Development of New Series of Certified Reference Materials for Ferrosilicon Magnesium Alloys
Abstract
:1. Introduction
2. Experiment
2.1. General Process of Development
2.2. Analytical Methods and Instrumentation
2.2.1. Inductively Coupled Plasma Optical Emission Spectrometry
2.2.2. X-ray Fluorescence Spectrometry
2.2.3. Flame Atomic Absorption Spectrometry (FAAS)
2.2.4. Gravimetric Method and Volumetric Method
2.2.5. Prompt Gamma-Ray Activation Analysis (PGAA)
2.2.6. Neutron Activation Analysis (NAA)
2.3. Standards and Materials
2.4. Production and Postprocessing of Candidate CRM Materials
2.5. Homogeneity Tests
2.6. Stability Tests
2.7. Determination of Interlaboratory Reference Values: Characterization Process
2.8. Statistical Approach
- Average of the results for each analyzed element for the set of results from each laboratory separately;
- Standard deviation for each analyzed element for the set of results from each laboratory separately;
- Average of the results for each analyzed element for the averages calculated for the results from the individual laboratories;
- Standard deviation for all results for each element analyzed.
3. Results and Discussion
3.1. Method Validation
3.2. Homogeneity and Stability Studies of Candidate CRM
3.3. Participation in International Comparison
- For datasets from individual laboratories, the coefficient of variation was determined, which could not exceed 15% (for elements with <1%) or 5% (for elements with >1%).
- The Q-Dixon test was performed, which allowed us to eliminate outliers within datasets obtained from a given laboratory and outliers from all obtained results.
- The results were evaluated graphically. An exemplary graph of the results obtained for Mg is shown in Figure 3.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hermes Nikara. Ferro Silicon Magnesium. Available online: https://hna.co.ir/en/product/ferro-silicon-magnesium/ (accessed on 9 February 2024).
- Kongkarat, S.; Boonyaratchinda, M.; Chobtham, C. Formation of Ferrosilicon Alloy at 1550 °C via Carbothermic Reduction of SiO2 by Coal and Graphite: Implication for Rice Husk Ash Utilization. Solid State Phenom. 2021, 315, 16–24. [Google Scholar] [CrossRef]
- Buo, T.V.; Gray, R.J.; Patalsky, R.M. Reactivity and petrography of cokes for ferrosilicon and silicon production. Int. J. Coal Geol. 2000, 43, 243–256. [Google Scholar] [CrossRef]
- Kopeć, G.; Przeliorz, R. Usefulness of Quartzites for the Production of Ferrosilicon. Solid State Phenom. 2015, 226, 111–114. [Google Scholar] [CrossRef]
- Gasik, M. Handbook of Ferroalloys Theory and Technology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 3–4. ISBN 978-0-08-097753-9. [Google Scholar]
- Gouttebroze, S.; Marthinsen, A.; Kroka, B.; Götz, A.; Ott, E. Modelling of major phases formation during solidification of Ferro-Silicon-Magnesium. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1281, 012052. [Google Scholar] [CrossRef]
- Milekhine, V.; Onsoien, M.I.; Solberg, J.K.; Skaland, T. Mechanical properties of FeSi (ε), FeSi2 (ζα) and Mg2Si. Intermetallics 2002, 10, 743–750. [Google Scholar] [CrossRef]
- Boldyrev, D.; Dema, R.; Kalugina, O. Research of Phase Composition of Graphitizing Ferro Silicon Barium Inoculants. Mater. Today Proc. 2019, 11, 510–515. [Google Scholar] [CrossRef]
- Zhen, L.; Fei, W.D.; Kang, S.B.; Kim, H.W. Precipitation behaviour of Al–Mg–Si alloys with high silicon content. J. Mater. Sci. 1997, 32, 1895–1902. [Google Scholar] [CrossRef]
- Moreira, E.G.; Vasconcellos, M.B.A.; Saiki, M. Instrumental neutron activation analysis applied to the determination of the chemical composition of metallic materials with study of interferences. J. Radioanal. Nucl. Chem. 2005, 264, 45–50. [Google Scholar] [CrossRef]
- Chang, L.; Qi, W.; Wang, X. Determination of major and minor components in ferrosilicon by X-ray fluorescence spectrometry with sintering and fusion sample preparation. Metall. Anal. 2020, 1, 51–55. [Google Scholar]
- Yang, X.; Li, X.; Yang, D.; Tang, B. Determination of silicon, phosphorus, manganese, aluminum, calcium and chromium in ferrosilicon by X-ray fluorescence spectrometry with fusion sample preparation. Metall. Anal. 2019, 10, 43–48. [Google Scholar]
- Ren, Y.; Hu, X.; Sheng, X.; Zheng, J. Determination of Mn, Si, Al, Ca, Ti in rare earth ferrosilicon alloy by X-ray fluorescence spectrometry. Metall. Anal. 2009, 29, 59–62. [Google Scholar]
- Kang, D.; Wang, T.; Yu, Y.; Gu, J.; Yang, L. Determination of impurity elements in ferrosilicon by inductively coupled plasma mass spectrometry. Metall. Anal. 2013, 33, 64–68. [Google Scholar]
- Chernikova, I.I.; Tumneva, K.V.; Bakaldina, T.V.; Ermolaeva, T.N. Improvement of Sample Preparation in ICP-AES Analysis of Ferroalloys. Inorg. Mater. 2020, 56, 1384–1390. [Google Scholar] [CrossRef]
- Wu, Y.F.; Jia, Y.J.; He, H.; Liu, P. ICP-AES Determination of the Four Trace Elements (Al, Ca, P, Ti) in the Ferrosilicon. Appl. Mech. Mater. 2013, 273, 473–477. [Google Scholar] [CrossRef]
- Shiwen, Z.; Zhen, S. Determination of trace titanium in ferrosilicon by inductively coupled plasma atomic emission spectrometry. Metall. Anal. 2022, 05, 80–84. [Google Scholar]
- Hlaváčková, I.; Hlaváček, I. Multi-element analysis of some high silicon content ferroalloys by inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 1994, 9, 251–255. [Google Scholar] [CrossRef]
- Available online: https://tsapps.nist.gov/srmext/certificates/archives/347.pdf (accessed on 9 February 2024).
- PN-EN ISO 17034:2017; General Requirements for the Competence of Manufacturers of Reference Materials. ISO: Geneva, Switzerland, 2017.
- Ren, T.; Gao, Y.; Wang, S.; Song, P.; Wang, J. Certification of a Natural Silicon Reference Material with SI-Traceable Isotopic Composition. Geostand. Geoanalytical Res. 2021, 45, 755–766. [Google Scholar] [CrossRef]
- Durga Prasad, A.; Thangavel, S.; Rastogi, L.; Soni, D.; Dash, K.; Jai Kumar, S. Development of a certified reference material (CRM) for seven trace elements (Al, Ca, Fe, K, Mg, Na and Ti) in high purity quartz. Microchem. J. 2022, 172, 106926. [Google Scholar] [CrossRef]
- Global Silicon Metal Market 2019 Market Size Sharetrends Growth Cagr Status and Key Players Forecast to 2025. Available online: https://www.marketwatch.com (accessed on 9 February 2024).
- ISO Guide 35:2017; Guidance for Characterization and Assessment of Homogeneity and Stability. ISO: Geneva, Switzerland, 2017.
- ISO Guide 31:2015; Contents of Certificates, Labels and Accompanying Documentation. ISO: Geneva, Switzerland, 2015.
- Budapest Neutron Centre. PGAA. Available online: https://bnc.hu/?s=PGAA (accessed on 9 February 2024).
- Budapest Neutron Centre. NAA. Available online: https://bnc.hu/?s=NAA (accessed on 9 February 2024).
Si | Fe | Mg | Ce | La | Ca | Al | Ti | Mn | P | Ba | Cr | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Si-FSM-1 | 48.0 | 45.3 | 3.4 | 0.47 | 0.24 | 0.94 | 0.41 | 0.39 | 0.48 | 0.011 | 0.14 | 0.081 |
Si-FSM-2 | 44.5 | 41.5 | 7.5 | 0.49 | 0.27 | 2.9 | 0.62 | 0.041 | 0.41 | 0.017 | 0.0051 | 0.029 |
Si-FSM-3 | 45.5 | 48.8 | 2.4 | 0.19 | 0.11 | 0.30 | 0.74 | 0.069 | 0.24 | 0.015 | 0.0035 | 0.070 |
Si-FSM-4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg | Al | Ca | Ce | La | Ba | Ti | Cr | Mn | P | Fe | Si | |
2 h | 5.63 | 0.61 | 1.99 | 0.38 | 0.22 | 0.0050 | 0.049 | 0.041 | 0.36 | 0.017 | 44.12 | 45.00 |
4 h | 5.61 | 0.62 | 1.98 | 0.39 | 0.22 | 0.0049 | 0.049 | 0.040 | 0.36 | 0.017 | 44.00 | 44.91 |
6 h | 5.63 | 0.61 | 1.99 | 0.40 | 0.22 | 0.0050 | 0.048 | 0.041 | 0.36 | 0.017 | 44.10 | 44.95 |
Si | Fe | Mg | Ce | La | Ca | Al | Ti | Mn | P | Ba | Cr | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Si-FSM-1 | Planned | 48.0 | 45.3 | 3.4 | 0.47 | 0.24 | 0.94 | 0.41 | 0.39 | 0.48 | 0.011 | 0.14 | 0.081 |
Final | 48.34 | 45.21 | 3.41 | 0.484 | 0.2477 | 0.879 | 0.400 | 0.0380 | 0.488 | 0.0116 | 0.1401 | 0.0799 | |
Si-FSM-2 | Planned | 44.5 | 41.5 | 7.5 | 0.49 | 0.27 | 2.9 | 0.62 | 0.041 | 0.41 | 0.017 | 0.0051 | 0.029 |
Final | 44.41 | 41.57 | 7.33 | 0.492 | 0.278 | 2.86 | 0.634 | 0.0449 | 0.440 | 0.0162 | 0.00553 | 0.0287 | |
Si-FSM-3 | Planned | 45.5 | 48.8 | 2.4 | 0.19 | 0.11 | 0.30 | 0.74 | 0.069 | 0.24 | 0.015 | 0.0035 | 0.070 |
Final | 45.50 | 48.91 | 2.41 | 0.208 | 0.1082 | 0.293 | 0.713 | 0.0672 | 0.2509 | 0.0143 | 0.00332 | 0.0730 | |
Si-FSM-4 | Final | 44.94 | 44.13 | 5.65 | 0.401 | 0.226 | 2.00 | 0.649 | 0.0512 | 0.375 | 0.0172 | 0.00494 | 0.0442 |
Unit No. | Si-FSM 4 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg | Al | Ca | Ce | La | Ba | Ti | Cr | Mn | P | Si | Fe | |
11 | 4.984 | 0.616 | 1.927 | 0.331 | 0.208 | 0.0054 | 0.048 | 0.038 | 0.287 | 0.015 | 45.89 | 44.18 |
4.931 | 0.608 | 1.940 | 0.325 | 0.208 | 0.0052 | 0.047 | 0.038 | 0.287 | 0.015 | 45.83 | 44.02 | |
4.881 | 0.623 | 1.867 | 0.335 | 0.206 | 0.0053 | 0.046 | 0.038 | 0.285 | 0.015 | 45.84 | 44.17 | |
29 | 4.892 | 0.627 | 1.863 | 0.343 | 0.210 | 0.0053 | 0.046 | 0.038 | 0.290 | 0.015 | 45.91 | 44.28 |
4.894 | 0.623 | 1.907 | 0.345 | 0.209 | 0.0052 | 0.047 | 0.038 | 0.290 | 0.015 | 45.91 | 44.41 | |
4.881 | 0.626 | 1.872 | 0.338 | 0.206 | 0.0052 | 0.047 | 0.038 | 0.294 | 0.015 | 45.78 | 44.09 | |
58 | 4.794 | 0.626 | 1.886 | 0.342 | 0.207 | 0.0052 | 0.047 | 0.038 | 0.291 | 0.016 | 45.71 | 44.36 |
4.928 | 0.649 | 1.907 | 0.343 | 0.211 | 0.0053 | 0.047 | 0.036 | 0.287 | 0.015 | 45.84 | 44.13 | |
5.020 | 0.678 | 1.957 | 0.352 | 0.211 | 0.0057 | 0.049 | 0.038 | 0.299 | 0.016 | 45.81 | 44.11 | |
70 | 5.154 | 0.691 | 2.011 | 0.357 | 0.218 | 0.0059 | 0.049 | 0.038 | 0.294 | 0.015 | 45.89 | 44.15 |
5.103 | 0.669 | 1.990 | 0.352 | 0.210 | 0.0055 | 0.050 | 0.038 | 0.289 | 0.016 | 45.81 | 44.51 | |
5.148 | 0.678 | 1.987 | 0.360 | 0.211 | 0.0058 | 0.048 | 0.037 | 0.289 | 0.015 | 45.89 | 44.16 | |
117 | 4.991 | 0.637 | 1.835 | 0.331 | 0.203 | 0.0055 | 0.048 | 0.036 | 0.287 | 0.016 | 45.28 | 44.49 |
4.877 | 0.635 | 1.836 | 0.325 | 0.198 | 0.0054 | 0.045 | 0.037 | 0.288 | 0.017 | 45.84 | 44.08 | |
4.803 | 0.607 | 1.887 | 0.328 | 0.200 | 0.0051 | 0.045 | 0.035 | 0.274 | 0.016 | 45.84 | 44.32 | |
124 | 4.797 | 0.639 | 1.908 | 0.332 | 0.201 | 0.0053 | 0.048 | 0.036 | 0.291 | 0.016 | 45.83 | 44.50 |
4.688 | 0.626 | 1.819 | 0.321 | 0.197 | 0.0051 | 0.048 | 0.036 | 0.293 | 0.017 | 45.69 | 44.28 | |
4.872 | 0.609 | 1.833 | 0.323 | 0.198 | 0.0053 | 0.046 | 0.037 | 0.299 | 0.018 | 45.85 | 44.17 | |
125 | 4.989 | 0.630 | 1.908 | 0.329 | 0.201 | 0.0052 | 0.047 | 0.038 | 0.287 | 0.016 | 45.87 | 44.35 |
4.981 | 0.630 | 1.831 | 0.341 | 0.194 | 0.0054 | 0.046 | 0.038 | 0.285 | 0.017 | 45.80 | 44.22 | |
4.964 | 0.610 | 1.851 | 0.327 | 0.197 | 0.0052 | 0.049 | 0.038 | 0.293 | 0.016 | 45.84 | 44.12 | |
175 | 5.015 | 0.652 | 1.959 | 0.358 | 0.216 | 0.0057 | 0.049 | 0.038 | 0.299 | 0.016 | 45.80 | 44.10 |
4.985 | 0.655 | 1.934 | 0.355 | 0.217 | 0.0056 | 0.049 | 0.038 | 0.294 | 0.016 | 45.83 | 44.15 | |
4.965 | 0.671 | 1.964 | 0.354 | 0.217 | 0.0057 | 0.050 | 0.038 | 0.294 | 0.015 | 45.87 | 44.02 | |
190 | 4.963 | 0.643 | 1.879 | 0.326 | 0.194 | 0.0058 | 0.046 | 0.036 | 0.289 | 0.017 | 45.80 | 43.96 |
4.987 | 0.613 | 1.830 | 0.336 | 0.196 | 0.0053 | 0.047 | 0.036 | 0.295 | 0.017 | 45.83 | 44.00 | |
4.961 | 0.627 | 1.829 | 0.337 | 0.204 | 0.0052 | 0.047 | 0.038 | 0.290 | 0.017 | 45.87 | 44.00 | |
193 | 4.929 | 0.625 | 1.881 | 0.334 | 0.199 | 0.0054 | 0.046 | 0.038 | 0.296 | 0.016 | 45.70 | 44.24 |
4.966 | 0.624 | 1.852 | 0.327 | 0.199 | 0.0052 | 0.048 | 0.036 | 0.293 | 0.016 | 45.93 | 44.18 | |
4.970 | 0.627 | 1.906 | 0.341 | 0.205 | 0.0056 | 0.049 | 0.037 | 0.291 | 0.016 | 45.66 | 44.00 |
(%) | Si | Fe | Mg | Al | Ca | Ce | La | Ba | Ti | Cr | Mn | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
sbb | 0.022 | 0.066 | 0.077 | 0.019 | 0.045 | 0.011 | 0.007 | 0.0001 | 0.0008 | 0.0006 | 0.005 | 0.002 |
u′bb | 0.034 | 0.046 | 0.027 | 0.004 | 0.010 | 0.002 | 0.002 | 0.0001 | 0.0004 | 0.0003 | 0.001 | 0.0003 |
uh | 0.034 | 0.066 | 0.077 | 0.019 | 0.045 | 0.011 | 0.007 | 0.0001 | 0.0008 | 0.0006 | 0.005 | 0.002 |
Day | Mg | uCRM | umoni | A | B | A < B |
---|---|---|---|---|---|---|
0 | 5.65 | 0.11 | 0.11 * | 0 | 0.707 | Yes |
2 | 5.62 | 0.11 | 0.10 | 0.035 | 0.297 | Yes |
6 | 5.60 | 0.11 | 0.10 | 0.025 | 0.297 | Yes |
8 | 5.67 | 0.11 | 0.10 | 0.015 | 0.297 | Yes |
10 | 5.63 | 0.11 | 0.10 | 0.055 | 0.297 | Yes |
Si (%) | Fe (%) | Mg (%) | Al (%) | Ca (%) | Ce (%) | La (%) | Ba (mg/kg) | Ti (%) | Cr (%) | Mn (%) | P (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Si-FSM-4 | C | 44.94 | 44.13 | 5.65 | 0.649 | 2.00 | 0.401 | 0.226 | 49.4 | 0.0512 | 0.0442 | 0.375 | 0.0172 |
U | ±0.99 | ±0.54 | ±0.22 | ±0.041 | ±0.12 | ±0.027 | ±0.017 | ±3.9 | ±0.0028 | ±0.0024 | ±0.017 | ±0.0039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostrzewa, J.; Anyszkiewicz, J.; Gorewoda, T.; Jamroz, E.; Blandhol, K.; Guldhav, A.Y.; Knapik, M.; Charasińska, J.; Jakóbik-Kolon, A. Development of New Series of Certified Reference Materials for Ferrosilicon Magnesium Alloys. Processes 2024, 12, 1017. https://doi.org/10.3390/pr12051017
Kostrzewa J, Anyszkiewicz J, Gorewoda T, Jamroz E, Blandhol K, Guldhav AY, Knapik M, Charasińska J, Jakóbik-Kolon A. Development of New Series of Certified Reference Materials for Ferrosilicon Magnesium Alloys. Processes. 2024; 12(5):1017. https://doi.org/10.3390/pr12051017
Chicago/Turabian StyleKostrzewa, Justyna, Jacek Anyszkiewicz, Tadeusz Gorewoda, Ewa Jamroz, Kjell Blandhol, Alf Yngve Guldhav, Magdalena Knapik, Jadwiga Charasińska, and Agata Jakóbik-Kolon. 2024. "Development of New Series of Certified Reference Materials for Ferrosilicon Magnesium Alloys" Processes 12, no. 5: 1017. https://doi.org/10.3390/pr12051017
APA StyleKostrzewa, J., Anyszkiewicz, J., Gorewoda, T., Jamroz, E., Blandhol, K., Guldhav, A. Y., Knapik, M., Charasińska, J., & Jakóbik-Kolon, A. (2024). Development of New Series of Certified Reference Materials for Ferrosilicon Magnesium Alloys. Processes, 12(5), 1017. https://doi.org/10.3390/pr12051017