.H.L.P.; et al. Sulfated Iota-Carrageenan from Marine Alga Agardhiella Ramosissima Prevents Gastric Injury in Rodents via Its Antioxidant Properties. Algal Res. 2024, 77, 103371. [Google Scholar] [CrossRef]
- de Moraes, F.M.; Philippi, J.V.; Belle, F.; da Silva, F.S.; Morisso, F.D.P.; Volz, D.R.; Ziulkoski, A.L.; Bobinski, F.; Zepon, Κ.M. Iota-Carrageenan/Xyloglucan/Serine Powders Loaded with Tranexamic Acid for Simultaneously Hemostatic, Antibacterial, and Antioxidant Performance. Biomater. Adv. 2022, 137, 212805. [Google Scholar] [CrossRef]
- Júnior, E.H.; Gonçalves, A.G.; Noseda, M.D.; Duarte, M.E.R.; Murakami, F.S.; Ducatti, D.R.B. Semi-Synthesis of N-Alkyl-Kappa-Carrageenan Derivatives and Evaluation of Their Antibacterial Activity. Carbohydr. Res. 2021, 499, 108234. [Google Scholar] [CrossRef]
- Zhenyi, Y. Eucheuma Gelatinae Cultural Method. CN Patent 106,550,866A, 5 April 2017. [Google Scholar]
- Yong, Y.S.; Yong, W.T.L.; Anton, A. Analysis of Formulae for Determination of Seaweed Growth Rate. J. Appl. Phycol. 2013, 25, 1831–1834. [Google Scholar] [CrossRef]
- Ohnoi, M.; Nang, H.Q.; Hirase, S. Biology and Agar Quality of Cultivated Gracilaria from Vietnam. Bull. Mar. Sci. Fish. 1997, 17, 15–21. [Google Scholar]
- Yaphe, W. Colorimetric Determination of 3,6-Anhydrogalactose and Galactose in Marine Algal Polysaccharides. Anal. Chem. 1960, 32, 1327–1330. [Google Scholar] [CrossRef]
- Jackson, S.G.; McCandless, E.L. Simple, Rapid, Turbidometric Determination of Inorganic Sulfate and/or Protein. Anal. Biochem. 1978, 90, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.H.N.; Mikkelsen, M.D.; Truong, H.B.; Vo, H.N.M.; Pham, T.D.; Cao, H.T.T.; Nguyen, T.T.; Meyer, A.S.; Thanh, T.T.T.; Van, T.T.T. Structural Characterization and Cytotoxic Activity Evaluation of Ulvan Polysaccharides Extracted from the Green Algae Ulva papenfussii. Mar. Drugs 2023, 21, 556. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.Y.; Hackman, R.M.; Ensunsa, J.L.; Holt, R.R.; Keen, C.L. Antioxidative Activities of Oolong Tea. J. Agric. Food Chem. 2002, 50, 6929–6934. [Google Scholar] [CrossRef]
- Leutou, A.S.; Yun, K.; Son, B.W. Induced Production of 6,9-Dibromoflavasperone, a New Radical Scavenging Naphthopyranone in the Marine-Mudflat-Derived Fungus Aspergillus niger. Arch. Pharm. Res. 2016, 39, 806–810. [Google Scholar] [CrossRef]
- Pereira, L.; Amado, A.M.; Critchley, A.T.; van de Velde, F.; Ribeiro-Claro, P.J.A. Identification of Selected Seaweed Polysaccharides (Phycocolloids) by Vibrational Spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll. 2009, 23, 1903–1909. [Google Scholar] [CrossRef]
- Chopin, T.; Whalen, E. A New and Rapid Method for Carrageenan Identification by FT IR Diffuse Reflectance Spectroscopy Directly on Dried, Ground Algal Material. Carbohydr. Res. 1993, 246, 51–59. [Google Scholar] [CrossRef]
- Rochas, C.; Lahaye, M.; Yaphe, W. Sulfate Content of Carrageenan and Agar Determined by Infrared Spectroscopy. Bot. Mar. 1986, 29, 335–340. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR Spectroscopy as a Tool for Polysaccharide Identification in Edible Brown and Red Seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Van De Velde, F.; Pereira, L.; Rollema, H.S. The Revised NMR Chemical Shift Data of Carrageenans. Carbohydr. Res. 2004, 339, 2309–2313. [Google Scholar] [CrossRef]
- Chiovitti, A.; Bacic, A.; Craik, D.J.; Kraft, G.T.; Liao, M.L.; Falshaw, R.; Furneaux, R.H. A Pyruvated Carrageenan from Australian Specimens of the Red Alga Sarconema filiforme. Carbohydr. Res. 1998, 310, 77–83. [Google Scholar] [CrossRef]
- Falshaw, R.; Furneaux, R.H. Carrageenans from the Tetrasporic Stages of Gigartina Clavifera and Gigartina Alveata (Gigartinaceae, Rhodophyta). Carbohydr. Res. 1995, 276, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, K.F.; Xu, X.; Brandhorst, B.P. Oral-Aboral Patterning and Gastrulation of Sea Urchin Embryos Depend on Sulfated Glycosaminoglycans. Mech. Dev. 2011, 128, 71–89. [Google Scholar] [CrossRef] [PubMed]
- Anastyuk, S.D.; Barabanova, A.O.; Correc, G.; Nazarenko, E.L.; Davydova, V.N.; Helbert, W.; Dmitrenok, P.S.; Yermak, I.M. Analysis of Structural Heterogeneity of κ/β-Carrageenan Oligosaccharides from Tichocarpus crinitus by Negative-Ion ESI and Tandem MALDI Mass Spectrometry. Carbohydr. Polym. 2011, 86, 546–554. [Google Scholar] [CrossRef]
- Chiovitti, A.; Bacic, A.; Craik, D.J.; Munro, S.L.A.; Kraft, G.T.; Liao, M.L. Carrageenans with Complex Substitution Patterns from Red Algae of the Genus Erythroclonium. Carbohydr. Res. 1997, 305, 243–252. [Google Scholar] [CrossRef]
- Li, H.; Kim, H.; Shin, K.; Hyun, B.; Kim, Y.S.; Kim, J.H. Effects of Temperature and Light on the Growth and Reproduction of an Endophytic Pest Alga Ectocarpus siliculosus (Ectocarpales) Found in Wild Gracilaria Textorii (Gracilariales). Aquaculture 2022, 560, 738526. [Google Scholar] [CrossRef]
- Falshaw, R.; Furneaux, R.H.; Wong, H. Analysis of Pyruvylated β-Carrageenan by 2D NMR Spectroscopy and Reductive Partial Hydrolysis. Carbohydr. Res. 2003, 338, 1403–1414. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Q.; Ning, Z.; Ma, Y.; Huang, Y.; Wu, Y.; Yang, Y.; Xiao, M.; Ye, J. Preparation, Antibacterial Activity, and Structure-Activity Relationship of Low Molecular Weight κ-Carrageenan. Int. J. Biol. Macromol. 2024, 266, 131021. [Google Scholar] [CrossRef]
- Bener, M.; Şen, F.B.; Kaşgöz, A.; Apak, R. Carrageenan-Based Colorimetric Sensor for Total Antioxidant Capacity Measurement. Sens. Actuators B Chem. 2018, 273, 439–447. [Google Scholar] [CrossRef]
- Barahona, T.; Encinas, M.V.; Mansilla, A.; Matsuhiro, B.; Zúñiga, E.A. A Sulfated Galactan with Antioxidant Capacity from the Green Variant of Tetrasporic Gigartina Skottsbergii (Gigartinales, Rhodophyta). Carbohydr. Res. 2012, 347, 114–120. [Google Scholar] [CrossRef]
- Diah, A.W.M.; Raihan, M.F.; Rahmawati, S.; Ningsih, P.; Afadil; Nuryanti, S. Supriadi the Antioxidant Activities of Acid Hydrolysis of κ-Carrageenan. Rasayan J. Chem. 2022, 15, 529–537. [Google Scholar] [CrossRef]
Disaccharide (Carrageenan Form) | Unit | C1 H1 | C2 H2 | C3 H3 | C4 H4 | C5 H5 | C6 H6 |
---|---|---|---|---|---|---|---|
A Kappa carrageenan | β(1,3)-D-galactose -4- sulfate | 104.77 4.62 | 71.67 3.62 | 80.49 3.97 | 76.19 4.82 | 77.51 3.75 | 63.59 3.79 |
α (1,4)-3,6-anhydro galactose | 97.28 5.09 | 72.06 4.119 | 81.25 4.502 | 78.92 4.61 | 79.03 4.65 | 71.67 4.119 | |
B Beta carrageenan | β(1,3)-D-galactose | 104.65 4.62 | 72.06 3.602 | 82.5 3.85 | 68.52 4.073 | 76.94 3.826 | 63.59 3.81 |
α (1,4)-3,6-anhydro galactose | 96.75 5.07 | 70.48 4.039 | 81.58 4.514 | 80.49 4.59 | 78.92 4.61 | 71.28 4.17 | |
B′ pyruvylated β-carrageenan | β(1,3)-D-galactose-P | 104.94 4.58 | 71.28 3.618 | 80.49 3.95 | ~71.67 4.064 | 68.52 4.068 | 67.79 4.073 |
α (1,4)-3,6-anhydro galactose | 96.75 5.07 | 71.67 4.064 | 81.25 4.52 | 81.37 4.526 | 79.03 4.63 | 70.48 4.124 |
Biological Activity | Unit | Carrageenan from Field-Cultivated Alga |
---|---|---|
Total Antioxidant Capacity | mg ascorbic acid/g carrageenan | 48.30 ± 1.12 |
Iron-Reducing Ability | mg ascorbic acid/g carrageenan | 1.47 ± 0.21 |
ABTS | IC50 (µg/mL) | 3.64 ± 0.19 |
Antibacterial Activity | Strain (mm) | L. mono—12.00 ± 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, T.V.; Cao, H.T.T.; Hieu, V.M.N.; Tran, V.H.N.; Van, T.T.T.; Nguyen, T.T.; Thuy, T.T.T.; Trung, V.T.; Thinh, P.D.; Trinh, P.T.H.; et al. Chemical Composition, Structural Properties, and Bioactivity of Carrageenan from Field-Cultivated Betaphycus gelatinus. Processes 2024, 12, 2610. https://doi.org/10.3390/pr12112610
Huynh TV, Cao HTT, Hieu VMN, Tran VHN, Van TTT, Nguyen TT, Thuy TTT, Trung VT, Thinh PD, Trinh PTH, et al. Chemical Composition, Structural Properties, and Bioactivity of Carrageenan from Field-Cultivated Betaphycus gelatinus. Processes. 2024; 12(11):2610. https://doi.org/10.3390/pr12112610
Chicago/Turabian StyleHuynh, Tran Van, Hang Thi Thuy Cao, Vo Mai Nhu Hieu, Vy Ha Nguyen Tran, Tran Thi Thanh Van, Thuan Thi Nguyen, Thanh Thi Thu Thuy, Vo Thanh Trung, Pham Duc Thinh, Phan Thi Hoai Trinh, and et al. 2024. "Chemical Composition, Structural Properties, and Bioactivity of Carrageenan from Field-Cultivated Betaphycus gelatinus" Processes 12, no. 11: 2610. https://doi.org/10.3390/pr12112610
APA StyleHuynh, T. V., Cao, H. T. T., Hieu, V. M. N., Tran, V. H. N., Van, T. T. T., Nguyen, T. T., Thuy, T. T. T., Trung, V. T., Thinh, P. D., Trinh, P. T. H., & Duc, T. M. (2024). Chemical Composition, Structural Properties, and Bioactivity of Carrageenan from Field-Cultivated Betaphycus gelatinus. Processes, 12(11), 2610. https://doi.org/10.3390/pr12112610