Gold Recovery from Smelting Copper Sulfide Concentrate
Abstract
:1. Introduction
2. Overview of Global Copper Production
Pyrometallurgical Route of Copper Production
3. Gold in Copper Industry
3.1. Behavior of Gold from Copper Smelting to Refining
3.2. Chemical Loss
3.2.1. Smelting
3.2.2. Converting
3.3. Physical Loss in Slag
3.3.1. Viscosity of Slag
3.3.2. Solids in Slag
3.3.3. Density
3.3.4. Other Parameters
3.4. Loss in Electro-Refining
4. Role of Copper Processing Technologies in Gold Recovery
4.1. Smelting Technologies
Metal Physical Loss
4.2. Converting Technologies
4.3. First-Pass Gold Recovery
5. Conclusions
- This study confirms that the chemical dissolution of gold in slag is negligible, with gold primarily remaining associated with copper throughout the smelting, converting, and anode refining processes:
- The gold partition coefficient between matte and slag () ranges from 100 to over 2000, indicating that the majority of gold is concentrated in the matte phase;
- The gold partition coefficient between copper and slag () ranges from 104 to 106, signifying that gold predominantly reports to blister copper;
- The mass of slag in anode refining is minimal, and gold nearly completely reports to the anode.
- Gold loss primarily occurs through the physical loss of matte or copper in slag:
- Lower slag viscosity (achieved by higher temperatures above slag liquidus temperature and rather low Fe/SiO2 ratios) reduces physical loss;
- Higher matte grades increase the density difference between slag and matte and raise slag/matte interfacial tension, improving separation and reducing physical loss;
- Reducing slag mass for a constant droplet settling speed decreases physical loss, though the slag mass should be optimized to enhance matte/metal and slag separation.
- The choice of technology significantly impacts gold physical loss, which is primarily carried by copper:
- Among smelting technologies, the Mitsubishi process achieves the highest first-pass gold recovery (99.7–99.8%), followed by flash smelting (98.3–99.9%), bottom-blown smelting (96%), Noranda furnaces (~95%), and Teniente furnaces (85.6–89%);
- Among converting technologies, the Peirce–Smith converter offers the highest gold recovery (95.2–99.3%), followed by the Mitsubishi converter (92.4–99.8%), bottom-blown converter (95.8%), Noranda furnace (93.4%), and flash converter (88.1%);
- Integrated routes show that flash smelting combined with the Peirce–Smith converter provides the highest gold recovery (98.3–99.5%), followed by Mitsubishi–Mitsubishi (92.8–99.8%), bottom-blown smelting with bottom-blown converting (95.8%), Teniente with the Peirce–Smith converter (95.2%), Noranda–Noranda (93.4%), and flash smelting with flash converting (88.1%).
- During electrorefining, gold is found in the anode slime with <<1 ppm reported in the cathode, suggesting near 100% gold recovery during this stage.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References and Note
- Available online: https://www.fastmarkets.com/insights/copper-concentrate-tcs-still-negative-how-and-what-does-it-mean-for-copper-prices/ (accessed on 18 September 2024).
- Available online: https://www.ausimm.com/bulletin/bulletin-articles/gold-concentrate-marketing-101/ (accessed on 18 September 2024).
- World Gold Council. 2021. Available online: https://www.gold.org/about-gold (accessed on 18 September 2024).
- Sinha, S.N.; Sohn, H.Y.; Nagamori, M. Distribution of Gold and Silver between Copper and Matte. Metall. Trans. B 1985, 16, 53–59. [Google Scholar] [CrossRef]
- Avarmaa, K.; O’Brien, H.; Johto, H.; Taskinen, P. Equilibrium Distribution of Precious Metals Between Slag and Copper Matte at 1250–1350 °C. J. Sustain. Metall. 2015, 1, 216–228. [Google Scholar] [CrossRef]
- Avarmaa, K.; Johto, H.; Taskinen, P. Distribution of Precious Metals (Ag, Au, Pd, Pt, and Rh) Between Copper Matte and Iron Silicate Slag. Metall. Mater. Trans. B 2016, 47, 244–255. [Google Scholar] [CrossRef]
- Sukhomlinov, D.; Klemettinen, L.; Avarmaa, K.; O’Brien, H.; Taskinen, P.; Jokilaakso, A. Distribution of Ni, Co, Precious, and Platinum Group Metals in Copper Making Process. Metall. Mater. Trans. B 2019, 50, 1752–1765. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Z.; Taskinen, P.; Liang, Y.; Ouyang, H.; Peng, B.; Jokilaakso, A.; Zhou, S.; Chen, T.; Peng, N.; et al. Characterization of Copper Smelting Flue Dusts from a Bottom-Blowing Bath Smelting Furnace and a Flash Smelting Furnace. Metall. Mater. Trans. B 2020, 51, 2596–2608. [Google Scholar] [CrossRef]
- Reuter, M.; Kojo, I. Copper: A Key Enabler of Resource Efficiency. World Metall. Erzmetall 2014, 67, 46. [Google Scholar]
- World Copper Factbook 2024; International Copper Study Group: Lisbon, Portugal, 2024.
- Tripathi, N.; Mostaghel, S. A Review on Integrating E-Waste Recycling in Flash and Bath Copper Smelting Operations. In Proceedings of the 62nd Conference of Metallurgists, COM 2023, Toronto, ON, Canada, 21–24 August 2023; Springer: Cham, Switzerland, 2024. [Google Scholar]
- CRU Report “Copper 101–Module–Concentrates & By-Products”. Available online: https://www.crugroup.com/en/data/ (accessed on 18 September 2024).
- Available online: https://www.reuters.com/markets/commodities/chinas-top-copper-smelters-agree-production-cut-amid-raw-material-tightness-2024-03-13/ (accessed on 18 September 2024).
- Global Trade Atlas. Available online: https://sayari.com/ (accessed on 18 September 2024).
- Available online: https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/metals/111623-china-copper-smelters-miners-split-over-finalizing-tcrcs-for-2024 (accessed on 18 September 2024).
- Available online: https://www.miningweekly.com/article/freeport-settles-six-year-high-copper-charges-for-2023-with-chinese-smelters---source-2022-11-25 (accessed on 18 September 2024).
- Kaur, R.; Nexhip, C.; Krippner, D.; George-Kennedy, D.; Routledge, M. Kennecott-Outotec ‘Double Flash’ Technology after 16 Years. In Proceedings of the 13th International Flash Smelting Congress, Livingstone, Zambia, 1 October 2011. [Google Scholar]
- Becker, E. Modernisation of precious metals refining at Norddeutsche Affinerie AG. World Metall. Erzmetall 2006, 59, 87–94. [Google Scholar]
- Hait, J.; Jana, R.; Sanyal, S. Processing of copper electrorefining anode slime: A review. Miner. Process. Extr. Metall. 2009, 118, 240–252. [Google Scholar] [CrossRef]
- Furuzono, T.; Fujimoto, A.; Takeuchi, T.; Takebayashi, K. Unique hydrometallurgical process for copper-anode slime treatment at saganoseki smelter and refinery. In Extraction 2018: Proceedings of the First Global Conference on Extractive Metallurgy; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Barr, G.; Grieve, W.; Jones, D.; Mayhew, K. The New CESL Gold Process; ALTA: Perth, WA, Australia, 2007. [Google Scholar]
- Zeng, Y.; Liao, C.; Liu, F.; Zhou, X. Occurrence Behaviors of As/Sb/Bi in Copper Anode Slime and Their Separation by Compound Leaching Followed by Stepwise Precipitation. ACS Omega 2023, 8, 10022–10029. [Google Scholar] [CrossRef]
- Sluzhenkin, S.F.; Mikhov, A.B. Gold and silver mineralogy in the orebodies of Norilsk mining cam. In Geology, Genesis anf Mining Developments of Precious Metals Orebodies; IGEM, Russian Academy of Sciences: Moscow, Russia, 2003; pp. 326–330. [Google Scholar]
- Pannell, D. A survey of world copper smelters. In World Survey of NonFerrous Smelters; The Metallurgical Society of AIME: Warrendale, PA, USA, 1988; pp. 3–118. [Google Scholar]
- Lehner, T.; Ishikawa, O.; Smith, T.; Floyd, J.; Mackey, P.; Landolt, C. The 1993 survey of worldwide copper and nickel converter practices. In Converting, Fire Refining and Casting; Tms: San Francisco, CA, USA, 1994; pp. 1–58. [Google Scholar]
- Schlitt, W.; Richards, K. The distribution of silver, gold, platinum and palladium in metal-matte systems. Metall. Trans. B 1975, 6, 237–243. [Google Scholar] [CrossRef]
- Asano, N. Distribution of Gold, Silver and Selenium between Liquid Copper and Cuprous Sulfide. J. Min. Mater. Proc. Inst. Japan 1971, 87, 347–352. [Google Scholar]
- Ferron, C. Recovery of gold as by-product from the base-metals industries. In Gold Ore Processing; Elsevier: Amsterdam, The Netherlands, 2016; pp. 831–856. [Google Scholar]
- Johnson, R.; Themelis, N.; Eltringham, G. A survey of worldwide copper converter practices. In Copper and Nickel Converters; The Metallurgical Society of AIME: Warrendale, PA, USA, 1979; pp. 1–32. [Google Scholar]
- Moats, M.; Davenport, W.; Robinson, T.; Karcas, G.; Demetrio, S. Electrolytic copper refining—2007 world tankhouse operating data. In Proceedings of the Cobre 2007 International Conference, Toronto, ON, Canada, 25–30 August 2007; Volume 5, pp. 195–241. [Google Scholar]
- Larouche, P. Minor Elements in Copper Smelting and Electrorefining. Master’s Thesis, McGill University, Montréal, QC, Canada, 2001. [Google Scholar]
- Forsén, O.; Aromaa, J.; Lundström, M. Primary copper smelter and refinery as a recycling plant—A system integrated approach to estimate secondary raw material tolerance. Recycling 2017, 2, 19. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Hao, J.; Dou, Z.-H.; Lv, G.-Z.; Zhang, T.-A. A novel slag cleaning method to recover copper from molten copper converter slag. Trans. Nonferrous Met. Soc. China 2023, 33, 2511–2522. [Google Scholar] [CrossRef]
- Nakajima, K.; Takeda, O.; Miki, T.; Matsubae, K.; Nagasaka, T. Thermodynamic Analysis for the Controllability of Elements in the Recycling Process of Metals. Environ. Sci. Technol. 2011, 45, 4929–4936. [Google Scholar] [CrossRef] [PubMed]
- Dosmukhamedov, N.; Argyn, A.; Zholdasbay, E.; Kurmanseitov, M. Converting of copper-lead matte: Loss of gold and silver with slag. Complex Use Miner. Resour. 2020, 314, 5–14. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wang, D.; Zhang, T. Emulsification and Flow Characteristics in Copper Oxygen-Rich Side-Blown Bath Smelting Process. Metals 2020, 10, 1520. [Google Scholar] [CrossRef]
- Barros, K.S.; Vielmo, V.S.; Moreno, B.G.; Riveros, G.; Cifuentes, G.; Bernardes, A.M. Chemical Composition Data of the Main Stages of Copper Production from Sulfide Minerals in Chile: A Review to Assist Circular Economy Studies. Minerals 2022, 12, 250. [Google Scholar] [CrossRef]
- Cooper, W.C. The treatment of copper refinery anode slimes. JOM 1990, 42, 45–49. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Shakibania, S.; Mokmeli, M.; Rashchi, F. Tellurium, from copper anode slime to high purity product: A review paper. Metall. Mater. Trans. B 2020, 51, 2555–2575. [Google Scholar] [CrossRef]
- Hall, S. Gold and silver recovery from copper anode slimes at the Olympic Dam Joint venture, Roxby Downs, SA. Australas. Min. Metall. 1993, 19, 1102–1105. [Google Scholar]
- Schlesinger, M.E.; Sole, K.C.; Davenport, W.G.; Flores, G.R.A. Extractive Metallurgy of Copper; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Swinbourne, D.R.; Yan, S.; Salim, S. The solubility of gold in metallurgical slags. Miner. Process. Extr. Metall. 2005, 114, 23–29. [Google Scholar] [CrossRef]
- Chen, M.; Avarmaa, K.; Klemettinen, L.; O’brien, H.; Sukhomlinov, D.; Shi, J.; Taskinen, P.; Jokilaakso, A. Recovery of Precious Metals (Au, Ag, Pt, and Pd) from Urban Mining Through Copper Smelting. Metall. Mater. Trans. B 2020, 51, 1495–1508. [Google Scholar] [CrossRef]
- Henao, H.M.; Yamaguchi, K.; Ueda, S. Distribution of precious metals (Au, Pt, Pd, Rh and Ru) between copper matte and iron-silicate slag at 1573 K. In 2006 TMS Fall Extraction and Processing Division: Sohn International Symposium; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Rusen, A.; Geveci, A.; Topkaya, Y.; Derin, B. Effects of Some Additives on Copper Losses to Matte Smelting Slag. JOM 2016, 68, 2323–2331. [Google Scholar] [CrossRef]
- Jalkanen, H.; Vehviläinen, J.; Poijärvi, J. Copper in solidified copper smelter slags. Scand. J. Metall. 2003, 32, 65–70. [Google Scholar] [CrossRef]
- Yazawa, A. Thermodynamic considerations of copper smelting. Can. Metall. Q. 1974, 13, 443–453. [Google Scholar] [CrossRef]
- Hyvärinen, O.; Hämäläinen, M. HydroCopper((TM))—A new technology producing copper directly from concentrate. Hydrometallurgy 2005, 77, 61–65. [Google Scholar] [CrossRef]
- Celmer, R.; Toguri, J. Cobalt and Gold Distribution in Nickel--Copper Matte Smelting. Nickel Metall. 1986, 1, 147–163. [Google Scholar]
- Nagamori, M.; Mackey, P.J. Thermodynamics of Copper Matte Converting: Part II. Distribution of Au, Ag, Pb, Zn, Ni, Se, Te, Bi, Sb and As Between Copper, Matte and Slag in the Noranda Process. Metall. Trans. B 1978, 9, 567–579. [Google Scholar] [CrossRef]
- Mackey, P.; Tarassoff, P. Minor Elements in the Noranda Process; TMS-AIME: Warrendale, PA, USA, 1975. [Google Scholar]
- Mackey, P.J. The Physical Chemistry of Copper Smelting Slags—A Review. Can. Metall. Q. 1982, 21, 221–260. [Google Scholar] [CrossRef]
- Toguri, J.; Santander, N. Distribution of copper between Cu-Au alloys and silica-saturated fayalite slags. Metall. Mater. Trans. B 1972, 3, 590–592. [Google Scholar] [CrossRef]
- Holland, K.; Sukhomlinov, D.; Klemettinen, L.; Latostenmaa, P.; O’Brien, H.; Jokilaakso, A.; Taskinen, P. Distribution of Co, Fe, Ni, and precious metals between blister copper and white metal. Miner. Process. Extr. Metall. 2021, 130, 313–323. [Google Scholar] [CrossRef]
- Klaffenbach, E.; Montenegro, V.; Guo, M.; Blanpain, B. Sustainable and comprehensive utilization of copper slag: A review and critical analysis. J. Sustain. Metall. 2023, 9, 468–496. [Google Scholar] [CrossRef]
- Barnett, S. The methods and economics of slag cleaning. Min. Mag. 1979, 140, 408–417. [Google Scholar]
- Bellemans, I.; De Wilde, E.; Moelans, N.; Verbeken, K. Metal losses in pyrometallurgical operations—A review. Adv. Colloid Interface Sci. 2018, 255, 47–63. [Google Scholar] [CrossRef]
- Poggi, D.; Minto, R.; Davenport, W.G. Mechanisms of Metal Entrapment in Slags. JOM 1969, 21, 40–45. [Google Scholar] [CrossRef]
- Cardona, N.; Martin, A.; Jim_enez, F.; Ríos, G.; Mackey, P.; Coursol, P. Optimizing converter aisle operation at Atlantic copper smelter, Huelva, Spain. In Proceedings of Copper 2013; Bassa, R., Luraschi, A., Demetrio, S., Eds.; IIMCH: New Delhi, India, 2013; pp. 163–183. [Google Scholar]
- Schlesinger, M.; King, M.; Sole, K.; Davenport, W. Extractive Metallurgy of Copper; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Utigard, T.; Warczok, A. Density and viscosity of copper/nickel sulphide smelting and converting slags. In Proceedings of Copper; CIM: Montreal, QC, Canada, 1995. [Google Scholar]
- Schrama, F.N.H.; Beunder, E.M.; Panda, S.K.; Visser, H.-J.; Moosavi-Khoonsari, E.; Sietsma, J.; Boom, R.; Yang, Y. Optimal hot metal desulphurisation slag considering iron loss and sulphur removal capacity part I: Fundamentals. Ironmak. Steelmak. 2021, 48, 1–13. [Google Scholar] [CrossRef]
- Sundström, A.; Eksteen, J.; Georgalli, G. A review of the physical properties of base metal mattes. J. S. Afr. Inst. Min. Metall. 2008, 108, 431–448. [Google Scholar]
- Fagerlund, K.; Jalkanen, H. Some aspects on matte settling in copper smelting. In Proceedings of the Fourth International Conference Copper 99-Cobre 99, Phoenix, Arizona, USA, 10–13 October 1999. [Google Scholar]
- Nakamura, T.; Toguri, J. Interfacial phenomena in copper smelting processes. In Pyrometallurgy of Copper; Díaz, C., Landolt, C., Luraschi, A.A., Newman, C.J., Eds.; Pergamon Press: New York, NY, USA, 1991; pp. 537–551. [Google Scholar]
- Isaksson, J.; Vikström, T.; Lennartsson, A.; Samuelsson, C. Influence of process parameters on copper content in reduced iron silicate slag in a settling furnace. Metals 2021, 11, 992. [Google Scholar] [CrossRef]
- Tsukahara, I. Extraction-spectrophotometric determination of traces of gold in copper in silver, lead, blister copper, copper concentrate and anode slime with 4,4′-bis (dimethylamino)-thiobenzophenone. Talanta 1977, 24, 633–637. [Google Scholar] [CrossRef]
- Xing, W.D.; Lee, M.S. Development of a hydrometallurgical process for the recovery of gold and silver powders from anode slime containing copper, nickel, tin, and zinc. Gold Bull. 2019, 52, 69–77. [Google Scholar] [CrossRef]
- Lee, J.-C.; Kurniawan, K.; Chung, K.W.; Kim, S. Metallurgical process for total recovery of all constituent metals from copper anode slimes: A review of established technologies and current progress. Met. Mater. Int. 2021, 27, 2160–2187. [Google Scholar] [CrossRef]
- Maeda, Y. Recent Operations at Hitachi Refinery. J. MMIJ 2007, 123, 605–607. [Google Scholar] [CrossRef]
- Li, R.; Tripathi, N. (Rio Tinto Commercial, Singapore). Overview of Bottom Blown Technology; Private Communication. 2024.
- Available online: https://www.metso.com/portfolio/flash-smelting-process/ (accessed on 18 September 2024).
- Available online: https://www.glencoretechnology.com/en/technologies/isasmelt (accessed on 18 September 2024).
- Available online: https://www.metso.com/insights/blog/mining-and-metals/detailed-opex-comparison-of-modern-copper-smelting-technologies-using-hsc-sim/ (accessed on 18 September 2024).
- Shishin, D.; Tripathi, N.; Babaian, I.; Jak, E. The link between slag chemistry and arsenic flows in primary copper smelting. In Proceedings of the 63rd Conference of Metallurgists, COM 2024; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Zhao, B.; Liao, J. Development of Bottom-blowing copper smelting technology: A review. Metals 2022, 12, 190. [Google Scholar] [CrossRef]
- Chen, M.; Cui, Z.; Zhao, B. Slag chemistry of bottom blown copper smelting furnace at Dongying Fangyuan. In 6th International Symposium on High-Temperature Metallurgical Processing (The Minerals, Metals & Materials Series); Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Carrasco, J. (Glencore, Altonorte Copper Smelter, Antofagasta, Chile). Personal communication. 2020; Cited in the Book “Extractive Metallurgy of Copper, 6th Ed. 2021”.
- Prevost, Y. (Glencore Horne Smelter, QC, Canada). Personal communication. 2020; Cited in the Book “Extractive Metallurgy of Copper, 6th Ed. 2021”.
- Zapata, R. Continuous reactor Altonorte smelter. In The Carlos Diaz Symposium on Pyrometallurgy; Warmer, A.E.M., Vahed, A., George, D.G., Mackey, P.J., Warczok, A., Eds.; CIM: Montreal, QC, Canada, 2007; pp. 141–153. [Google Scholar]
- Ramachandran, V.; Lehner, T.; Diaz, C.; Mackey, P.J.; Eltringham, T.; Newman, C.J. Primary copper production e a survey of operating world copper smelters. In Pyrometallurgy of Copper, the Hermann Schwarze Symposium on Copper Pyrometallurgy; Diaz, J.K., Newman, C., Eds.; CIM: Montreal, QC, Canada, 2003; pp. 3–119. [Google Scholar]
- Tarasov, A.V.; Paretsky, V.M.; Diaz, J.K.C.; Newman, C. Pyrometallurgy of Copper (Book 1) the Hermann Schwarze Symposium on Copper Pyrometallrgy; CIM: Montreal, QC, Canada, 2003; pp. 173–187. [Google Scholar]
- Ospanov, Y. (Kazakhmys Smelter, Balkhash, Kazhakhstan). Personal communication. 2021; Cited in the Book “Extractive Metallurgy of Copper, 6th Ed. 2021”.
- Burrows, A. (Kazzinc, Oskemen, Kazakhstan). Personal communication. 2021; Cited in the Book “Extractive Metallurgy of Copper, 6th Ed. 2021”.
- Furuta, M.; Tanaka, S.; Hamamoto, M.; Inada, H. Analysis of copper loss in slag in Tamano type flash smelting furnace. Miner. Met. Mater. Soc. 2006, 8, 123–133. [Google Scholar]
- Mariscal, L. (Mexicana de Cobre. SA de CV, Estación El Tajo, Mexico). Personal communication. 2021. Cited in the Book “Extractive Metallurgy of Copper, 6th Ed. 2021”.
- Demetrio, S.; Ahumada, S.A.J.; Durán, M.; Mast, E.; Rojas, U.; Sanhueza, J.; Reyes, P.; Morales, E. Slag cleaning: The chilean copper smelter experience. JOM 2000, 52, 20–25. [Google Scholar] [CrossRef]
- Herreros, O.; Quiroz, R.; Manzano, E.; Bou, C.; Viñals, J. Copper extraction from reverberatory and flash furnace slags by chlorine leaching. Hydrometallurgy 1998, 49, 87–101. [Google Scholar] [CrossRef]
- Busolic, D.; Parada, F.; Parra, R.; Sanchez, M.; Palacios, J.; Hino, M. Recovery of iron from copper flash smelting slags. Miner. Process. Extr. Metall. 2011, 120, 32–36. [Google Scholar] [CrossRef]
- Nazer, A.S.; Pavez, O.; Rojas, F. Use of copper slag in cement mortar. Rem: Rev. Esc. Minas 2012, 65, 87–91. [Google Scholar] [CrossRef]
- Yan, J. Recent operation of the oxygen bottom-blowing copper smelting and continuous copper converting technologies. In Proceedings of the 9th International Copper Conference (Copper 2016), Kobe, Japan, 13–16 November 2016. [Google Scholar]
- Bin, T.; Suping, Y. Application And Development of Modern Copper Metallurgical Technologies in China’s Copper Industry; Canadian Institute of Mining, Metallurgy and Petroleum: Westmount, QC, Canada, 2019. [Google Scholar]
- Guo, X.; Zhang, Y.; Wang, Q.; Yuan, Z. Advanced copper smelting technologies used to quadruple China copper production between 2000 and 2015. In Proceedings of the 9th international copper conference (Copper 2016), Kobe, Japan, 13–16 November 2016. [Google Scholar]
- Zhao, Y.; Bing, L.; Kai, L. Engineering and Production Practice of Double Bottom-Blowing Continuous Copper Smelting Process with “Three Connected Furnaces” Arrangement; Canadian Institute of Mining, Metallurgy and Petroleum: Westmount, QC, Canada, 2019. [Google Scholar]
- Tuominen, J.; Pienimäki, K.; Fagerlund, K. Kennecott-outotec flash converting–leading the way for over 20 years. In Proceedings of Copper; MMIJ: Tokyo, Japan, 2016. [Google Scholar]
- Marín, O.; Valderrama, J.O.; Kraslawski, A.; Cisternas, L.A. Potential of Tailing Deposits in Chile for the Sequestration of Carbon Dioxide Produced by Power Plants Using Ex-Situ Mineral Carbonation. Minerals 2021, 11, 320. [Google Scholar] [CrossRef]
- Montenegro, V.; Sano, H.; Fujisawa, T. Recirculation of Chilean Copper Smelting Dust with High Arsenic Content to the Smelting Process. Mater. Trans. 2008, 49, 2112–2118. [Google Scholar] [CrossRef]
- Imris, I.; Rebolledo, S.; Sanchez, M.; Castro, G.; Achurra, G.; Hernandez, F. The Copper Losses in the Slags From the El Teniente Process. Can. Metall. Q. 2000, 39, 281–290. [Google Scholar] [CrossRef]
- Cardona, N.; Coursol, P.; Vargas, J.; Parra, R. The Physical Chemistry of Copper Smelting Slags and Copper Losses at the Paipote SmelterPart 2—Characterisation of industrial slags. Can. Metall. Q. 2011, 50, 330–340. [Google Scholar] [CrossRef]
- Shishin, D.; Hidayat, T.; Decterov, S.; Jak, E. Thermodynamic modelling of liquid slag-matte-metal equilibria applied to the simulation of the Peirce-Smith converter. In Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Yazawa, A. Distribution of Various Elements Between Copper, Matte and Slag. Sci. Rep. Res. Inst. Tohoku Univ. Ser. A Phys. Chem. Metall. 1981, 30, 154. [Google Scholar]
- Kapusta, J.P. JOM world nonferrous smelters survey, part I: Copper. JOM 2004, 56, 21–27. [Google Scholar] [CrossRef]
- Mostaghel, S.; Samuelsson, C.; Björkman, B. Influence of alumina on mineralogy and environmental properties of zinc-copper smelting slags. Int. J. Miner. Metall. Mater. 2013, 20, 234–245. [Google Scholar] [CrossRef]
- Lidelöw, S.; Mácsik, J.; Carabante, I.; Kumpiene, J. Leaching behaviour of copper slag, construction and demolition waste and crushed rock used in a full-scale road construction. J. Environ. Manag. 2017, 204, 695–703. [Google Scholar] [CrossRef]
- Davenport, W.G.; Jones, D.M.; King, M.J.; Partelpoeg, E.H. Flash Smelting, Analysis, Control and Optimization; TMS: Warrendale, PA, USA, 2001. [Google Scholar]
- Muravyov, M.I.; Fomchenko, N.V.; Usoltsev, A.V.; Vasilyev, E.A.; Kondrat’eva, T.F. Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy 2012, 119, 40–46. [Google Scholar] [CrossRef]
- Liao, J.; Tan, K.; Zhao, B. Enhanced productivity of bottom-blowing copper-smelting process using plume eye. Metals 2023, 13, 217. [Google Scholar] [CrossRef]
- Steinhauser, J.; Vartiainen, A.; Wuth, W. Volatilization and distribution of impurities in modern pyrometallurgical copper processing from complex concentrates. JOM 1984, 36, 54–61. [Google Scholar] [CrossRef]
Metallic By-Product | Revenue Share (%) | Region |
---|---|---|
Au | 29.4 | Australia, Indonesia, Canada, Chile, Mongolia, Brazil |
PGMs | 21.0 | South Africa, Russia, Canada |
Ni | 17.2 | Russia, Canada, China |
Zn | 9.0 | Peru, Canada, Mexico |
Ag | 7.4 | Peru, Poland, Chile |
Mo | 7.1 | Chile, Peru, USA |
Co | 4.9 | Democratic Republic of the Congo, Russia, China, Canada |
Pb | 1.7 | USA, Peru, Uzbekistan, Mexico |
(a) | |||||||||||||||||||||||||||||||||||
Operational Data | Flash | ||||||||||||||||||||||||||||||||||
Pasar, Philippines [41] | Aurubis, Germany [41] | JX Metals Smelting Saganoseki, Japan [41] | Hibi Kyodo Smelting Co., Tamano, Japan [60] | Sumitomo, Toyo, Japan [41] | Rio Tinto Kennecott, Utah Copper Magna, USA [60] | ||||||||||||||||||||||||||||||
Concentrate (t/d) | 2000 | 3300 | 2204 | 2241 | 3830 | 4200 | |||||||||||||||||||||||||||||
Concentrate Cu (wt%) | 23–29 | 29 | 28 [60] | 29.2 | 26.3 | 25.0 | |||||||||||||||||||||||||||||
Slag (t/d) | 800–900 | 2000 | 2700 | 1326 | 2973 | 2100–3100 | |||||||||||||||||||||||||||||
Slag Cu total (wt%) | 0.63 | 1.50 | 0.80 | 0.74 | 0.86 | 0.5–4 | |||||||||||||||||||||||||||||
Slag Cu chemical loss (wt%) | 0.5 | 0.45 | 0.45 | 0.46 | 0.44 | 0.83 | |||||||||||||||||||||||||||||
Slag Cu physical loss (wt%) | 0.13 | 1.05 | 0.35 | 0.28 | 0.42 | 1.42 | |||||||||||||||||||||||||||||
SiO2/Fe weight | 0.87–1 | 0.82 | 0.96 | 0.85 | 1.13 | 0.64, 0.8 | |||||||||||||||||||||||||||||
Fe (wt%) | |||||||||||||||||||||||||||||||||||
SiO2 (wt%) | |||||||||||||||||||||||||||||||||||
CaO/Fe weight | |||||||||||||||||||||||||||||||||||
Slag T (oC) | 1240 | 1250 | 1260 | 1254 | 1255 | 1320 | |||||||||||||||||||||||||||||
Matte Cu (wt%) | 54–56 | 63.0 | 63.0 | 63.5 | 62.0 | 66.5–74.5 | |||||||||||||||||||||||||||||
Matte (t/d) | 1080 | 1500 | 1650 | 1129 | 1753 | 1800 | |||||||||||||||||||||||||||||
Fe/SiO2 weight | 1.07 | 1.22 | 1.04 | 1.18 | 0.88 | 1.56, 1.25 | |||||||||||||||||||||||||||||
(b) | |||||||||||||||||||||||||||||||||||
Operational DATA | Noranda | Teniente | Vanyukov | ||||||||||||||||||||||||||||||||
Noranda, Canada [41] | Altonorte, Chile [41] | Codelco Caletones, Chile [41] | Codelco Chuquicamata, Chile [60] | Balkhash smelter, Kazakhstan [41] | Norilsk Copper, Siberia * [41] | Sredneuralsky, Urals * [41] | |||||||||||||||||||||||||||||
Concentrate (t/d) | 1900–2200 | 3000–3300 | 2000–2400 | 2200–2500 | - | - | - | ||||||||||||||||||||||||||||
Concentrate Cu (wt%) | 27.0 | 26–29 | 27–29 | 30–33 | 12–22 | 19–23 | 13–15 | ||||||||||||||||||||||||||||
Slag (t/d) | 1300–1450 | 2450 | 1400–1700 | 1550–1800 | |||||||||||||||||||||||||||||||
Slag Cu total (wt%) | 3–4 | 7.00 | 6–8 | 6–10 | <0.9 | 1.2; 0.9; 2.0 | 0.7 | ||||||||||||||||||||||||||||
Slag Cu chemical loss (wt%) | 0.71 | 0.71 | 1.18 | 0.94 | |||||||||||||||||||||||||||||||
Slag Cu physical loss (wt%) | 2.79 | 6.29 | 5.82 | 7.06 | |||||||||||||||||||||||||||||||
SiO2/Fe weight | 0.6–0.8 | 0.7 | 0.45–0.59 | 0.66–0.68 | |||||||||||||||||||||||||||||||
Fe (wt%) | 31–38 | 48,45,25 | 30 | ||||||||||||||||||||||||||||||||
SiO2 (wt%) | 29–31 | 29,29,35 | 32 | ||||||||||||||||||||||||||||||||
CaO/Fe weight | |||||||||||||||||||||||||||||||||||
Slag T (oC) | 1230 | 1220 | 1240 | 1240 | 1250–1300 | 1320; 1320; 1250 | 1280 | ||||||||||||||||||||||||||||
Matte Cu (wt%) | 71–73 | 72–73 | 72–75 | 72–74 | 45–55 | 65,55,74 | 45 | ||||||||||||||||||||||||||||
Matte (t/d) | 650–900 | 1350.0 | 800–950 | 990–1150 | |||||||||||||||||||||||||||||||
Fe/SiO2 weight | 1.43 | 1.43 | 1.92 | 1.49 | |||||||||||||||||||||||||||||||
(c) | |||||||||||||||||||||||||||||||||||
Operational Data | Bottom Blowing | Mitsubishi | |||||||||||||||||||||||||||||||||
[43] | [76] | [76] | [77] | Dongying | Baotou | Calculation [75] | Mitsubishi Materials Corp., Naoshima, Japan [60] | Gresik, Indonesia [60] | Onsan, Korea [60] | ||||||||||||||||||||||||||
Concentrate (t/d) | 90–100 | 50 | 70 | 230 t/h | 2300 | 2000–2300 | 2109 | ||||||||||||||||||||||||||||
Concentrate Cu (wt%) | 20 | 22 | 20–22 | 18 | 25 | 34 | 31.7 | 33.2 | |||||||||||||||||||||||||||
Slag (t/d) | 153.4 t/h | 1300 | 1450 | 1331 | |||||||||||||||||||||||||||||||
Slag Cu total (wt%) | 3.0–4.0 | 1.0–3.0 | 2.6 | 2.5–3.8 | 2.6 | 5 | 7.6 | 0.7 | 0.7 | 0.8 | |||||||||||||||||||||||||
Slag Cu chemical loss (wt%) | 0.48 | 0.48 | 0.58 | 1.18 | 0.58 | 0.71 | 1.18 | 0.50 | 0.50 | 0.58 | |||||||||||||||||||||||||
Slag Cu physical loss (wt%) | 3.02 | 1.52 | 2.02 | 1.97 | 2.02 | 4.29 | 6.42 | 0.20 | 0.20 | 0.22 | |||||||||||||||||||||||||
SiO2/Fe weight | 0.62–0.56 | 0.59–0.67 | 0.56 | 0.53–0.71 | 0.56 | 0.59 | 0.63 | 0.9 | 0.8 | 0.9 | |||||||||||||||||||||||||
Fe (wt%) | |||||||||||||||||||||||||||||||||||
SiO2 (wt%) | |||||||||||||||||||||||||||||||||||
CaO/Fe weight | |||||||||||||||||||||||||||||||||||
Slag T (oC) | 1080–1180 | 1150–1170 | 1190–1210 | 1150–1180 | 1180 | 1200 | 1250 | ||||||||||||||||||||||||||||
Matte Cu (wt%) | 52–60 | 50.0 | 70 | 75.0 | 70.0 | 72.0 | 74.0 | 68 | 68 | 68.8 | |||||||||||||||||||||||||
Matte (t/d) | 80.1 t/h | 1400 | 1260 | 1240 | |||||||||||||||||||||||||||||||
Fe/SiO2 weight | 1.69 | 1.59 | 1.79 | 1.61 | 1.60 | 1.11 | 1.25 | 1.11 | |||||||||||||||||||||||||||
(d) | |||||||||||||||||||||||||||||||||||
Operational Data | Isasmelt [60] | ||||||||||||||||||||||||||||||||||
Mount Isa, Australia | Kunming, China | Miami, USA | Ilo, Peru | Sterlite, India | Mufulira, Zambia | Ust-Kamenogorsk, Kazakhstan | |||||||||||||||||||||||||||||
Concentrate (t/d) | |||||||||||||||||||||||||||||||||||
Concentrate Cu (wt%) | 22–26 | 18–22 | 25–29 | 25–29 | 26–31 | 28–32 | 22–26 | ||||||||||||||||||||||||||||
Slag (t/d) | |||||||||||||||||||||||||||||||||||
Slag Cu total (wt%) | |||||||||||||||||||||||||||||||||||
Slag Cu chemical loss (wt%) | |||||||||||||||||||||||||||||||||||
Slag Cu physical loss (wt%) | |||||||||||||||||||||||||||||||||||
SiO2/Fe weight | 0.85 | 0.85 | 0.65 | 0.75 | 0.75 | 0.85 | 0.8 | ||||||||||||||||||||||||||||
Fe (wt%) | |||||||||||||||||||||||||||||||||||
SiO2 (wt%) | |||||||||||||||||||||||||||||||||||
CaO/Fe weight | |||||||||||||||||||||||||||||||||||
Slag T (oC) | 1190 | 1180 | 1185 | 1185 | 1185 | - | 1180 | ||||||||||||||||||||||||||||
Matte Cu (wt%) | 60–63 | 52–55 | 55–60 | 60–65 | 60–65 | 60–65 | 55–60 | ||||||||||||||||||||||||||||
Matte (t/d) | |||||||||||||||||||||||||||||||||||
Fe/SiO2 weight | 1.18 | 1.18 | 1.54 | 1.33 | 1.33 | 1.18 | 1.25 | ||||||||||||||||||||||||||||
(e) | |||||||||||||||||||||||||||||||||||
Operational Data | Ausmelt [60] | ||||||||||||||||||||||||||||||||||
Zhong Tiao Shan, China | Tongling, China | RCC, Russia | JinJian, China | Huludao, China | NCS, Namibia | Days, China | YTCL, China | Xinjiang, Wuxin, China | |||||||||||||||||||||||||||
Concentrate (t/d) | |||||||||||||||||||||||||||||||||||
Concentrate Cu (wt%) | 17–22 | 25 | 14–23 | 26 | 22 | 25 | 20 | 22 | 19 | ||||||||||||||||||||||||||
Slag (t/d) | |||||||||||||||||||||||||||||||||||
Slag Cu total (wt%) | 0.6 | 0.6 | 1 | 0.6 | 0.6 | 1 | 0.6 | 0.6 | 0.6 | ||||||||||||||||||||||||||
Slag Cu chemical loss (wt%) | |||||||||||||||||||||||||||||||||||
Slag Cu physical loss (wt%) | |||||||||||||||||||||||||||||||||||
SiO2/Fe weight | 0.8 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | ||||||||||||||||||||||||||
Fe (wt%) | |||||||||||||||||||||||||||||||||||
SiO2 (wt%) | |||||||||||||||||||||||||||||||||||
CaO/Fe weight | |||||||||||||||||||||||||||||||||||
Slag T (oC) | 1200–1300 | 1180 | 1180 | 1180 | 1180 | 1180 | 1180 | 1180 | 1180 | ||||||||||||||||||||||||||
Matte Cu (wt%) | 60 | 50 | 40 | 50 | 50 | 50 | 55 | 60 | 56 | ||||||||||||||||||||||||||
Matte (t/d) | |||||||||||||||||||||||||||||||||||
Fe/SiO2 weight | 1.25 | 1.43 | 1.43 | 1.43 | 1.43 | 1.43 | 1.43 | 1.43 | 1.43 |
(a) | ||||||||||||||||||
Operational Data | Peirce–Smith | |||||||||||||||||
Pasar, Philippines [41] | Aurubis, Germany [41] | Boliden, Rönnskar, Sweden [41] | Codelco Caletones [41] | Hibi Kyodo Smelting Co., Tamano, Japan [41] | Sumitomo Toyo, Japan [41] | JX metals smelting Saganoseki, Japan [41] | Unknown 1 [96] | |||||||||||
Matte (t/converter, t/d or t/h) | 300 | 350 | 200 | 205 | 215 | - | ||||||||||||
Matte Cu (wt%) | 63 | 58 | 74.3 | 64 [60] | 62 [60] | 63 | ||||||||||||
Slag (t/converter, t/d, or t/h) | 70 | 140–160 | 30 | 65 | 54 | |||||||||||||
Slag Cu total (wt%) | 10–15 | 4 | 6 | 25 | 5.2 | 6.5 | 8.4 | 13.3 | ||||||||||
Slag Cu chemical loss (wt%) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||
Slag Cu physical loss (wt%) | 10.5 | 2 | 4 | 23 | 3.2 | 4.5 | 6.4 | 11.3 | ||||||||||
SiO2/Fe weight ratio | 0.55 | 0.75 | - | 0.41 | 0.45 | 0.46 | 0.46 | |||||||||||
Fe (wt%) | 41.1 | |||||||||||||||||
SiO2 (wt%) | 18.9 | |||||||||||||||||
CaO/Fe weight | ||||||||||||||||||
Slag T (oC) | ||||||||||||||||||
Blister Cu (t/converter, t/d or t/h) | 260–300 | 270–310 | 145 | 214 | 208 | - | ||||||||||||
Fe/SiO2 (Fe/CaO) weight | 1.82 | 1.33 | 2.44 | 2.22 | 2.17 | 2.17 | ||||||||||||
(b) | ||||||||||||||||||
Operational Data | Flash | Noranda | Mitsubishi | Teniente | Bottom Blowing | |||||||||||||
Rio Tinto Kennecott [41] | Horne [41] | Naoshima, Japan [41] | Gresik, Indonesia [41] | Onsan, Korea [60] | Chuquicamata [97] | Unknown 2 [87] | Unknown 3 [98] | Hernan Videla Lira [99] | Potrerillos [99] | Calculation [75] | ||||||||
Matte (t/converter, t/d or t/h) | 1200–1800 | 679 | 1080 | 1080–1290 | 1018 | 80.1 | ||||||||||||
Matte Cu (wt%) | 67–70 | 65 | 67 | 68.8 | 74 | |||||||||||||
Slag (t/converter, t/d, or t/h) | 200–400 | 297 | 290 | 576 | 360 | 11.5 | ||||||||||||
Slag Cu total (wt%) | 17–26 | 13.2 | 14 | 13 | 15 | 8 | 7.4 | 7.2 | 7.03 | 8 | 23 | |||||||
Slag Cu chemical loss (wt%) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |||||||
Slag Cu physical loss (wt%) | 19.5 | 11.2 | 12 | 11 | 13 | 6 | 5.4 | 5.2 | 5.03 | 6 | 21 | |||||||
SiO2/Fe weight ratio | 1.49 | 0.66 | 0.98 | 0.66 | 1 | |||||||||||||
Fe (wt%) | 39.4 | 38.11 | 38 | |||||||||||||||
SiO2 (wt%) | 26.1 | 37.5 | 24.19 | 25 | ||||||||||||||
CaO/Fe weight | 0.24–0.36 | 0.4 | 0.4 | 0.34 | ||||||||||||||
Slag T (oC) | 1260 | 1250 | ||||||||||||||||
Blister Cu (t/converter, t/d or t/h) | 1100–1500 | 640 | 790 | 850–1000 | 820 | 57.2 | ||||||||||||
Fe/SiO2 (Fe/CaO) weight | (2.63–5) | 0.67 | (2.5) | (2.5) | (2.94) | 1.5 | 1.0 | 1.5 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moosavi-Khoonsari, E.; Tripathi, N. Gold Recovery from Smelting Copper Sulfide Concentrate. Processes 2024, 12, 2795. https://doi.org/10.3390/pr12122795
Moosavi-Khoonsari E, Tripathi N. Gold Recovery from Smelting Copper Sulfide Concentrate. Processes. 2024; 12(12):2795. https://doi.org/10.3390/pr12122795
Chicago/Turabian StyleMoosavi-Khoonsari, Elmira, and Nagendra Tripathi. 2024. "Gold Recovery from Smelting Copper Sulfide Concentrate" Processes 12, no. 12: 2795. https://doi.org/10.3390/pr12122795
APA StyleMoosavi-Khoonsari, E., & Tripathi, N. (2024). Gold Recovery from Smelting Copper Sulfide Concentrate. Processes, 12(12), 2795. https://doi.org/10.3390/pr12122795