Proposal of Industry 5.0-Enabled Sustainability of Product–Service Systems and Its Quantitative Multi-Criteria Decision-Making Method
Abstract
:1. Introduction
2. Methodology
2.1. Design for Sustainability of Product–Service System
2.2. Analytic Hierarchy Process Method
2.2.1. Evaluation Indicators for MCDM Problems
2.2.2. Judgment Matrix
2.2.3. Calculate Indicator Weight
2.2.4. Check Consistency
2.3. Data Envelopment Analysis Method
2.3.1. CCR Model with Non-Archimedes Infinitesimal
- (1)
- If , then is non-DEA-effective.
- (2)
- If , and and , then is DEA-effective.
- (3)
- If , and , then is weakly DEA-effective.
2.3.2. Improved DEA (iDEA)
2.4. Integration of AHP and iDEA
2.4.1. MCDM-Based Framework for the Sustainability Evaluation
2.4.2. Indicator Layer Judgment
2.4.3. Criterion Layer Judgment
2.4.4. Target Layer Judgment
3. Case Study
3.1. Sustainability Indicators of Refrigerator
3.2. Indicator Layer Judgment
3.2.1. Apply AHP to Obtain the Weight of the Indicator Layer
3.2.2. Apply iDEA to Obtain the Efficiency Index
3.2.3. Obtain the Green Attribute of the Indicator Layer
3.3. Criterion Layer Judgment
3.4. Target Layer Judgment
3.4.1. Apply AHP to Obtain the Weight of the Criterion Layer
3.4.2. Calculate the Sustainability of Refrigerators
- (1)
- Throughout their life cycle, the sustainability of Refrigerator 1, Refrigerator 2, and Refrigerator 3 is 0.7873, 0.8618, and 0.8561, respectively, and Refrigerator 2 has the best sustainability as per the comprehensive evaluation result.
- (2)
- If the refrigerators are measured by environmental attributes, Refrigerator 2 Refrigerator 3 Refrigerator 1; the green attributes of Refrigerator 1, Refrigerator 2, and Refrigerator 3 are 0.7506, 0.9241, and 0.9083, respectively. It can be concluded that Refrigerator 2 shows the best environmental attributes. An analysis of the sub-indicators under environmental attributes is presented as follows:
- a.
- As for the air pollution, the efficiency indexes of Refrigerator 1, Refrigerator 2, and Refrigerator 3 are 0.7, 1, and 0.875, respectively. Refrigerator 1 should decrease emission under the air pollution indicator.
- b.
- As for the water pollution, the efficiency indexes of Refrigerator 1, Refrigerator 2, and Refrigerator 3 are 0.9783, 0.7972, and 0.7639, respectively, and Refrigerator 1 needs to improve its technology in emission related to water pollution.
- c.
- With solid waste pollution as the metric, the efficiency indexes of Refrigerator 1, Refrigerator 2, and Refrigerator 3 are 0.8, 0.8, and 1, respectively. There is not much difference between the performance indicators of Refrigerator 1 and Refrigerator 2, while Refrigerator 3 needs to decrease the solid waste indicator.
- (3)
- If the refrigerators are measured by energy attributes, the efficiency indexes of Refrigerator 1, Refrigerator 2, and Refrigerator 3 are 0.9564, 0.9, and 0.7074, respectively, Refrigerator 1 Refrigerator 2 Refrigerator 3, and there is not much difference in energy indicators between Refrigerator 1 and Refrigerator 2. Therefore, Refrigerator 3 should adopt reasonable production processes to achieve the goal of saving and improving resource utilization.
- (4)
- If the refrigerators are measured by resource attributes, the efficiency indexes of these refrigerators are 1, 0.2677, and 0.3681, respectively, and Refrigerator 1 Refrigerator 3 Refrigerator 2. Refrigerator 2 and Refrigerator 3 underperform compared to Refrigerator 1 in resource attributes and can do better by cutting the content of toxic and hazardous materials and increasing resource utilization and recycling.
- (5)
- If the refrigerators are measured by social satisfaction, the efficiency indexes of these refrigerators are 1, 0.5766, and 0.8484, respectively, and Refrigerator 1 Refrigerator 3 Refrigerator 2. To improve its economy, Refrigerator 2 needs to decrease its economic indicators.
3.5. Result Discussion
3.6. Product Improvement Suggestion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AHP | Analytic Hierarchy Process |
AI | Artificial Intelligence |
CCR | Charnes, Cooper, and Rhodes |
CFCs | Chlorofluorocarbons |
DEA | Data Envelopment Analysis |
DfE | Design for Environment |
DfS | Design for Sustainability |
DMU | Decision-Making Unit |
DT | Digital Twin |
EoL | End of Life |
GWP | Global Warming Potential |
iDEA | Improved Data Envelopment Analysis |
Industry 4.0 | The Fourth Industrial Revolution |
IoT | Internet of Things |
LCA | Life Cycle Assessment |
MCDM | Multi-Criteria Decision Making |
MRIO | Multi-Regional Input–Output Model |
PEF | Product Environmental Footprint |
PET | Polyethylene Terephthalate |
PLC | Product Life Cycle |
PSS | Product–Service System |
SDGs | United Nations Sustainable Development Goals |
SI | Sustainability Indicator |
SPSS | Sustainable Product–Service System |
TBL | Triple-Bottom-Line |
References
- Hu, F. Mutual information-enhanced digital twin promotes vision-guided robotic grasping. Adv. Eng. Inform. 2022, 52, 101562. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Gonzalez, E.S. Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustain. Oper. Comput. 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Hu, F.; Cheng, J.; He, Y. Interactive design for additive manufacturing: A creative case of synchronous belt drive. Int. J. Interact. Des. Manuf. (IJIDeM) 2018, 12, 889–901. [Google Scholar]
- Hu, F.; Wang, W.; Zhou, J. Petri nets-based digital twin drives dual-arm cooperative manipulation. Comput. Ind. 2023, 147, 103880. [Google Scholar] [CrossRef]
- Bonilla, S.H.; Silva, H.R.; Terra da Silva, M.; Franco Gonçalves, R.; Sacomano, J.B. Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges. Sustainability 2018, 10, 3740. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Artifcial Intelligence and the Circular Economy: AI as a Tool to Accelerate the Transition. 2019. Available online: http://www.ellenmacarthurfoundation.org/publications (accessed on 22 January 2023).
- Furstenau, L.B.; Sott, M.K.; Kipper, L.M.; Machado, E.L.; Lopez-Robles, J.R.; Dohan, M.S.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Link between sustainability and industry 4.0: Trends, challenges and new perspectives. IEEE Access 2020, 8, 140079–140096. [Google Scholar] [CrossRef]
- Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020, 229, 107776. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Iranmanesh, M.; Morales, M.E.; Nilashi, M.; Amran, A. Actions and approaches for enabling Industry 5.0-driven sustainable industrial transformation: A strategy roadmap. Corp. Soc. Responsib. Environ. Manag. 2023, 30, 1473–1494. [Google Scholar] [CrossRef]
- Özdemir, V.; Hekim, N. Birth of industry 5.0: Making sense of big data with artificial intelligence, “the internet of things” and next-generation technology policy. Omics A J. Integr. Biol. 2018, 22, 65–76. [Google Scholar] [CrossRef]
- Breque, M.; De Nul, L.; Petridis, A. Industry 5.0-Towards a Sustainable, Human-Centric and Resilient European Industry, Publications Office of the European Union. 2021. Available online: https://data.europa.eu/doi/10.2777/308407 (accessed on 22 January 2023).
- Grabowska, S.; Saniuk, S.; Gajdzik, B. Industry 5.0: Improving humanization and sustainability of Industry 4.0. Scientometrics 2022, 127, 3117–3144. [Google Scholar] [CrossRef]
- Leng, J.; Sha, W.; Wang, B.; Zheng, P.; Zhuang, C.; Liu, Q.; Wuest, T.; Mourtzis, D.; Wang, L. Industry 5.0: Prospect and retrospect. J. Manuf. Syst. 2022, 65, 279–295. [Google Scholar] [CrossRef]
- Ivanov, D. The Industry 5.0 framework: Viability-based integration of the resilience, sustainability, and human-centricity perspectives. Int. J. Prod. Res. 2023, 61, 1683–1695. [Google Scholar] [CrossRef]
- Chan, S.; Weitz, N.; Persson, Å.; Trimmer, C. SDG 12: Responsible consumption and production. A Review of Research Needs. In Technical Annex to the Formas Report Forskning för Agenda 2030; Emerging Technologies: Naples, FL, USA, 2018; pp. 409–428. [Google Scholar]
- Jasrotia, S.S.; Darda, P.; Pandey, S. Changing values of millennials and centennials towards responsible consumption and sustainable society. Soc. Bus. Rev. 2023, 18, 244–263. [Google Scholar] [CrossRef]
- Ríos-Rodríguez, M.L.; Salgado-Cacho, J.M.; Moreno-Jiménez, P. What impacts socially responsible consumption? Sustainability 2021, 13, 4258. [Google Scholar] [CrossRef]
- Kälviäinen, M. User-Driven Service Design for Environmentally Responsible Consumption. The Publication Series of LAB University of Applied Sciences, Part 4. 2022. Available online: https://urn.fi/URN:ISBN:978-951-827-412-7 (accessed on 18 January 2024).
- Vezzoli, C.; Ceschin, F.; Diehl, J.C.; Kohtala, C. New design challenges to widely implement ‘Sustainable Product–Service Systems’. J. Clean. Prod. 2015, 97, 1–12. [Google Scholar] [CrossRef]
- Gaiardelli, P.; Pezzotta, G.; Rondini, A.; Romero, D.; Jarrahi, F.; Bertoni, M.; Wiesner, S.; Wuest, T.; Larsson, T.; Zaki, M.; et al. Product-service systems evolution in the era of Industry 4.0. Serv. Bus. 2021, 15, 177–207. [Google Scholar] [CrossRef]
- Pech, M.; Vrchota, J. The product customization process in relation to industry 4.0 and digitalization. Processes 2022, 10, 539. [Google Scholar] [CrossRef]
- Akizu-Gardoki, O.; de Ulibarri, B.; Iturrondobeitia, M.; Minguez, R.; Lizundia, E. Ecodesign coupled with Life Cycle Assessment to reduce the environmental impacts of an industrial enzymatic cleaner. Sustain. Prod. Consum. 2022, 29, 718–729. [Google Scholar]
- Sanyé-Mengual, E.; Lozano, R.G.; Farreny, R.; Oliver-Solà, J.; Gasol, C.M.; Rieradevall, J. Introduction to the eco-design methodology and the role of product carbon footprint. In Assessment of Carbon Footprint in Different Industrial Sectors; Springer Science & Business: Berlin/Heidelberg, Germany, 2014; Volume 1, pp. 1–24. [Google Scholar]
- Sdrolia, E.; Zarotiadis, G. A comprehensive review for green product term: From definition to evaluation. J. Econ. Surv. 2019, 33, 150–178. [Google Scholar] [CrossRef]
- Albino, V.; Balice, A.; Dangelico, R.M. Environmental strategies and green product development: An overview on sustainability-driven companies. Bus. Strategy Environ. 2009, 18, 83–96. [Google Scholar] [CrossRef]
- ISO 14006:2011; Environmental Management Systems—Guidelines for Incorporating Ecodesign. International Organization for Standarization: Geneva, Switzerland, 2011.
- Fiksel, J. Design for Environment: A Guide to Sustainable Product Development; McGraw-Hill Education: New York, NY, USA, 2009. [Google Scholar]
- Siong Kuik, S.; Verl Nagalingam, S.; Amer, Y. Sustainable supply chain for collaborative manufacturing. J. Manuf. Technol. Manag. 2011, 22, 984–1001. [Google Scholar] [CrossRef]
- Trollman, H.; Trollman, F. A sustainability assessment of smart innovations for mass production, mass customisation and direct digital manufacturing. In Mass Production Processes; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef]
- Cicconi, P. Eco-design and Eco-materials: An interactive and collaborative approach. Sustain. Mater. Technol. 2020, 23, e00135. [Google Scholar] [CrossRef]
- Keivanpour, S.; Kadi, D.A. Perspectives for application of the internet of things and big data analytics on end of life aircraft treatment. Int. J. Sustain. Aviat. 2018, 4, 202–220. [Google Scholar] [CrossRef]
- Rojek, I.; Mikołajewski, D.; Dostatni, E. Digital twins in product lifecycle for sustainability in manufacturing and maintenance. Appl. Sci. 2020, 11, 31. [Google Scholar] [CrossRef]
- Tunn, V.S.C.; Van den Hende, E.A.; Bocken, N.M.P.; Schoormans, J.P.L. Digitalised product-service systems: Effects on consumers’ attitudes and experiences. Resour. Conserv. Recycl. 2020, 162, 105045. [Google Scholar] [CrossRef]
- Peruzzini, M.; Germani, M. Design for sustainability of product-service systems. Int. J. Agil. Syst. Manag. 2014, 7, 206–219. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- John, C.A.; Tan, L.S.; Tan, J.; Kiew, P.L.; Shariff, A.M.; Halim, H.A. Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak. Sustainability 2021, 13, 11880. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO Publishing: Geneve, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO Publishing: Geneve, Switzerland, 2006.
- Navajas, A.; Uriarte, L.; Gandía, L.M. Application of eco-design and life cycle assessment standards for environmental impact reduction of an industrial product. Sustainability 2017, 9, 1724. [Google Scholar] [CrossRef]
- Mainar-Toledo, M.D.; Gómez Palmero, M.; Díaz-Ramírez, M.; Mendioroz, I.; Zambrana-Vasquez, D. A Multi-Criteria Approach to Evaluate Sustainability: A Case Study of the Navarrese Wine Sector. Energies 2023, 16, 6589. [Google Scholar] [CrossRef]
- Martin, E.J.; Oliveira, D.S.; Oliveira, L.S.; Bezerra, B.S. An Integrated Framework for Environmental and Social Life Cycle Assessments in PET Bottle Waste Management: A Case Study in Brazil. Waste 2023, 1, 724–739. [Google Scholar] [CrossRef]
- Bhyan, P.; Shrivastava, B.; Kumar, N. Allocating weightage to sustainability criteria’s for performance assessment of group housing developments: Using fuzzy analytic hierarchy process. J. Build. Eng. 2023, 65, 105684. [Google Scholar] [CrossRef]
- Panwar, A.; Olfati, M.; Pant, M.; Snasel, V. A review on the 40 years of existence of data envelopment analysis models: Historic development and current trends. Arch. Comput. Methods Eng. 2022, 29, 5397–5426. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Zhu, Y.; Shang, H.; Li, Y. Variations on the theme of slacks-based measure of efficiency: Convex hull-based algorithms. Comput. Ind. Eng. 2021, 159, 107474. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, F.; Li, R. Assessing supply chain greenness from the perspective of embodied renewable energy—A data envelopment analysis using multi-regional input-output analysis. Renew. Energy 2022, 189, 1292–1305. [Google Scholar] [CrossRef]
- Andrijauskiene, M.; Ioannidis, D.; Dumciuviene, D.; Dimara, A.; Bezas, N.; Papaioannou, A.; Krinidis, S. European Union Innovation Efficiency Assessment Based on Data Envelopment Analysis. Economies 2023, 11, 163. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Kusiak, A. From data to big data in production research: The past and future trends. Int. J. Prod. Res. 2019, 57, 4828–4853. [Google Scholar] [CrossRef]
- Cook, W.D.; Seiford, L.M. Data envelopment analysis (DEA)—Thirty years on. Eur. J. Oper. Res. 2009, 192, 1–17. [Google Scholar] [CrossRef]
- Linton, J.D. DEA: A method for ranking the greenness of design decisions. J. Mech. Des. 2002, 124, 145–150. [Google Scholar] [CrossRef]
- Sinuany-Stern, Z.; Mehrez, A.; Hadad, Y. An AHP/DEA methodology for ranking decision making units. Int. Trans. Oper. Res. 2000, 7, 109–124. [Google Scholar] [CrossRef]
- Wang, Y.M.; Liu, J.; Elhag, T.M. An integrated AHP–DEA methodology for bridge risk assessment. Comput. Ind. Eng. 2008, 54, 513–525. [Google Scholar] [CrossRef]
- Gupta, P.; Mehlawat, M.K.; Aggarwal, U.; Charles VJ, R.P. An integrated AHP-DEA multi-objective optimization model for sustainable transportation in mining industry. Resour. Policy 2021, 74, 101180. [Google Scholar] [CrossRef]
- Li, H.; Lin, Y.; Wang, Y.; Liu, J.; Liang, S.; Guo, S.; Qiang, T. Multi-criteria analysis of a people-oriented urban pedestrian road system using an integrated fuzzy AHP and DEA approach: A case study in Harbin, China. Symmetry 2021, 13, 2214. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, H.; Zhou, M.; Li, Z. AHP, gray correlation, and TOPSIS combined approach to green performance evaluation of design alternatives. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 1093–1105. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Liu, G.; Liu, Z.; Huang, H. Research on Design for Environment Method in Mass Customization. Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses. In Proceedings of the 14th CIRP Conference on Life Cycle Engineering, Waseda University, Tokyo, Japan, 11–13 June 2007; Springer: London, UK, 2007; pp. 65–70. [Google Scholar]
- Ma, J.; Yin, F.; Liu, Z.; Zhou, X. The eco-design and green manufacturing of a refrigerator. Procedia Environ. Sci. 2012, 16, 522–529. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, Y.; Liu, X.; Yuan, Z. A life-cycle assessment of household refrigerators in China. J. Clean. Prod. 2015, 95, 301–310. [Google Scholar] [CrossRef]
- Relich, M. A Data-Driven Approach for Improving Sustainable Product Development. Sustainability 2023, 15, 6736. [Google Scholar] [CrossRef]
- He, B.; Mao, H. Digital twin-driven product sustainable design for low carbon footprint. J. Comput. Inf. Sci. Eng. 2023, 23, 060805. [Google Scholar] [CrossRef]
- Hu, F.; Li, L.; Liu, Y.; Yan, D. Enhancement of agility in small-lot production environment using 3D printer, industrial robot and machine vision. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 32-1. [Google Scholar] [CrossRef]
- Winter, J.; Frey, A.; Biehler, J. Towards the Next Decade of Industrie 4.0–Current State in Research and Adoption and Promising Development Paths from a German Perspective. Science 2022, 4, 31. [Google Scholar] [CrossRef]
- Hu, F.; Qiu, X.; Jing, G.; Tang, J.; Zhu, Y. Digital twin-based decision making paradigm of raise boring method. J. Intell. Manuf. 2023, 34, 2387–2405. [Google Scholar] [CrossRef]
- Martínez-Olvera, C. Towards the development of a digital twin for a sustainable mass customization 4.0 environment: A literature review of relevant concepts. Automation 2022, 3, 197–222. [Google Scholar] [CrossRef]
- Ojala, E.; Uusitalo, V.; Virkki-Hatakka, T.; Niskanen, A.; Soukka, R. Assessing product environmental performance with PEF methodology: Reliability, comparability, and cost concerns. Int. J. Life Cycle Assess. 2016, 21, 1092–1105. [Google Scholar] [CrossRef]
- Vandevenne, N.; Van Riel, J.; Poels, G. Green Enterprise Architecture (GREAN)—Leveraging EA for Environmentally Sustainable Digital Transformation. Sustainability 2023, 15, 14342. [Google Scholar] [CrossRef]
- Alimohammadlou, M.; Khoshsepehr, Z. The role of Society 5.0 in achieving sustainable development: A spherical fuzzy set approach. Environ. Sci. Pollut. Res. 2023, 30, 47630–47654. [Google Scholar] [CrossRef]
- Letunovska, N.; Offei, F.A.; Junior, P.A.; Lyulyov, O.; Pimonenko, T.; Kwilinski, A. Green Supply Chain Management: The Effect of Procurement Sustainability on Reverse Logistics. Logistics 2023, 7, 47. [Google Scholar] [CrossRef]
- Dabees, A.; Barakat, M.; Elbarky, S.S.; Lisec, A. A Framework for Adopting a Sustainable Reverse Logistics Service Quality for Reverse Logistics Service Providers: A Systematic Literature Review. Sustainability 2023, 15, 1755. [Google Scholar] [CrossRef]
Scale | Connotation |
---|---|
1 | Means that the importance is the same in the comparison of two factors. |
2 | Between the mid-value of the two adjacent judgments above. |
3 | Means that one factor is slightly more important than the other in the comparison of two factors. |
4 | Between the mid-value of the two adjacent judgments above. |
5 | Means that one factor is significantly more important than the other in the comparison of two factors. |
6 | Between the mid-value of the two adjacent judgments above. |
7 | Means that one factor is much more important than the other in the comparison of two factors. |
8 | Between the mid-value of above two adjacent judgments. |
9 | Means that one factor is extremely more important than the other factor in the comparison of two factors. |
Reciprocal | If the importance ratio of Factor a and Factor b is k, then the importance ratio of Factor b and Factor a is 1/k. |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
0 | 0.514 | 0.893 | 1.118 | 1.249 | 1.345 | 1.420 | 1.462 | 1.487 | 1.516 | 1.541 |
Environmental Attributes | ||||||
---|---|---|---|---|---|---|
Bespoke Product | Air Pollution | Water Pollution | Solid Waste Pollution | |||
Input Indicators | Input Indicators | Input Indicators ) | ||||
Chlorofluorocarbons (CFCs) () | Carbon Dioxide () | Sulfur Dioxide ) | Phosphorus ) | Suspended Solids ) | ||
Refrigerator 1 | 0 | 2.80 | 0.11 | 0.08 | 5.70 | 100 |
Refrigerator 2 | 0 | 2.80 | 0.11 | 0.09 | 7.80 | 100 |
Refrigerator 3 | 0 | 2.80 | 0.13 | 0.09 | 7.10 | 80.0 |
Best product | 0 | 2.80 | 0.11 | 0.08 | 5.70 | 80.0 |
Worst product | 0 | 2.80 | 0.13 | 0.09 | 7.80 | 100 |
Energy Attributes | |||
---|---|---|---|
Bespoke Product | Input Indicator | Output Indicator | |
Energy Efficiency Ratio | Energy Utilization Rate | Energy Recycling Rate | |
Refrigerator 1 | 0.88 | 0.74 | 0.10 |
Refrigerator 2 | 0.84 | 0.61 | 0.090 |
Refrigerator 3 | 0.95 | 0.60 | 0.080 |
Best product | 0.84 | 0.74 | 0.10 |
Worst product | 0.95 | 0.60 | 0.080 |
Resource Attributes | ||||
---|---|---|---|---|
Bespoke Product | Input Indicators | Output Indicators | ||
Toxic Material Rate | Hazardous Material Rate | Material Utilization Rate | Material Recycling Rate | |
Refrigerator 1 | 1.01 | 1.51 | 0.71 | 0.41 |
Refrigerator 2 | 1.86 | 2.50 | 0.35 | 0.38 |
Refrigerator 3 | 2.28 | 2.34 | 0.59 | 0.38 |
Best product | 1.01 | 1.51 | 0.71 | 0.41 |
Worst product | 2.28 | 2.50 | 0.35 | 0.38 |
Social Satisfaction | ||||
---|---|---|---|---|
Bespoke Product | Input Indicators | Output Indicators | ||
User Usage Cost | Social Environmental Cost | Factory Satisfaction | Outside the Factory Satisfaction | |
Refrigerator 1 | 6.50 | 1.40 | 0.950 | 0.75 |
Refrigerator 2 | 8.00 | 2.30 | 0.900 | 0.73 |
Refrigerator 3 | 8.00 | 1.40 | 0.806 | 0.74 |
Best product | 6.50 | 1.40 | 0.950 | 0.75 |
Worst product | 8.00 | 2.30 | 0.806 | 0.73 |
Environmental Attributes | Air Pollution | Water Pollution | Solid Waste Pollution |
---|---|---|---|
Air pollution | 1 | 4 | 5 |
Water pollution | 1/4 | 1 | 2 |
Solid waste pollution | 1/5 | 1/2 | 1 |
Target Layer | Indicator Type | Indicator Layer | Refrigerator 1 | Refrigerator 2 | Refrigerator 3 | The Best Product | The Worst Product | |
---|---|---|---|---|---|---|---|---|
Environmental attributes | Air pollution | Input indicators | CFCs | 0 | 0 | 0 | 0 | 0 |
Carbon dioxide | 2.80 | 2.80 | 2.80 | 2.80 | 2.80 | |||
Sulfur dioxide | 0.11 | 0.11 | 0.13 | 0.11 | 0.13 | |||
Output indicator | Indicator value | 1 | 1 | 1 | 1 | 1 |
Environmental Attributes | Air Pollution | Water Pollution | Solid Waste Pollution |
---|---|---|---|
Output weight vector | 0.8462 | 0.7308 | 0.8000 |
Input weight vector | 0, 0, 7.692 | 0, 0.1282 | 0.0100 |
Criterion Layer | Indicator Name | Refrigerator 1 | Refrigerator 2 | Refrigerator 3 | The Best Product | The Worst Product |
---|---|---|---|---|---|---|
Environmental attributes | Air pollution (0.6833) | 1.000 | 1.000 | 0.8462 | 1.000 | 0.8462 |
Water pollution (0.1998) | 1.000 | 0.7308 | 0.8028 | 1.000 | 0.7308 | |
Solid waste pollution (0.1168) | 0.8 | 0.8 | 1 | 1 | 0.8 |
Target Layer | Energy Attributes | Resource Attributes | Social Satisfaction |
---|---|---|---|
Output weight vector | 0, 8.842 | 0.6239, 0 | 0.6407, 0 |
Input weight vector | 1.0526 | 0.4386, 0 | 0, 0.4348 |
Efficiency index of Refrigerator 1 | 0.9546 | 1.000 | 1.000 |
Efficiency index of Refrigerator 2 | 0.9000 | 0.2677 | 0.5766 |
Efficiency index of Refrigerator 3 | 0.7074 | 0.3681 | 0.8484 |
Efficiency index of the best virtual product | 1 | 1 | 1 |
Efficiency index of the worst virtual product | 0.7074 | 0.2184 | 0.5164 |
Indicator Name | Refrigerator 1 | Refrigerator 2 | Refrigerator 3 | The Best Product | The Worst Product | |
---|---|---|---|---|---|---|
Sustainability of the refrigerators | Environmental attributes | 0.9760 | 0.9220 | 0.8550 | 1.000 | 0.8170 |
Energy attributes | 0.9546 | 0.9000 | 0.7074 | 1.000 | 0.7074 | |
Resource attributes | 1.000 | 0.2677 | 0.3681 | 1.000 | 0.2184 | |
Social satisfaction | 1.000 | 0.5766 | 0.8484 | 1.000 | 0.5164 |
Slack Variables | Refrigerator 1 ( = 1) | Refrigerator 2 ( = 0.9733) | Refrigerator 3 ( = 0.9867) | |
---|---|---|---|---|
CFCs | 0 | 0 | 0 | |
Carbon dioxide | 0 | 0 | 0 | |
Sulfur dioxide | 0 | 0 | 0.0197 | |
Phosphorus | 0 | 097 | 099 | |
Suspended solids | 0 | 2.0440 | 1.3813 | |
Solid waste pollution | 20 | 19.4667 | 0 | |
Energy efficiency ratio | 0.0400 | 0 | 0.1085 | |
Toxic material rate | 0 | 0.8273 | 1.2531 | |
Hazardous material rate | 0 | 0.9636 | 0.8189 | |
User usage cost | 0 | 1.4600 | 1.4800 | |
Social environmental cost | 0 | 0.8760 | 0 | |
Energy utilization rate | 0 | 0.1103 | 0.1301 | |
Energy recycling rate | 0 | 073 | 0.0187 | |
Material utilization rate | 0 | 0.3411 | 0.1105 | |
Material recycling rate | 0 | 0.0191 | 0.0245 | |
Factory satisfaction | 0 | 0.0247 | 0.1313 | |
Outside the factory satisfaction | 0 | 0 | 0 |
Refrigerator 1 ( = 1) | Refrigerator 2 ( = 0.9733) | Refrigerator 3 ( = 0.9867) | |||||
---|---|---|---|---|---|---|---|
Actual Value | Projection Value | Actual Value | Projection Value | Actual Value | Projection Value | ||
Input indicators | CFCs | 0 | 0 | 0 | 0 | 0 | 0 |
Carbon dioxide | 2.80 | 2.80 | 2.80 | 2.80 | 2.80 | 2.80 | |
Sulfur dioxide | 0.11 | 0.11 | 0.11 | 0.11 | 0.13 | 0.1103 | |
Phosphorus | 0.08 | 0.08 | 0.09 | 0.08 | 0.09 | 0.08 | |
Suspended solids | 5.70 | 5.70 | 7.80 | 5.76 | 7.10 | 5.72 | |
Solid waste pollution | 100 | 80.0 | 100 | 80.5 | 80.0 | 80.0 | |
Energy efficiency ratio | 0.88 | 0.84 | 0.84 | 0.84 | 0.95 | 0.84 | |
Toxic material rate | 1.01 | 1.01 | 1.86 | 1.03 | 2.28 | 1.03 | |
Hazardous material rate | 1.51 | 1.51 | 2.50 | 1.54 | 2.34 | 1.52 | |
User usage cost | 6.50 | 6.50 | 8.00 | 6.54 | 8.00 | 6.52 | |
Social environmental cost | 1.40 | 1.40 | 2.30 | 1.42 | 1.40 | 1.40 | |
Output indicators | Energy utilization rate | 0.74 | 0.74 | 0.61 | 0.72 | 0.60 | 0.73 |
Energy recycling rate | 0.10 | 0.10 | 0.090 | 0.097 | 0.080 | 099 | |
Material utilization rate | 0.71 | 0.71 | 0.35 | 0.69 | 0.59 | 0.70 | |
Material recycling rate | 0.41 | 0.41 | 0.38 | 0.40 | 0.38 | 0.40 | |
Factory satisfaction | 0.950 | 0.950 | 0.900 | 0.925 | 0.806 | 0.937 | |
Outside the factory satisfaction | 0.75 | 0.75 | 0.73 | 0.73 | 0.74 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Q.; Chen, H.; Hu, F. Proposal of Industry 5.0-Enabled Sustainability of Product–Service Systems and Its Quantitative Multi-Criteria Decision-Making Method. Processes 2024, 12, 473. https://doi.org/10.3390/pr12030473
Jin Q, Chen H, Hu F. Proposal of Industry 5.0-Enabled Sustainability of Product–Service Systems and Its Quantitative Multi-Criteria Decision-Making Method. Processes. 2024; 12(3):473. https://doi.org/10.3390/pr12030473
Chicago/Turabian StyleJin, Qichun, Huimin Chen, and Fuwen Hu. 2024. "Proposal of Industry 5.0-Enabled Sustainability of Product–Service Systems and Its Quantitative Multi-Criteria Decision-Making Method" Processes 12, no. 3: 473. https://doi.org/10.3390/pr12030473
APA StyleJin, Q., Chen, H., & Hu, F. (2024). Proposal of Industry 5.0-Enabled Sustainability of Product–Service Systems and Its Quantitative Multi-Criteria Decision-Making Method. Processes, 12(3), 473. https://doi.org/10.3390/pr12030473