Drugs in Cyclodextrin in Liposomes: How a Suitable Formulation of an Active Substance Can Improve Its Efficiency?
Abstract
:1. Introduction
2. Drug in Cyclodextrin in Liposome (DCL)
2.1. Inclusion Complexes between a Drug and a Cyclodextrin
2.2. Various Categories of Liposomes
2.3. Cyclodextrins and Liposomes
3. Influence of DCL on Compound Pharmacokinetics
3.1. Improvement in the Bioavailability of a Bioactive Compound
3.1.1. Application to Natural Products
3.1.2. Application to Commercially Available Drugs
3.1.3. Related Parameters Influenced by the DCL
3.2. Improvement of the Physiological Barriers Crossing
3.2.1. Vesicular Strategies for Effective Transdermal Delivery of Drugs
3.2.2. Vesicular Strategies for Increasing the Permeability of the Blood–Brain Barrier
3.2.3. Vesicular Strategies for Effective Gene Delivery
3.3. Control of the Release Time of the Drug
4. Influence of DCL on Compound Pharmacodynamics
4.1. Formulation for Anticancer Drugs
4.2. Formulation for Anesthetic Drugs
4.3. Formulation for Improving the Efficiency of Antibiotic Treatments
5. Conclusions
Funding
Conflicts of Interest
References
- Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef]
- Soica, C.; Coricovac, D.; Dehelean, C.; Pinzaru, I.; Mioc, M.; Danciu, C.; Fulias, A.; Puiu, M.; Sitaru, C. Nanocarriers as Tools in Delivering Active Compounds for Immune System Related Pathologies. Recent Pat. Nanotechnol. 2016, 10, 128–145. [Google Scholar] [CrossRef]
- Tang, W.; Fan, W.; Lau, J.; Deng, L.; Shen, Z.; Chen, X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 2019, 48, 2967–3014. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Peng, Z.; Seven, E.S.; Leblanc, R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release 2018, 270, 290–303. [Google Scholar] [CrossRef]
- Islan, G.A.; Durán, M.; Cacicedo, M.L.; Nakazato, G.; Kobayashi, R.K.T.; Martinez, D.S.T.; Castro, G.R.; Durán, N. Nanopharmaceuticals as a solution to neglected diseases: Is it possible? Acta Trop. 2017, 170, 16–42. [Google Scholar] [CrossRef]
- McCormack, B.; Gregoriadis, G. Drugs-in-cyclodextrins-in-liposomes: An approach to controlling the fate of water insoluble drugs in vivo. Int. J. Pharm. 1998, 162, 59–69. [Google Scholar] [CrossRef]
- Chen, J.; Lu, W.L.; Gu, W.; Lu, S.-S.; Chen, Z.-P.; Cai, B.-C.; Yang, X.-X. Drug-in-cyclodextrin-in-liposomes: A promising delivery system for hydrophobic drugs. Expert Opin. Drug Deliv. 2014, 11, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Gharib, R.; Greige-Gerges, H.; Fourmentin, S.; Charcosset, C.; Auezova, L. Liposomes incorporating cyclodextrin-drug inclusion complexes: Current state of knowledge. Carbohydr. Polym. 2015, 129, 175–186. [Google Scholar] [CrossRef]
- Jani, R.K.; Pandya, M.; Rathod, H. Liposomes encapsulating cyclodextrin enclosed hydrophobic anti-cancer drugs: A novel drug delivery system for cancer. J. Drug Deliv. Ther. 2019, 9, 598–605. [Google Scholar] [CrossRef]
- Hammoud, Z.; Khreich, N.; Auezova, L.; Fourmentin, S.; Elaissari, A.; Greige-Gerges, H. Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int. J. Pharm. 2019, 564, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.A.; Silva, O.F.; Vico, R.V.; de Rossi, R.H. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr. Res. 2019, 480, 12–34. [Google Scholar] [CrossRef]
- Mura, P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int. J. Pharm. 2020, 579, 119181. [Google Scholar] [CrossRef]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Connors, K.A. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev. 1997, 97, 1325–1358. [Google Scholar] [CrossRef] [PubMed]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed]
- Cabral Marques, H.M. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr. J. 2010, 25, 313–326. [Google Scholar] [CrossRef]
- Gillet, A. Skin penetration behaviour of liposomes as a function of their composition. Eur. J. Pharm. Biopharm. 2011, 79, 43–53. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.C.; Rosilio, V.; Lesieur, P.; Bourgaux, C.; Couvreur, P.; Ollivon, M.; Dubernet, C. pH-Sensitive liposomes as a carrier for oligonucleotides: A physico-chemical study of the interaction between DOPE and a 15-mer oligonucleotide in excess water. Biophys. Chem. 2000, 87, 127–137. [Google Scholar] [CrossRef]
- Karanth, H.; Murthy, R.S.R. pH-sensitive liposomes–principle and application in cancer therapy. J. Pharm. Pharmacol. 2007, 59, 469–483. [Google Scholar] [CrossRef]
- Elsana, H.; Olusanya, T.O.B.; Carr-wilkinson, J.; Darby, S.; Faheem, A.; Elkordy, A.A. Evaluation of Novel Cationic Gene Based Liposomes with Cyclodextrin Prepared by Thin Film Hydration and Microfluidic Systems. Sci. Rep. 2019, 9, 15120. [Google Scholar] [CrossRef]
- Piel, G.; Piette, M.; Barillaro, V.; Castagne, D.; Evrard, B.; Delattre, L. Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity of liposomes. Int. J. Pharm. 2007, 338, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Zappacosta, R.; Cornelio, B.; Pilato, S.; Siani, G.; Estour, F.; Aschi, M.; Fontana, A. Effect of the Incorporation of Functionalized Cyclodextrins in the Liposomal Bilayer. Molecules 2019, 24, 1387. [Google Scholar] [CrossRef] [PubMed]
- Gasbarri, C.; Guernelli, S.; Boncompagni, S.; Angelini, G.; Siani, G.; De Maria, P.; Fontana, A. Fine-tuning of POPC liposomal leakage by the use of β-cyclodextrin and several hydrophobic guests. J. Liposome Res. 2010, 20, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Piel, G.; Piette, M.; Barillaro, V.; Castagne, D.; Evrard, B.; Delattre, L. Betamethasone-in-cyclodextrin-in-liposome: The effect of cyclodextrins on encapsulation efficiency and release kinetics. Int. J. Pharm. 2006, 12, 75–82. [Google Scholar] [CrossRef]
- Hammoud, Z.; Gharib, R.; Fourmentin, S.; Elaissari, A.; Greige-Gerges, H. Drug-in-hydroxypropyl-β-cyclodextrin-in-lipoid S100/cholesterol liposomes: Effect of the characteristics of essential oil components on their encapsulation and release. Int. J. Pharm. 2020, 579, 119151. [Google Scholar] [CrossRef]
- Gharib, R.; Jemâa, J.M.B.; Charcosset, C.; Fourmentin, S.; Greige-Gerges, H. Retention of Eucalyptol, a Natural Volatile Insecticide, in Delivery Systems Based on Hydroxypropyl-β-Cyclodextrin and Liposomes. Eur. J. Lipid Sci. Technol. 2020, 122, 1900402. [Google Scholar] [CrossRef]
- Ephrem, E.; Najjar, A.; Charcosset, C.; Greige-Gerges, H. Use of Free and Encapsulated Nerolidol to Inhibit the Survival of Lactobacillus Fermentum in Fresh Orange Juice. Food Chem. Toxicol. 2019, 133, 110795. [Google Scholar] [CrossRef]
- Astruc-Diaz, F.; Mcdaniel, S.W.; Xu, J.J.; Parola, S.; Brown, D.L.; Naguib, M.; Diaz, P. In Vivo Efficacy of Enabling Formulations Based on Hydroxypropyl-β-Cyclodextrins, Micellar Preparation, and Liposomes for the Lipophilic Cannabinoid CB2 Agonist, MDA7. J. Pharm. Sci. 2013, 102, 352–364. [Google Scholar] [CrossRef]
- Gallez, A.; Palazzo, C.; Blacher, S.; Tskitishvili, E.; Noël, A.; Foidart, J.-M.; Evrard, B.; Pequeux, C.; Piel, G. Liposomes and Drug-in-Cyclodextrin-in-Liposomes Formulations Encapsulating 17β-Estradiol: An Innovative Drug Delivery System That Prevents the Activation of the Membrane-Initiated Steroid Signaling (MISS) of Estrogen Receptor α. Int. J. Pharm. 2020, 573, 118861. [Google Scholar] [CrossRef] [PubMed]
- Nascimento Vieira, A.L.; Franz-Montan, M.; Cabeça, L.F.; de Paula, E. Anaesthetic Benefits of a Ternary Drug Delivery System (Ropivacaine-in-Cyclodextrin-in-Liposomes): In-vitro and In-vivo Evaluation. J. Pharm. Pharmacol. 2020, 72, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Maestrelli, F.; González-Rodríguez, M.L.; Fernández-Romero, A.-M.; Mura, P.A.; Rabasco, A.M.; Micheli, L.; Mannelli, L.D.C.; Ghelardini, C. Curcumin-in-Cyclodextrins-in-Liposomes: An Alternative for Osteoarthritis Treatment. Proceedings 2020, 78, 52. [Google Scholar] [CrossRef]
- Fernández-Romero, A.-M.; Maestrelli, F.; Mura, P.A.; María Rabasco, A.; González-Rodríguez, M.L. Novel Findings about Double-Loaded Curcumin-in-HP Beta-Cyclodextrin-in Liposomes: Effects on the Lipid Bilayer and Drug Release. Pharmaceutics 2018, 10, 256. [Google Scholar] [CrossRef]
- Aadinath, W.; Bhushani, A.; Anandharamakrishnan, C. Synergistic Radical Scavenging Potency of Curcumin-in-β-Cyclodextrin-in-Nanomagnetoliposomes. Mater. Sci. Eng. C 2016, 64, 293–302. [Google Scholar] [CrossRef]
- Rahman, S.; Cao, S.; Steadman, K.J.; Wei, M.; Parekh, H.S. Native and β-Cyclodextrin-Enclosed Curcumin: Entrapment within Liposomes and Their in Vitro Cytotoxicity in Lung and Colon Cancer. Drug Deliv. 2012, 19, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Dhule, S.S.; Penfornis, P.; Frazier, T.; Walker, R.; Feldman, J.; Tan, G.; He, J.; Alb, A.; John, V.; Pochampally, R. Curcumin-Loaded γ-Cyclodextrin Liposomal Nanoparticles as Delivery Vehicles for Osteosarcoma. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 440–451. [Google Scholar] [CrossRef]
- Agashe, H.; Sahoo, K.; Lagisetty, P.; Awasthi, V. Cyclodextrin-Mediated Entrapment of Curcuminoid 4-[3,5-Bis(2-Chlorobenzylidene-4-Oxo-Piperidine-1-Yl)-4-Oxo-2-Butenoic Acid] or CLEFMA in Liposomes for Treatment of Xenograft Lung Tumor in Rats. Colloids Surf. B Biointerfaces 2011, 84, 329–337. [Google Scholar] [CrossRef]
- Matloob, A.H.; Mourtas, S.; Klepetsanis, P.; Antimisiaris, S.G. Increasing the Stability of Curcumin in Serum with Liposomes or Hybrid Drug-in-Cyclodextrin-in-Liposome Systems: A Comparative Study. Int. J. Pharm. 2014, 476, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Xiao, J.; Zhang, Y.; Jiang, Y.; Chen, W.; Hu, J.; Guo, Y.; Zhang, B. Pharmacokinetics and Liver Uptake of Three Schisandra Lignans in Rats after Oral Administration of Liposome Encapsulating β-Cyclodextrin Inclusion Compound of Schisandra Extract. J. Liposome Res. 2019, 29, 121–132. [Google Scholar] [CrossRef]
- Jhan, S.; Pethe, A.M. Double-Loaded Liposomes Encapsulating Lycopene β-Cyclodextrin Complexes: Preparation, Optimization, and Evaluation. J. Liposome Res. 2019, 1–13. [Google Scholar] [CrossRef]
- Zhang, L.; Zhanga, Q.; Wanga, X.; Zhang, W.; Lin, C.; Chena, F.; Yang, X.; Pan, W. Drug-in-Cyclodextrin-in-Liposomes: A Novel Drug Delivery System for Flurbiprofen. Int. J. Pharm. 2015, 492, 40–45. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, T.; Xia, D.; Li, X.; Zhu, C.; Li, H.; Ouyang, D.; Zhang, J.; Gan, Y. Pluronic F127-Modified Liposome-Containing Tacrolimus-Cyclodextrin Inclusion Complexes: Improved Solubility, Cellular Uptake and Intestinal Penetration: Liposome-Containing CD Inclusion Complex. J. Pharm. Pharmacol. 2013, 65, 1107–1117. [Google Scholar] [CrossRef]
- Im, N.R.; Kim, K.M.; Young, S.J.; Park, S.N. Physical Characteristics and in Vitro Skin Permeation of Elastic Liposomes Loaded with Caffeic Acid-Hydroxypropyl-β-Cyclodextrin. Korean J. Chem. Eng. 2016, 33, 2738–2746. [Google Scholar] [CrossRef]
- Jain, S.K.; Gupta, Y.; Jain, A.; Amin, S. Elastic Liposomes Bearing Meloxicam-β -Cyclodextrin for Transdermal Delivery. Curr. Drug Deliv. 2008, 5, 207–214. [Google Scholar] [CrossRef]
- Mura, P.; Maestrelli, F.; Cirri, M.; Nerli, G.; Di Cesare Mannelli, L.; Ghelardini, C.; Mennini, N. Improvement of Butamben Anesthetic Efficacy by the Development of Deformable Liposomes Bearing the Drug as Cyclodextrin Complex. Pharmaceutics 2021, 13, 872. [Google Scholar] [CrossRef] [PubMed]
- Machut-Binkowski, C.; Hapiot, F.; Cecchelli, R.; Martin, P.; Monflier, E. A Versatile Liposome/Cyclodextrin Supramolecular Carrier for Drug Delivery through the Blood-Brain Barrier. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 567–572. [Google Scholar] [CrossRef]
- Palazzo, C.; Laloy, J.; Delvigne, A.-S.; Nys, G.; Fillet, M.; Dogne, J.-M.; Pequeux, C.; Foidart, J.-M.; Evrard, B.; Piel, G. Development of Injectable Liposomes and Drug-in-Cyclodextrin-in-Liposome Formulations Encapsulating Estetrol to Prevent Cerebral Ischemia of Premature Babies. Eur. J. Pharm. Sci. 2019, 127, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.M.L.; Coelho, L.N.; Malachias, A.; Perez, C.A.; Pesquero, J.L.; Magalhães-Paniago, R.; de Oliveira, M.C. Study of the structural organization of cyclodextrin–DNA complex loaded anionic and pH-sensitive liposomes. Chem. Phys. Lett. 2011, 506, 66–70. [Google Scholar] [CrossRef]
- Štimac, A.; Tokić, M.; Ljubetič, A.; Vuletić, T.; Šekutor, M.; Požar, J.; Leko, K.; Hanževački, M.; Frkanec, L.; Frkanec, R. Functional self-assembled nanovesicles based on β-cyclodextrin, liposomes and adamantyl guanidines as potential nonviral gene delivery vectors. Org. Biomol. Chem. 2019, 17, 4640–4651. [Google Scholar] [CrossRef]
- Wang, W.X.; Feng, S.S.; Zheng, C.H. A Comparison between Conventional Liposome and Drug-Cyclodextrin Complex in Liposome System. Int. J. Pharm. 2016, 513, 387–392. [Google Scholar] [CrossRef]
- Cruz, B.C.; Colón, M.F.; Rabelo Fernandez, R.J.; Vivas-Mejia, P.E.; Barletta, G.L. A Fresh Look at the Potential of Cyclodextrins for Improving the Delivery of siRNA Encapsulated in Liposome Nanocarriers. ACS Omega 2022, 7, 3731–3737. [Google Scholar] [CrossRef]
- Plenagl, N.; Duse, L.; Seitz, B.S.; Goergen, N.; Pinnapireddy, S.R.; Jedelska, J.; Brüßler, J.; Bakowsky, U. Photodynamic therapy—Hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity. Drug Deliv. 2019, 26, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Soo, E.; Thakur, S.; Qu, Z.; Jambhrunkar, S.; Parekh, H.S.; Popat, A. Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J. Colloid Interface Sci. 2016, 462, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, E.A.M.; Lira, M.C.B.; Rabello, M.M.; Cavalcanti, I.M.F.; Galdino, S.L.; Pitta, I.R.; do Carmo, A.; Lima, M.; Pitta, M.G.R.; Hernandes, M.Z.; et al. Enhanced Antiproliferative Activity of the New Anticancer Candidate LPSF/AC04 in Cyclodextrin Inclusion Complexes Encapsulated into Liposomes. AAPS PharmSciTech 2012, 13, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Arima, H.; Hagiwara, Y.; Hirayama, F.; Uekama, K. Enhancement of Antitumor Effect of Doxorubicin by Its Complexation with γ-Cyclodextrin in Pegylated Liposomes. J. Drug Target. 2006, 14, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Alshaer, W.; Zraikat, M.; Amer, A.; Nsairat, H.; Lafi, Z.; Alqudah, D.A.; Qadi, E.A.; Alsheleh, T.; Odeh, F.; Alkaraki, A.; et al. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: In vitro antiproliferative and anti-invasive activity in glioblastoma. RSC Adv. 2019, 9, 30976–30988. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, C.; Xiao, Y.; Zhang, X.; Chen, Y. Liposomes Encapsulating 10-Hydroxycamptothecin-Cyclodextrin Complexes and Their In Vitro Anti-Tumor Activities. J. Nanosci. Nanotechnol. 2015, 15, 3786–3795. [Google Scholar] [CrossRef]
- Bragagni, M.; Maestrelli, F.; Mennini, N.; Ghelardini, C.; Mura, P. Liposomal Formulations of Prilocaine: Effect of Complexation with Hydroxypropyl-ß-Cyclodextrin on Drug Anesthetic Efficacy. J. Liposome Res. 2010, 20, 315–322. [Google Scholar] [CrossRef]
- Maestrelli, F.; González-Rodríguez, M.L.; Rabasco, A.M.; Ghelardini, C.; Mura, P. New “Drug-in Cyclodextrin-in Deformable Liposomes” Formulations to Improve the Therapeutic Efficacy of Local Anaesthetics. Int. J. Pharm. 2010, 395, 222–231. [Google Scholar] [CrossRef]
- Sinsinwar, S.; Jayaraman, A.; Mahapatra, S.K.; Vellingiri, V. Anti-virulence properties of catechin-in-cyclodextrin-in-phospholipid liposome through down-regulation of gene expression in MRSA strains. Microb. Pathog. 2022, 167, 105585. [Google Scholar] [CrossRef]
Category | Size | Number of Lamellas |
---|---|---|
Small unilamellar vesicles (SUV) | 20–100 nm | 1 |
Large unilamellar vesicles (LUV) | >100 nm | 1 |
Multi-lamellar vesicles (MLV) | 0.5 μm | 5–20 |
Methodology | Critical Steps of Preparation |
---|---|
Thin-film hydration (TFH) | Evaporation of an organic solution of lipids, followed by the addition of an aqueous solution of CD/drug inclusion complex |
Reverse-phase evaporation (REV) | Sonication of a mixture of an organic solution of lipids and an aqueous solution of CD/drug inclusion complex to get a water-in-oil emulsion, followed by evaporation of the organic phase |
Ethanol injection | Addition of an ethanol solution of lipids to an aqueous solution of CD/drug inclusion complex, followed by evaporation of ethanol |
Dehydration–hydration on vesicle (DRV) | Evaporation of an organic solution of lipids, followed by addition of an aqueous solution of CD/drug inclusion complex, freeze-drying and hydration of the vesicle with a NaCl solution |
Freeze and thaw (Fr-Th) | Introduction of phospholipids to a bilayer softening, followed by addition of a buffer solution of CD/drug inclusion complex, freezing and rethawing several times until obtaining vesicles fusion |
Lyophilization of double emulsions | Preparation of water-in-oil-in-water double emulsion, followed by freeze-drying and hydration |
Bioactive Compound | Related Parameters Affected by DCL | |||
---|---|---|---|---|
Origin | Name | Structure | To Promote the Main Activity | To Decrease the Side Effects |
Natural products | Curcumin | – | Sensitivity to hydrolysis | |
Schisandrin (+analogs) | Liver uptake | Bad taste | ||
Lycopene | Cardioprotective effect | – | ||
Drugs | Flurbiprofen | – | Gastrointestinal effects | |
Tacrolimus | Intestinal mucous membrane penetration | – |
Bioactive Compound | Target | Related Parameters Affected by DCL | Ref. |
---|---|---|---|
Hypericin | Human ovarian carcinoma cells | Delivery of the photosensitizer to the tumor site in a more protected manner | [51] |
Resveratrol | HT-29 colon cancer cell lines | Increase in availability and higher antiproliferative properties | [52] |
LPSF/AC04 | T47D (breast cancer) cell line | Improvement in the penetration of the active substance into the cells and enhancement in its antiproliferative activity thanks to better solubility | [53] |
Doxorubicin | Mice-bearing colon-26 tumor cells | Direct introduction of liposomes into cells, enhancing the therapeutic index | [54] |
Echinomycin | U-87 MG glioblastoma cells | Direct introduction of liposomes into cells, leading to potent antiproliferative and anti-invasive effects against this cell line | [55] |
10-Hydroxycamptothecin | HepG-2, A549, and SGC-7901 cells | Higher efficiency due to the gradual release of the drug (up to 72 h) | [56] |
Bioactive Compound | Related Parameters Affected by DCL | Ref. | |
---|---|---|---|
Anesthetics | Prilocaine | Shorter onset time of anesthetic activity and the longest duration of effect | [57] |
Benzocaine | Significant enhancement of both strengths and length of the drug’s therapeutic effect | [58] | |
Butamben | |||
Antibiotic | Catechin | Effective against Staphylococcus aureus resistant to methicillin | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levet, G.; Krykun, S.; Cornelio, B.; Pilato, S.; Moffa, S.; Fontana, A.; Gouhier, G.; Estour, F. Drugs in Cyclodextrin in Liposomes: How a Suitable Formulation of an Active Substance Can Improve Its Efficiency? Processes 2024, 12, 478. https://doi.org/10.3390/pr12030478
Levet G, Krykun S, Cornelio B, Pilato S, Moffa S, Fontana A, Gouhier G, Estour F. Drugs in Cyclodextrin in Liposomes: How a Suitable Formulation of an Active Substance Can Improve Its Efficiency? Processes. 2024; 12(3):478. https://doi.org/10.3390/pr12030478
Chicago/Turabian StyleLevet, Gaspard, Serhii Krykun, Benedetta Cornelio, Serena Pilato, Samanta Moffa, Antonella Fontana, Géraldine Gouhier, and François Estour. 2024. "Drugs in Cyclodextrin in Liposomes: How a Suitable Formulation of an Active Substance Can Improve Its Efficiency?" Processes 12, no. 3: 478. https://doi.org/10.3390/pr12030478
APA StyleLevet, G., Krykun, S., Cornelio, B., Pilato, S., Moffa, S., Fontana, A., Gouhier, G., & Estour, F. (2024). Drugs in Cyclodextrin in Liposomes: How a Suitable Formulation of an Active Substance Can Improve Its Efficiency? Processes, 12(3), 478. https://doi.org/10.3390/pr12030478