Utilizing Used Cooking Oil and Organic Waste: A Sustainable Approach to Soap Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soap Samples Preparation
2.2. Evaluation of the Physicochemical Properties of the Soap
2.3. Determination of the Antioxidant Potential of the Soaps
2.4. Textural Parameter and Solubility
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, D.; Andreev, K.; Dupre, M.E. Major Trends in Population Growth Around the World. China CDC Wkly. 2021, 3, 604–613. [Google Scholar] [CrossRef]
- Nikolaou, I.E.; Evangelinos, K.I.; Allan, S. A Reverse Logistics Social Responsibility Evaluation Framework Based on the Triple Bottom Line Approach. J. Clean. Prod. 2013, 56, 173–184. [Google Scholar] [CrossRef]
- Herva, M.; Neto, B.; Roca, E. Environmental Assessment of the Integrated Municipal Solid Waste Management System in Porto (Portugal). J. Clean. Prod. 2014, 70, 183–193. [Google Scholar] [CrossRef]
- Panadare, D.C.; Rathod, V.K. Applications of Waste Cooking Oil Other Than Biodiesel: A Review. Iran. J. Chem. Eng. (IJChE) 2015, 12, 55–76. [Google Scholar]
- Ganesan, K.; Sukalingam, K.; Xu, B. Impact of Consumption of Repeatedly Heated Cooking Oils on the Incidence of Various Cancers—A Critical Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 488–505. [Google Scholar] [CrossRef]
- Mustakim, M.; Taufik, R.; Trismawati, T. The Utilization of Waste Cooking Oil As a Material of Soap. JDR 2020, 4, 86–91. [Google Scholar] [CrossRef]
- Lopes, M.; Miranda, S.M.; Belo, I. Microbial Valorization of Waste Cooking Oils for Valuable Compounds Production—A Review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2583–2616. [Google Scholar] [CrossRef]
- Khdour, A.; Nawaj’a, M. Recycling of Waste Cooking Oil to Produce Soaps and Detergents: Technical and Economic Feasibility Study; Palestine Polytechnic University: Hebron, Palestine, 2017. [Google Scholar]
- Singh-Ackbarali, D.; Maharaj, R.; Mohamed, N.; Ramjattan-Harry, V. Potential of Used Frying Oil in Paving Material: Solution to Environmental Pollution Problem. Environ. Sci. Pollut. Res. 2017, 24, 12220–12226. [Google Scholar] [CrossRef] [PubMed]
- Azme, S.N.K.; Yusoff, N.S.I.M.; Chin, L.Y.; Mohd, Y.; Hamid, R.D.; Jalil, M.N.; Zaki, H.M.; Saleh, S.H.; Ahmat, N.; Manan, M.A.F.A.; et al. Recycling Waste Cooking Oil into Soap: Knowledge Transfer through Community Service Learning. Clean. Waste Syst. 2023, 4, 100084. [Google Scholar] [CrossRef]
- Félix, S.; Araújo, J.; Pires, A.M.; Sousa, A.C. Soap Production: A Green Prospective. Waste Manag. 2017, 66, 190–195. [Google Scholar] [CrossRef]
- Lefebvre, X.; Paul, E.; Mauret, M.; Baptiste, P.; Capdeville, B. Kinetic Characterization of Saponified Domestic Lipid Residues Aerobic Biodegradation. Water Res. 1998, 32, 3031–3038. [Google Scholar] [CrossRef]
- Ruiz, B.; Flotats, X. Citrus Essential Oils and Their Influence on the Anaerobic Digestion Process: An Overview. Waste Manag. 2014, 34, 2063–2079. [Google Scholar] [CrossRef] [PubMed]
- Antonić, B.; Dordević, D.; Jančíková, S.; Tremlova, B.; Kushkevych, I. Physicochemical Characterization of Home-Made Soap from Waste-Used Frying Oils. Processes 2020, 8, 1219. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Andrade, C.; Perestrelo, R.; Câmara, J.S. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022, 27, 7504. [Google Scholar] [CrossRef] [PubMed]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of Spent Coffee Grounds: A Review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Karmee, S.K. A Spent Coffee Grounds Based Biorefinery for the Production of Biofuels, Biopolymers, Antioxidants and Biocomposites. Waste Manag. 2018, 72, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Hartini, S.; Widharto, Y.; Indarto, S.R.; Murdikaningrum, G. Soap Product Innovation from Waste Cooking Oil by Using Coffee Grounds Adsorbent to Increase Eco Efficiency; AIP Conference Proceedings: Surakarta, Indonesia, 2024; p. 020019. [Google Scholar]
- Bijla, L.; Aissa, R.; Bouzid, H.A.; Sakar, E.H.; Ibourki, M.; Gharby, S. Spent Coffee Ground Oil as a Potential Alternative for Vegetable Oil Production: Evidence from Oil Content, Lipid Profiling, and Physicochemical Characterization. Biointerface Res. Appl. Chem. 2021, 12, 6308–6320. [Google Scholar] [CrossRef]
- Adigun, O.; Manful, C.; Prieto Vidal, N.; Mumtaz, A.; Pham, T.; Stewart, P.; Nadeem, M.; Keough, D.; Thomas, R. Use of Natural Antioxidants from Newfoundland Wild Berries to Improve the Shelf Life of Natural Herbal Soaps. Antioxidants 2019, 8, 536. [Google Scholar] [CrossRef]
- Vivian, O.P.; Nathan, O.; Osano, A.; Mesopirr, L.; Omwoyo, W.N. Assessment of the Physicochemical Properties of Selected Commercial Soaps Manufactured and Sold in Kenya. OJAppS 2014, 4, 433–440. [Google Scholar] [CrossRef]
- CSN 68 1148; Methods of Test for Surfactants and Detergents-Surfactants—Analysis of Soaps—Determination of Free Corrosive Alkalis. (Translated by Google Translate). Czech Standards Institute: Prague, Czech Republic, 1994.
- Kempka, A.P.; Horvath, F.J.; Fagundes, P.; Prestes, R.C. Foaming and emulsifying capacity, foam and emulsion stability of proteins of porcine blood: Determination at different values of ph and concentrations. Rev. Bras. Tecnol. Agroindustrial 2015, 9. [Google Scholar] [CrossRef]
- Antonic, B.; Dordevic, D.; Jancikova, S.; Tremlova, B.; Nejezchlebova, M.; Goldová, K.; Treml, J. Reused Plant Fried Oil: A Case Study with Home-Made Soaps. Processes 2021, 9, 529. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-Mansy, H.A.; Soliman, S.A. Improving the Shelf-Life Stability of Apple and Strawberry Fruits Applying Chitosan-Incorporated Olive Oil Processing Residues Coating. Food Packag. Shelf Life 2016, 9, 10–19. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Use of Plantago Major Seed Mucilage as a Novel Edible Coating Incorporated with Anethum Graveolens Essential Oil on Shelf Life Extension of Beef in Refrigerated Storage. Int. J. Biol. Macromol. 2017, 94, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Sanaguano-Salguero, H.; Tigre-Leon, A.; Bayas-Morejon, I.F. Use of Waste Cooking Oil in the Manufacture of Soaps. Int. J. Ecol. Dev. 2018, 33, 19–27. [Google Scholar]
- Mendes, B.R.; Shimabukuro, D.M.; Uber, M.; Abagge, K.T. Critical Assessment of the pH of Children’s Soap. J. Pediatr. 2016, 92, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Tarun, J.; Susan, V.; Susan, J.; Suria, J.; Criton, S. Evaluation of pH of Bathing Soaps and Shampoos for Skin and Hair Care. Indian J. Dermatol. 2014, 59, 442. [Google Scholar] [CrossRef]
- Mwanza, C.; Zombe, K. Comparative Evaluation of Some Physicochemical Properties on Selected Commercially Available Soaps on the Zambian Market. Open Access Libr. J. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Nangbes, J.G.; Zukdimma, N.A.; Wufem, B.M.; Lawam, T.D.; Dawam, N.N. Quality Survey and Safety of Some Toilet Soaps in the Nigerian Market: A Case Study of B/Ladi, Bokkos and Pankshin, Plateau State. IOSR J. Appl. Chem. IOSRJAC 2014, 7, 29–35. [Google Scholar] [CrossRef]
- Khosrowpour, Z.; Ahmad Nasrollahi, S.; Ayatollahi, A.; Samadi, A.; Firooz, A. Effects of Four Soaps on Skin Trans-epidermal Water Loss and Erythema Index. J. Cosmet. Dermatol. 2019, 18, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Hoober, J.K.; Eggink, L.L. The Discovery and Function of Filaggrin. Int. J. Mol. Sci. 2022, 23, 1455. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, S.; Illig, T.; Baurecht, H.; Irvine, A.D.; Rodriguez, E.; Diaz-Lacava, A.; Klopp, N.; Wagenpfeil, S.; Zhao, Y.; Liao, H.; et al. Loss-of-Function Variations within the Filaggrin Gene Predispose for Atopic Dermatitis with Allergic Sensitizations. J. Allergy Clin. Immunol. 2006, 118, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Angelova-Fischer, I.; Dapic, I.; Hoek, A.; Jakasa, I.; Fischer, T.; Zillikens, D.; Kezic, S. Skin Barrier Integrity and Natural Moisturising Factor Levels after Cumulative Dermal Exposure to Alkaline Agents in Atopic Dermatitis. Acta Derm. Venereol. 2014, 94, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Legesse, A. Preparation of Laundry Soap from Used Cooking Oils: Getting Value out of Waste. Sci. Res. Essays 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Sherazi, T.H. University of Sindh. Evaluation of Physico-Chemical Properties in Selected Branded Soaps. Pak. J. Anal. Environ. Chem. 2019, 20, 177–183. [Google Scholar] [CrossRef]
- Alizadeh, A.; Balali-Mood, M.; Mahdizadeh, A.; Riahi-Zanjani, B. Mercury and Lead Levels in Common Soaps from Local Markets in Mashhad, Iran. Iran. J. Toxicol. 2017, 11, 1–3. [Google Scholar] [CrossRef]
- Arasaretnam, S.; Venujah, K. Preparation of Soaps by Using Different Oil and Analyze Their Properties. Nat. Prod. Chem. Res. 2019, 7, 1–4. [Google Scholar]
- Betsy, K.J.; Jilu, M.; Fathima, R.; Varkey, J.T. Determination of Alkali Content & Total Fatty Matter in Cleansing Agents. Asian J. Sci. Appl. Technol. 2021, 2, 8–12. [Google Scholar] [CrossRef]
- Popescu, V.; Soceanu, A.; Dobrinas, S.; Stanciu, G.; Epure, D.T. Quality Control and Evaluation of Certain Properties for Soaps Made in Romania. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2011, 12, 257. [Google Scholar]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Custodio-Mendoza, J.A.; Valente, I.M.; Ramos, R.M.; Lorenzo, R.A.; Carro, A.M.; Rodrigues, J.A. Analysis of Free Malondialdehyde in Edible Oils Using Gas-Diffusion Microextraction. J. Food Compos. Anal. 2019, 82, 103254. [Google Scholar] [CrossRef]
- Hoc, D.; Haznar-Garbacz, D. Foams as Unique Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2021, 167, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Sukeksi, L.; Iriany, I.; Grace, M.; Diana, V. Characterization of the Chemical and Physical Properties of Bar Soap Made with Different Concentrations of Bentonite as a Filler. Int. J. Technol. 2021, 12, 263. [Google Scholar] [CrossRef]
- Awang, R.; Ahmad, S.; Ghazali, R. Properties of Sodium Soap Derived from Palm-Based Dihydroxystearic Acid. J. Oil Palm Res. 2001, 13, 33–38. [Google Scholar]
- Achaw, O.-W.; Danso-Boateng, E. Soaps and Detergents. In Chemical and Process Industries: With Examples of Industries in Ghana; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–37. [Google Scholar]
- Cheng, G.; Zhang, M.; Lu, Y.; Zhang, Y.; Lin, B.; Von Lau, E. A Novel Method for the Green Utilization of Waste Fried Oil. Particuology 2024, 84, 1–11. [Google Scholar] [CrossRef]
- Hasanov, E.E.; Rahimov, R.A.; Abdullayev, Y.; Asadov, Z.H.; Ahmadova, G.A.; Isayeva, A.M.; Ahmadbayova, S.F.; Zubkov, F.I.; Autschbach, J. New Class of Cocogem Surfactants Based on Hexamethylenediamine, Propylene Oxide, and Long Chain Carboxylic Acids: Theory and Application. J. Ind. Eng. Chem. 2020, 86, 123–135. [Google Scholar] [CrossRef]
- Oyekunle, J.A.O.; Ore, O.T.; Ogunjumelo, O.H.; Akanni, M.S. Comparative Chemical Analysis of Indigenous Nigerian Soaps with Conventional Ones. Heliyon 2021, 7, e06689. [Google Scholar] [CrossRef]
- Rahayu, S.; Pambudi, K.A.; Afifah, A.; Fitriani, S.R.; Tasyari, S.; Zaki, M.; Djamahar, R. Environmentally Safe Technology with the Conversion of Used Cooking Oil into Soap. J. Phys. Conf. Ser. 2021, 1869, 012044. [Google Scholar] [CrossRef]
- Purwanto, M.; Yulianti, E.S.; Nurfauzi, I.N. Winarni Effects of Soapmaking Process on Soap Stability with Dragon Fruit Peels Extract. J. Phys. Conf. Ser. 2021, 1726, 012001. [Google Scholar] [CrossRef]
- Febriani, A.; Syafriana, V.; Afriyando, H.; Djuhariah, Y.S. The Utilization of Oil Palm Leaves (Elaeis Guineensis Jacq.) Waste as an Antibacterial Solid Bar Soap. IOP Conf. Ser. Earth Environ. Sci. 2020, 572, 012038. [Google Scholar] [CrossRef]
- Meiri, N.; Berman, P.; Colnago, L.A.; Moraes, T.B.; Linder, C.; Wiesman, Z. Liquid-Phase Characterization of Molecular Interactions in Polyunsaturated and n-Fatty Acid Methyl Esters by 1H Low-Field Nuclear Magnetic Resonance. Biotechnol. Biofuels 2015, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Miazek, K.; Beton, K.; Śliwińska, A.; Brożek-Płuska, B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022, 12, 1087. [Google Scholar] [CrossRef]
- Kawata, A.; Murakami, Y.; Suzuki, S.; Fujisawa, S. Anti-Inflammatory Activity of β-Carotene, Lycopene and Tri-n-Butylborane, a Scavenger of Reactive Oxygen Species. In Vivo 2018, 32, 255–264. [Google Scholar] [CrossRef]
- Marcelino, G.; Machate, D.J.; Freitas, K.D.C.; Hiane, P.A.; Maldonade, I.R.; Pott, A.; Asato, M.A.; Candido, C.J.; Guimarães, R.D.C.A. β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules 2020, 25, 5803. [Google Scholar] [CrossRef] [PubMed]
- Shastak, Y.; Gordillo, A.; Pelletier, W. The Relationship between Vitamin A Status and Oxidative Stress in Animal Production. J. Appl. Anim. Res. 2023, 51, 546–553. [Google Scholar] [CrossRef]
- Rodrigues, C.V.; Pintado, M. Hesperidin from Orange Peel as a Promising Skincare Bioactive: An Overview. Int. J. Mol. Sci. 2024, 25, 1890. [Google Scholar] [CrossRef]
- Romano, R.; De Luca, L.; Basile, G.; Nitride, C.; Pizzolongo, F.; Masi, P. The Use of Carbon Dioxide as a Green Approach to Recover Bioactive Compounds from Spent Coffee Grounds. Foods 2023, 12, 1958. [Google Scholar] [CrossRef]
- Ircham, M.M.; Mubarak, A.S.; Saputra, E. Physical Characteristic and Antioxidant Activities of Liquid Bath Soap with Substitution of β-Carotene Crude Extract from Gracilaria Sp. IOP Conf. Ser. Earth Environ. Sci. 2022, 1036, 012047. [Google Scholar] [CrossRef]
- Ahmad, N. Stability and performance of palmbased transparent soap with oil palm leaves extract. J. Oil Palm Res. 2021, 33, 724–731. [Google Scholar] [CrossRef]
- Rybczyńska-Tkaczyk, K.; Grenda, A.; Jakubczyk, A.; Kiersnowska, K.; Bik-Małodzińska, M. Natural Compounds with Antimicrobial Properties in Cosmetics. Pathogens 2023, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Mapoung, S.; Semmarath, W.; Arjsri, P.; Umsumarng, S.; Srisawad, K.; Thippraphan, P.; Yodkeeree, S.; Limtrakul (Dejkriengkraikul), P. Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market. Plants 2021, 10, 1383. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Aboul-Enein, A.M.; Shanab, S.M.; Shalaby, E.A.; Zahran, M.M.; Lightfoot, D.A.; El-Shemy, H.A. Cytotoxic and Antioxidant Properties of Active Principals Isolated from Water Hyacinth against Four Cancer Cells Lines. BMC Complement. Altern. Med. 2014, 14, 397. [Google Scholar] [CrossRef]
Samples | Ingredients |
---|---|
Control | 130 g frying oil + NaOH |
OP1% | 130 g frying oil + NaOH + 1% orange peel |
OP2.5% | 130 g frying oil + NaOH + 2.5% orange peel |
OP5% | 130 g frying oil + NaOH + 5% orange peel |
SCG1% | 130 g frying oil + NaOH + 1% spent coffee grounds |
SCG2.5% | 130 g frying oil + NaOH + 2.5% spent coffee grounds |
SCG5% | 130 g frying oil + NaOH + 5% spent coffee grounds |
Samples | pH | Total Alkali (%) | Total Fatty Matter (%) | MDA (TBA μg/g) | Fat Content (%) |
---|---|---|---|---|---|
Control | 10.37 ± 0.06 a* | 0.00 ± 0.00 | 91.17 ± 0.61 | 0.99 ± 0.29 | 8.69 ± 8.05 |
OP1% | 10.29 ± 0.05 acd | 0.00 ± 0.00 | 91.59 ± 0.26 a | 4.84 ± 0.12 | 14.84 ± 5.00 b |
OP2.5% | 10.29 ± 0.04 acd | 0.00 ± 0.00 | 91.90 ± 0.02 a | 4.41 ± 1.28 | 19.41 ± 0.92 b |
OP5% | 10.25 ± 0.02 d | 0.00 ± 0.00 | 91.83 ± 0.04 a | 6.66 ± 1.67 | 18.83 ± 3.81 b |
SCG1% | 10.38 ± 0.03 ae | 0.00 ± 0.00 | 90.61 ± 0.16 b | 1.93 ± 0.06 | 17.90 ± 6.40 b |
SCG2.5% | 10.32 ± 0.03 acd | 0.00 ± 0.00 | 91.55 ± 0.06 a | 2.32 ± 0.00 | 14.36 ± 0.55 b |
SCG5% | 10.36 ± 0.01 acd | 0.00 ± 0.00 | 91.16 ± 0.36 | 3.49 ± 0.55 | 18.95 ± 3.31 b |
SCG | 5.23 ± 0.02 b | NA ** | NA ** | 3.55 ± 0.21 | 11.47 ± 0.21 |
OP | 6.03 ± 0.04 f | NA ** | NA ** | 1.26 ± 0.23 | 0.71 ± 0.12 a |
Samples | Foaming Capacity (%) | Foam Stability (%) | Moisture (%) | Solubility (%) | Hardness (g) |
---|---|---|---|---|---|
Control | 129 ± 27 a* | 93.65 ± 2.59 a | 5.43 ± 0.34 a | 100 | 3380 ± 87 f |
OP1% | 148 ± 27.53 a | 94.44 ± 3.12 a | 4.98 ± 0.26 a | 100 | 3047 ± 173 cd |
OP2.5% | 123 ± 16.58 a | 92.74 ± 1.95 a | 5.62 ± 1.08 a | 100 | 2127 ± 121 a |
OP5% | 126 ± 23.93 a | 94.45 ± 1.32 a | 5.87 ± 0.54 a | 100 | 2115 ± 78 a |
SCG1% | 125 ± 9.128 a | 94.46 ± 2.19 a | 4.10 ± 0.32 a | 100 | 3115 ± 123 cde |
SCG2.5% | 105 ± 16.83 a | 94.46 ± 1.47 a | 5.74 ± 0.05 a | 100 | 2855 ± 181 c |
SCG5% | 125 ± 33.41 a | 94.45 ± 1.89 a | 5.71 ± 0.63 a | 100 | 2467 ± 122 b |
SCG | NA ** | NA ** | 7.45 ± 0.35 a | NA ** | NA ** |
OP | NA ** | NA ** | 10.9 ± 0.46 b | NA ** | NA ** |
Samples | TPC (mg gallic acid/g) | TFC (mg epicatechin/g) | FRAP (%) | DPPH (%) | ABTS (%) |
---|---|---|---|---|---|
Control | 5.16 ± 7.36 acdf* | 0.08 ± 0.00 a | 96.67 ± 4.38 a | 4.03 ± 0.11 a | 3.54 ± 0.54 ac |
OP1% | 4.30 ± 0.50 ad | 0.25 ± 0.03 cf | 67.77 ± 0.26 c | 5.67 ± 0.55 a | 4.07 ± 1.07 cd |
OP2.5% | 3.64 ± 0.06 a | 0.22 ± 0.01 cdf | 68.63 ± 3.48 b | 5.35 ± 0.05 a | 5.07 ± 0.51 d |
OP5% | 4.03 ± 0.82 ad | 0.11 ± 0.01 e | 74.45 ± 7.50 bd | 17.63 ± 1.75 c | 5.43 ± 0.35 d |
SCG1% | 3.23 ± 0.06 ac | 0.27 ± 0.03 fg | 86.63 ± 7.77 ba | 3.74 ± 0.24 a | 4.72 ± 0.59 cd |
SCG2.5% | 4.12 ± 0.36 ab | 0.31 ± 0.01 g | 90.09 ± 7.16 da | 5.26 ± 0.13 a | 5.33 ± 0.74 d |
SCG5% | 4.81 ± 0.30 bd | 0.31 ± 0.01 hg | 78.47 ± 9.02 eab | 7.69 ± 0.78 a | 6.29 ± 1.07 d |
SCG | 23.53 ± 0.33 e | 0.17 ± 0.00 i | 137.4 ± 7.88 f | - | 30.61 ± 1.94 c |
OP | 15.68 ± 0.16 f | 0.02 ± 0.00 j | 69.61 ± 3.80 bd | 84.66 ± 1.94 b | 22.86 ± 1.47 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayed, L.; Gablo, N.; Kalcakova, L.; Dordevic, S.; Kushkevych, I.; Dordevic, D.; Tremlova, B. Utilizing Used Cooking Oil and Organic Waste: A Sustainable Approach to Soap Production. Processes 2024, 12, 1279. https://doi.org/10.3390/pr12061279
Zayed L, Gablo N, Kalcakova L, Dordevic S, Kushkevych I, Dordevic D, Tremlova B. Utilizing Used Cooking Oil and Organic Waste: A Sustainable Approach to Soap Production. Processes. 2024; 12(6):1279. https://doi.org/10.3390/pr12061279
Chicago/Turabian StyleZayed, Leila, Natalia Gablo, Ludmila Kalcakova, Simona Dordevic, Ivan Kushkevych, Dani Dordevic, and Bohuslava Tremlova. 2024. "Utilizing Used Cooking Oil and Organic Waste: A Sustainable Approach to Soap Production" Processes 12, no. 6: 1279. https://doi.org/10.3390/pr12061279
APA StyleZayed, L., Gablo, N., Kalcakova, L., Dordevic, S., Kushkevych, I., Dordevic, D., & Tremlova, B. (2024). Utilizing Used Cooking Oil and Organic Waste: A Sustainable Approach to Soap Production. Processes, 12(6), 1279. https://doi.org/10.3390/pr12061279