Pristine and UV-Weathered PET Microplastics as Water Contaminants: Appraising the Potential of the Fenton Process for Effective Remediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of PET MP Samples
2.3. MP Removal by Fenton Process
2.4. Quantification of the PET MP Removal
2.5. X-ray Photoemission Spectroscopy Characterization
3. Results and Discussion
3.1. Removal of PET MPs by the Fenton Process
3.2. X-ray Photoemission Spectroscopy Analysis of the PET MPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Plastics—The Facts. 2022. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 12 March 2024).
- Revel, M.; Châtel, A.; Mouneyrac, C. Micro(nano)plastics: A threat to human health? Curr. Opin. Environ. Sci. Health 2018, 1, 17–23. [Google Scholar] [CrossRef]
- Bhuyan, M.S. Effects of Microplastics on Fish and in Human Health. Front. Environ. Sci. 2022, 10, 827289. [Google Scholar] [CrossRef]
- Yin, X.; Wu, J.; Liu, Y.; Chen, X.; Xie, C.; Liang, Y.; Li, J.; Jiang, Z. Accumulation of microplastics in fish guts and gills from a large natural lake: Selective or non-selective? Environ. Pollut. 2022, 309, 119785. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chang, X.; Hu, M.; Fang, J.K.-H.; Sokolova, I.M.; Huang, W.; Xu, E.G.; Wang, Y. Is microplastic an oxidative stressor? Evidence from a meta-analysis on bivalves. J. Hazard. Mater. 2022, 423, 127211. [Google Scholar] [CrossRef]
- Adediran, G.A.; Cox, R.; Jürgens, M.D.; Morel, E.; Cross, R.; Carter, H.; Pereira, M.G.; Read, D.S.; Johnson, A.C. Fate and behaviour of Microplastics (>25 µm) within the water distribution network, from water treatment works to service reservoirs and customer taps. Water Res. 2024, 255, 121508. [Google Scholar] [CrossRef] [PubMed]
- Visentin, E.; Manuelian, C.L.; Niero, G.; Benetti, F.; Perini, A.; Zanella, M.; Pozza, M.; De Marchi, M. Characterization of microplastics in skim-milk powders. J. Dairy Sci. 2024. [Google Scholar] [CrossRef]
- Silva, D.M.; Almeida, C.M.R.; Guardiola, F.A.; Pereira, R.; Rodrigues, S.M.; Ramos, S. Uncovering microplastics contamination in canned seafood. Food Chem. 2024, 448, 139049. [Google Scholar] [CrossRef]
- Syamsu, D.A.; Deswati, D.; Syafrizayanti, S.; Putra, A.; Suteja, Y. Presence of microplastics contamination in table salt and estimated exposure in humans. Glob. J. Environ. Sci. Manag. 2024, 10, 205–224. [Google Scholar]
- Espiritu, E.Q.; Pauco, J.L.R.; Bareo, R.S.; Palaypayon, G.B.; Capistrano, H.A.M.; Jabar, S.R.; Coronel, A.S.O.; Rodolfo, R.S.; Enriquez, E.P. Microplastics contamination in selected staple consumer food products. J. Food Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.U.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.K.; Law, J.C.F.; Zhang, T.; Leung, K.S.Y. Effects of Weathering on the Sorption Behavior and Toxicity of Polystyrene Microplastics in Multi-solute Systems. Water Res. 2020, 187, 116419. [Google Scholar] [CrossRef]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, N.d.O.; Busquets, R.; Campos, L.C. Insights into the removal of microplastics and microfibres by Advanced Oxidation Processes. Sci. Total Environ. 2023, 861, 160665. [Google Scholar] [CrossRef] [PubMed]
- Bule Možar, K.; Miloloža, M.; Martinjak, V.; Cvetnić, M.; Kušić, H.; Bolanča, T.; Kučić Grgić, D.; Ukić, Š. Potential of Advanced Oxidation as Pretreatment for Microplastics Biodegradation. Separations 2023, 10, 132. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Kusic, H.; Koprivanac, N.; Srsan, L. Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study. J. Photochem. Photobiol. A Chem. 2006, 181, 195–202. [Google Scholar] [CrossRef]
- Papac Zjačić, J.; Tonković, S.; Pulitika, A.; Katančić, Z.; Kovačić, M.; Kušić, H.; Hrnjak Murgić, Z.; Lončarić Božić, A. Effect of Aging on Physicochemical Properties and Size Distribution of PET Microplastic: Influence on Adsorption of Diclofenac and Toxicity Assessment. Toxics 2023, 11, 615. [Google Scholar] [CrossRef]
- Dopar, M.; Kusic, H.; Koprivanac, N. Treatment of simulated industrial wastewater by photo-Fenton process. Part I: The optimization of process parameters using design of experiments (DOE). Chem. Eng. J. 2011, 173, 267–279. [Google Scholar] [CrossRef]
- Kovacic, M.; Salaeh, S.; Kusic, H.; Suligoj, A.; Kete, M.; Fanetti, M.; Stangar, U.L.; Dionysiou, D.D.; Bozic, A.L. Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environ. Sci. Pollut. Res. 2016, 23, 17982–17994. [Google Scholar] [CrossRef]
- Tomic, A.; Cvetnic, M.; Kovacic, M.; Kusic, H.; Karamanis, P.; Bozic, A.L. Structural features promoting adsorption of contaminants of emerging concern onto TiO2 P25: Experimental and computational approaches. Environ. Sci. Pollut. Res. 2022, 29, 87628–87644. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Edge, M.; Wiles, R.; Allen, N.S.; McDonald, W.A.; Mortlock, S.V. Characterisation of the species responsible for yellowing in melt degraded aromatic polyesters—I: Yellowing of poly(ethylene terephthalate). Polym. Degrad. Stab. 1996, 53, 141–151. [Google Scholar] [CrossRef]
- Hermann, J.; Alfè, D.; Tkatchenko, A. Nanoscale π–π stacked molecules are bound by collective charge fluctuations. Nat. Commun. 2017, 8, 14052. [Google Scholar] [CrossRef]
- Hu, K.; Zhou, P.; Yang, Y.; Hall, T.; Nie, G.; Yao, Y.; Duan, X.; Wang, S. Degradation of Microplastics by a Thermal Fenton Reaction. ACS ES&T Eng. 2022, 2, 110–120. [Google Scholar]
- Feng, H.-M.; Zheng, J.-C.; Lei, N.-Y.; Yu, L.; Kong, K.H.-K.; Yu, H.-Q.; Lau, T.-C.; Lam, M.H.W. Photoassisted Fenton Degradation of Polystyrene. Environ. Sci. Technol. 2011, 45, 744–750. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Ding, J.; Song, Z.; Yang, B.; Zhang, C.; Guan, B. Degradation of nano-sized polystyrene plastics by ozonation or chlorination in drinking water disinfection processes. Chem. Eng. J. 2022, 427, 131690. [Google Scholar] [CrossRef]
- Ortiz, D.; Munoz, M.; Nieto-Sandoval, J.; Romera-Castillo, C.; de Pedro, Z.M.; Casas, J.A. Insights into the degradation of microplastics by Fenton oxidation: From surface modification to mineralization. Chemosphere 2022, 309, 136809. [Google Scholar] [CrossRef]
- Allé, P.H.; Garcia-Muñoz, P.; Adouby, K.; Keller, N.; Robert, D. Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by TiO2/β-SiC alveolar foams. Environ. Chem. Lett. 2021, 19, 1803–1808. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, L.; Zhang, F.; Wu, J.; Wang, H.; Yang, J. Feasible Degradation of Polyethylene Terephthalate Fiber-Based Microplastics in Alkaline Media with Bi2O3@N-TiO2 Z-Scheme Photocatalytic System. Adv. Sustain. Syst. 2022, 6, 2100516. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, H.; Liu, J.; Liu, X.; Song, X.; Zhou, W.; Zhang, J.; Huo, P. Enhanced degradation of polyethylene terephthalate plastics by CdS/CeO2 heterojunction photocatalyst activated peroxymonosulfate. J. Hazard. Mater. 2023, 452, 131375. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, H.; Liu, J.; Li, J.; Zhou, W.; Zhang, J.; Liu, X.; Song, X.; Wang, H.; Huo, P. Removal of polyethylene terephthalate plastics waste via Co–CeO2 photocatalyst–activated peroxymonosulfate strategy. Chem. Eng. J. 2024, 479, 147781. [Google Scholar] [CrossRef]
- Timoshnikov, V.A.; Kobzeva, T.V.; Polyakov, N.E.; Kontoghiorghes, G.J. Inhibition of Fe2+- and Fe3+- induced hydroxyl radical production by the iron-chelating drug deferiprone. Free Radic. Biol. Med. 2015, 78, 118–122. [Google Scholar] [CrossRef]
- Milovac, N.; Juretic, D.; Kusic, H.; Dermadi, J.; Bozic, A.L. Photooxidative degradation of aromatic carboxylic acids in water: Influence of hydroxyl substituents. Ind. Eng. Chem. Res. 2014, 53, 10590–10598. [Google Scholar] [CrossRef]
Parameters | Model Variables/Coded Values | Level/Range | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
γ (MP), mg L−1 | X1 | 5 | 20 | 35 |
[Fe2+], mM | X2 | 10 | 25 | 40 |
Factor (Coded) | Statistical Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SS | df | MSS | F | p | ||||||
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | |
Model | 2023.89 | 2241.41 | 5 | 5 | 404.78 | 448.28 | 56.80 | 44.72 | 0.0036 * | 0.0051 * |
X1 | 319.89 | 312.19 | 1 | 1 | 319.89 | 312.19 | 44.89 | 31.14 | 0.0068 * | 0.0114 * |
X12 | 1307.48 | 4.87 | 1 | 1 | 1307.48 | 4.87 | 183.46 | 0.49 | 0.0009 * | 0.5361 |
X2 | 171.31 | 1232.09 | 1 | 1 | 171.31 | 1232.09 | 24.04 | 122.91 | 0.0162 * | 0.0016 * |
X22 | 66.20 | 632.97 | 1 | 1 | 66.20 | 632.97 | 9.29 | 63.14 | 0.0555 | 0.0042 * |
X1 × X2 | 159.01 | 59.29 | 1 | 1 | 159.01 | 59.29 | 22.31 | 5.91 | 0.0180 * | 0.0932 |
Residual | 21.38 | 30.07 | 3 | 3 | 7.13 | 10.02 | ||||
Total | 2045.27 | 2271.49 | 8 | 8 |
Type of MPs Studied | Treatment Method | Treatment Conditions | MPs Removal Extent | Ref. |
---|---|---|---|---|
Polyethylene (PE) | Fenton process | [Fe2+] = 4 mM, [H2O2] = 200 mM, acidic pH, 140 °C, 12 h | 75.6% mineralization | [30] |
Polystyrene (PS) | Fenton process | [Fe3+] = 0–0.63 mM, [H2O2] = 0–176 mM, pH 2, 250 W Xe lamp, 250 min | 99% mineralization | [31] |
Polystyrene (PS) | Ozonation | [O3] = 4.1 mg L−1, 240 min | 42.7% mineralization | [32] |
Polystyrene (PS) | Fenton process | [Fe3+] = 10 mgL−1, [H2O2] =1000 mgL−1, pH 3; T = 80 °C, 7.5 h | 70% mineralization | [33] |
Polystyrene (PS) | Photocatalysis | UV-A (354 nm), TiO2@SiC foam, natural pH, 7 h | 35% mineralization | [34] |
Polyethylene terephthalate (PET) | Photocatalysis | 300 W Xe lamp, Bi2O3@N–TiO2, pH 9, 48 h | 10.23% mass loss | [35] |
Polyethylene terephthalate (PET) | Photocatalysis | CdS/CeO2 (wt. CdS 10%), [HSO5-] = 3 mM, 6 h | ~94% mass loss | [36] |
Polyethylene terephthalate (PET) | Photocatalysis | Co–CeO2, [HSO5-] = 3 mM, [H2O2] = 3 mM, 6 h | ~92% mass loss | [37] |
Identified Functional Groups and Interactions | PET0, % | PET28, % |
---|---|---|
C=C | 38.80 | 40.64 |
C-O-C, C-OH | 21.73 | 19.73 |
O-C=O | 17.38 | 16.48 |
π-π | 2.70 | 2.83 |
C-C, C-H | 19.40 | 20.32 |
Identified Functional Groups and Interactions | PET0, % | PET28, % |
---|---|---|
C=C | 35.80 | 15.80 |
C-O-C, C-OH | 8.70 | 46.48 |
O-C=O | 30.5 | 8.81 |
π-π | 2.49 | 1.10 |
C-C, C-H | 43.57 | 21.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačić, M.; Tomić, A.; Tonković, S.; Pulitika, A.; Papac Zjačić, J.; Katančić, Z.; Genorio, B.; Kušić, H.; Lončarić Božić, A. Pristine and UV-Weathered PET Microplastics as Water Contaminants: Appraising the Potential of the Fenton Process for Effective Remediation. Processes 2024, 12, 844. https://doi.org/10.3390/pr12040844
Kovačić M, Tomić A, Tonković S, Pulitika A, Papac Zjačić J, Katančić Z, Genorio B, Kušić H, Lončarić Božić A. Pristine and UV-Weathered PET Microplastics as Water Contaminants: Appraising the Potential of the Fenton Process for Effective Remediation. Processes. 2024; 12(4):844. https://doi.org/10.3390/pr12040844
Chicago/Turabian StyleKovačić, Marin, Antonija Tomić, Stefani Tonković, Anamarija Pulitika, Josipa Papac Zjačić, Zvonimir Katančić, Boštjan Genorio, Hrvoje Kušić, and Ana Lončarić Božić. 2024. "Pristine and UV-Weathered PET Microplastics as Water Contaminants: Appraising the Potential of the Fenton Process for Effective Remediation" Processes 12, no. 4: 844. https://doi.org/10.3390/pr12040844