Box-Behnken Design for DPPH Free Radical Scavenging Activity Optimization from Microwave-Assisted Extraction of Polyphenolic Compounds from Agave lechuguilla Torr. Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agave lechuguilla Residue Collection
2.2. Characterization from guishe of Agave lechuguilla
2.3. DPPH• Free Radical Scavenging Activity Optimization from Microwave-Assisted Extraction of Polyphenolic Compounds
2.4. Total Polyphenol Content (TPC)
2.5. Total Flavonoid Content (TFC)
2.6. Antioxidant Activity Assays
2.6.1. DPPH• Free Radical Scavenging Activity
2.6.2. ABTS+• Free Radical Scavenging Activity
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition from guishe of Agave lechuguilla
3.2. Total Polyphenols Content from guishe of Agave lechuguilla
3.3. Total Flavonoid Content from guishe of Agave lechuguilla
3.4. Antioxidant Activity by DPPH• and ABTS+• from guishe of Agave lechuguilla
3.5. Statistical Analysis
3.5.1. Analysis of Response Surface Plots
3.5.2. Model Validation
4. Discussion
4.1. Chemical Composition from guishe of Agave lechuguilla
4.2. Total Polyphenol and Total Flavonoid Content from guishe of Agave lechuguilla
4.3. Effect of the Parameters on Antioxidant Activity
4.4. Antioxidant Activity from guishe of Agave lechuguilla
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagula, R.L.; Sarika Wairkar, S. Recent advances in topical delivery of flavonoids: A review. J. Control. Release 2019, 296, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jing, X.; Li, G. A process to acquire essential oil by distillation concatenated liquid-liquid extraction and flavonoids by solid-liquid extraction simultaneously from Helichrysum arenarium (L.) Moench inflorescences under ionic liquid-microwave mediated. Sep. Purif. Technol. 2019, 209, 164–174. [Google Scholar] [CrossRef]
- Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, H.; Wang, X.; Lan, B.; Cai, J. Effect of irradiation treatment on the functional properties of flavonoid extracts. Appl. Food Res. 2023, 3, 100277. [Google Scholar] [CrossRef]
- Rajesh, R.U.; Sangeetha, D.A. Critical Review on Quercetin Bioflavonoid and its Derivatives: Scope, Synthesis, and Biological Applications with Future Prospects. Arab. J. Chem. 2023, 16, 104881. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, H.; Hao, S.; Pan, D.; Wang, G.; Yu, W. Evaluation of phenolic composition and antioxidant properties of different varieties of Chinese citrus. Food Chem. 2021, 364, 130413. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, C.; Sanchez-Quesada, C.; Gaforio, J.J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants 2019, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Apak, R. Current issues in antioxidant measurement. J. Agric. Food Chem. 2019, 67, 9187–9202. [Google Scholar] [CrossRef]
- Soto, M.L.; Falqué, E.; Domínguez, H. Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics 2015, 2, 259–276. [Google Scholar] [CrossRef]
- Nunes, A.R.; Vieira, I.G.P.; Queiroz, D.B.; Leal, A.L.A.B.; Morais, S.M.; Muniz, D.F.; Calixto-Junior, J.T.; Coutinho, H.D.M. Use of flavonoids and cinnamates, the main photoprotectors with natural origin. Adv. Pharmacol. Sci. 2018, 1–9. [Google Scholar] [CrossRef]
- Amberg, N.; Fogarassy, C. Green consumer behavior in the cosmetics market. Resources 2019, 8, 137. [Google Scholar] [CrossRef]
- Rizwan, K.; Zubair, M.; Rasool, N.; Riaz, M. Phytochemical and Biological Studies of Agave attenuata. Int. J. Mol. Sci. 2012, 13, 6440–6451. [Google Scholar] [CrossRef]
- Ahumada-Santos, Y.P.; Montes-Avila, J.; de Uribe-Beltrán, M.J.; Díaz-Camachoç, S.P.; LópezAngulo, G.; Vega-Aviña, R.; López-Valenzuela, J.Á.; Heredia, J.B.; Delgado-Vargas, F. Chemical characterization, antioxidant and antibacterial activities of six Agave species from Sinaloa, Mexico. Ind. Crops Prod. 2013, 49, 143–149. [Google Scholar] [CrossRef]
- Olvera-Garcia, V.; Granado-Serrano, A.B.; Jové, M.; Cassanyé, A.; Cardador-Martínez, A.; Portero-Otin, M.; Serrano, J.C. Characterization of antioxidant properties and metabolite profile of Agave atrovirens extracts. BioRxiv 2017, preprint. [Google Scholar] [CrossRef]
- Puente-Garza, C.A.; Espinosa-Leal, C.A.; Garcia-Lara, S. Steroidal saponins and flavonol content and antioxidant activity during sporophyte development of Maguey (Agave salmiana). Plant Foods Hum. Nutr. 2018, 73, 287–294. [Google Scholar] [CrossRef]
- Anguiano-Sevilla, L.A.; Lugo-Cervantes, E.; Ordaz-Pichardo, C.; Rosas-Trigueros, J.L.; Jaramillo Flores, M.E. Apoptosis induction of agave lechuguilla torrey extract on human lung adenocarcinoma cells (SK-LU-1). Int. J. Mol. Sci. 2018, 19, 3765. [Google Scholar] [CrossRef]
- Hammuel, C.; Yebpella, G.G.; Shallangwa, G.A.; Magomya, A.M.; Agbaji, A.S. Phytochemical and antimicrobial screening of methanol and aqueous extracts of Agave sisalana. Acta Poloniae Pharmaceutica. Drug Res. 2011, 68, 535–539. Available online: https://www.ptfarm.pl/pub/File/Acta_Poloniae/2011/4/535.pdf (accessed on 28 January 2021).
- Castillo-Reyes, F.; Hernandez-Castillo, F.D.; Clemente-Constantino, J.A.; Gallegos-Morales, G.; Rodriguez-Herrera, R.; Aguilar, C.N. In vitro antifungal activity of polyphenols-rich plant extracts against Phytophthora cinnamomi Rands. Afr. J. Agric. Res. 2015, 10, 4554–4560. [Google Scholar] [CrossRef]
- Martínez Hernández, E. Actividad Antifúngica de Extractos Vegetales Contra Botrytis Cinerea en Fresa. Master’s Thesis, Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico, 2017. Available online: http://repositorio.uaaan.mx:8080/xmlui/handle/123456789/42911 (accessed on 28 January 2022).
- Peña-Rodríguez, A.; Pelletier-Morreeuw, Z.; García-Luján, J.; Rodríguez-Jaramillo, M.D.C.; Guzmán-Villanueva, L.; Escobedo-Fregoso, C.; Tovar-Ramírez, D.; Reyes, A.G. Evaluation of Agave lechuguilla by-product crude extract as a feed additive for juvenile shrimp Litopenaeus vannamei. Aquac. Res. 2020, 51, 14497. [Google Scholar] [CrossRef]
- Herbert-Doctor, L.A.; Saavedra-Aguilar, M.; Villarreal, M.L.; Cardoso-Taketa, A.; Vite-Vallejo, O. Insecticidal and Nematicidal Effects of Agave tequilana Juice against Bemisia tabaci and Panagrellus redivivus. Southwest. Entomol. 2016, 41, 27–40. [Google Scholar] [CrossRef]
- Ontiveros-Guerra, J.; Cerna-Chávez, E.; Ochoa-Fuentes, Y.; Landeros-Flores, J.; Hernández-Juárez, A. Insecticidal activity of plant extracts against whitefly nymphs Bemisia tabaci (Hemiptera: Aleyrodidae) in laboratory. J. Entomol. Zool. Stud. 2020, 8, 595–599. Available online: https://www.entomoljournal.com/archives/2020/vol8issue1/PartJ/8-1-33-821.pdf (accessed on 28 January 2021).
- Chen, P.Y.; Kuo, Y.C.; Chen, C.H.; Kuo, Y.H.; Lee, C.K. Isolation and immunomodulatory effect of homoisoflavones and flavones from Agave sisalana Perrine Ex Engelm. Molecules 2019, 14, 1789–1795. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; El-Kammar, H.A.; Farag, M.A.; Saleh, D.O.; El Dine, R.S. Metabolomic profiling of five Agave leaf taxa via UHPLC/PDA/ESI-MS inrelation to their anti-inflammatory, immunomodulatory and ulceroprotective activities. Steroids 2020, 160, 108648. [Google Scholar] [CrossRef]
- Morreeuw, Z.P.; Escobedo, F.C.; Ríos, G.L.J.; Castillo, Q.D.; Reyes, A.G. Transcriptome-based metabolic profiling of flavonoids in Agave lechuguilla waste biomass. Plant Sci. 2021, 305, 110748. [Google Scholar] [CrossRef]
- Díaz-Jiménez, L.; Carlos-Hernández, S.; Jasso de Rodríguez, D.; Rodríguez-García, R. Conceptualization of a biorefinery for guishe revalorization. Ind. Crops Prod. 2019, 138, 111441. [Google Scholar] [CrossRef]
- Carmona, J.E.; Morales-Martínez, T.K.; Mussatto, S.I.; Castillo-Quiroz, D.; Ríos-González, L.J. Chemical, structural and functional properties of lechuguilla (Agave lechuguilla Torr.). Rev. Mex. Cienc. Forestales 2017, 8, 100–122. Available online: https://scielo.org.mx/pdf/remcf/v8n42/2007-1132-remcf-8-42-00100-en.pdf (accessed on 28 January 2021).
- Ortíz-Méndez, O.H.; Morales-Martínez, T.K.; Ríos-González, L.J.; Rodríguez-de la Garza, J.A.; Quintero, J.; Aroca, G. Bioethanol production from Agave lechuguilla biomass pretreated by autohydrolysis. Rev. Mex. Ing. Química 2017, 16, 467–476. Available online: https://www.redalyc.org/articulo.oa?id=62052087013 (accessed on 28 January 2021).
- Díaz-Blanco, D.I.; de La Cruz, J.R.; López-Linares, J.C.; Morales-Martínez, T.K.; Ruiz, E.; Rios-González, L.J.; Romero, I.; Eulogio Castro, E. Optimization of dilute acid pretreatment of Agave lechuguilla and ethanol production by co-fermentation with Escherichia coli MM160. Ind. Crops Prod. 2017, 114, 154–163. [Google Scholar] [CrossRef]
- Romero-González, J.; Peralta-Videa, J.R.; Rodríguez, E.; Delgado, M.; Gardea-Torresdey, J.L. Potential of Agave lechuguilla biomass for Cr(III) removal from aqueous solutions: Thermodynamic studies. Bioresour. Technol. 2006, 97, 178–182. [Google Scholar] [CrossRef]
- Dávila-Pompermayer, R.; Lopez-Yepez, L.G.; Valdez-Tamez, P.; Juárez, C.A.; Durán-Herrera, A. Lechuguilla natural fiber as internal curing agent in self compacting concrete (SCC): Mechanical properties, shrinkage and durability. Cem. Concr. Compos. 2020, 112, 103686. [Google Scholar] [CrossRef]
- Morreeuw, Z.P.; Escobedo, F.C.; Ríos, G.L.J.; Castillo, Q.D.; Martínez-Rincón, R.; Norma Estrada, N.; Elda, M.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R.; et al. High Throughput Profiling of Flavonoid Abundance in Agave lechuguilla Residue-Valorizing under Explored Mexican Plant. Plants 2021, 10, 695. [Google Scholar] [CrossRef]
- Abbas, M.; Ahmed, D.; Qamar, M.T.; Ihsan, S.; Noor, Z.I. Optimization of ultrasound-assisted, microwave-assisted and Soxhlet extraction of bioactive compounds from Lagenaria siceraria: A comparative analysis. Bioresour. Technol. Rep. 2021, 15, 100746. [Google Scholar] [CrossRef]
- Deng, J.; Xu, Z.; Xiang, C.; Liu, J.; Zhou, L.; Li, T.; Yang, Z.; Ding, C. Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrason. Sonochemistry. 2017, 37, 328–334. [Google Scholar] [CrossRef]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Alara, O.R.; Abayomi, O.O. Extraction, characterization and antioxidant activity of fenugreek (Trigonella-Foenum Graecum) seed oil. Mater. Sci. Energy Technol. 2019, 2, 349–355. [Google Scholar] [CrossRef]
- Sammani, M.S.; Clavijo, S.; Cerdá, V. Recent, advanced sample pretreatments and analytical methods for flavonoids determination in different samples. Trends Anal. Chem. 2021, 138, 116220. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Ethanolic extraction of flavonoids, phenolics and antioxidants from Vernonia amygdalina leaf using two-level factorial design. J. King Saud. Univ. Sci. 2020, 32, 7–16. [Google Scholar] [CrossRef]
- Arrutia, F.; Adam, M.; Calvo, C.M.A.; Mao, Y.; Binner, E. Development of a continuous-flow system for microwave-assisted extraction of pectin-derived oligosaccharides from food waste. Chem. Eng. J. 2020, 395, 125056. [Google Scholar] [CrossRef]
- Rios-González, L.J.; Morales-Martínez, T.K.; Rodríguez-Flores, M.F.; Rodríguez-De la Garza, J.A.; Castillo-Quiroz, D.; Castro-Montoya, A.J.; Martinez, A. Autohydrolysis pretreatment assessment in ethanol production from agave bagasse. Bioresour. Technol. 2017, 242, 184–190. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; NREL/TP-510-42619; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2008. Available online: https://www.nrel.gov/docs/gen/fy08/42623.pdf (accessed on 28 January 2021).
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; NREL/TP-510-42622; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2008. Available online: https://www.nrel.gov/docs/gen/fy13/42618.pdf (accessed on 28 January 2021).
- Contreras-Esquivel, J.C.; Espinoza-Perez, J.D.; Montanez-Saez, J.C.; Charles-Rodríguez, A.V.; Renovato, J.; Aguilar, C.N.; Rodríguez-Herrera, R.; Wicker, L. Extraction and characterization of pectin from novel sources. Adv. Biopolym. ACS Symp. Ser. 2006, 935, 215–229. [Google Scholar] [CrossRef]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein Nitrogen Determination by Kjeldahl Digestion and Ion Chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Thiex, N.J.; Anderson, S.; Gildemeister, B. Crude fat, hexanes extraction, in feed, cereal grain, and forage (Randall/Soxtec/Submersion method): Collaborative study. Journal of AOAC International. 2003, 86, 888–908. [Google Scholar] [CrossRef]
- Gauyat, C.; Reyes, A.G.; Stiger-Pouvreau, V.; Morreeuw, Z.P. A mixture of polyphenols from the higher plant Agave lechuguilla and the seaweed Sargassum spp. for an original and natural active ingredient for cosmetic applications. Master Alm Sci. La Mer Du Littoral 2020, 1, 1–26. [Google Scholar]
- Morreeuw, Z.P. Identificación y Extracción de Flavonoides de Alto Valor Comercial: Valorización del Guishe de Agave lechuguilla. Ph.D. Thesis, Centro de Investigaciones Biológicas del Noreste, S.C., La Paz, Mexico, 2021. [Google Scholar]
- Sonar, M.P.; Rathod, V.K. Microwave assisted extraction (MAE) used as a tool for rapid extraction of Marmelosin from Aegle marmelos and evaluations of total phenolic and flavonoids content, antioxidant and anti-inflammatory activity. Chem. Data Collect. 2020, 30, 100545. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; Pastore, G.M. Optimization of extraction parameters of total phenolics from Annona crassiflora Mart. (Araticum) fruits using response surface methodology. Food Anal. Methods 2017, 10, 100–110. [Google Scholar] [CrossRef]
- Seremet, D.; Stela Jokic, S.; Krunoslav Aladic, K.; Cebin, A.V.; Bozac, N.; Mandura, A.; Komes, D. Optimization of heat-, microwave-assisted and subcritical water extraction of phenolic compounds from ground ivy (Glechoma hederacea L.) using response surface methodology. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100346. [Google Scholar] [CrossRef]
- Fiddaril, I.H.; Yuni, S.D.; Mariyam, S.; Dwi, S.A. Performance of microwave-assisted extraction of proanthocyanidins from red sorghum grain in various power and citric acid concentration. J. Saudi Soc. Agric. Sci. 2023, 22, 480–492. [Google Scholar] [CrossRef]
- Sai-Ut, S.; Kingwascharapong, P.; Anisur Rahman, M.A.; Saroat Rawdkuen, S. Optimization of microwave-assisted extraction of phenolic compounds and antioxidants from Careya sphaerica Roxb. flowers using response surface methodology. Appl. Food Res. 2024, 4, 100379. [Google Scholar] [CrossRef]
- Bener, M. Modeling and optimizing microwave-assisted extraction of antioxidants from Thymbra spicata, L. and characterization of their phenolic constituents. Food Sci. Biotechnol. 2019, 28, 1733–1745. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Vajić, U.V.; Mijin, D.Z.; Zdunić, G.M.; Branković, S.; Kitić, D.; Bugarski, B.M. Polyphenol extraction in microwave reactor using by-product of Thymus serpyllum L. and biological potential of the extract. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100417. [Google Scholar] [CrossRef]
- Kaur, P.; Kumar Pandey, D.; Gupta, R.C.; Dey, A. Simultaneous microwave assisted extraction and HPTLC quantification of mangiferin, amarogentin, and swertiamarin in Swertia species from Western Himalayas. Ind. Crops Prod. 2019, 132, 449–459. [Google Scholar] [CrossRef]
- Cheng, M.; He, J.; Wang, H.; Li, C.; Wu, G.; Zhu, K.; Chen, X.; Zhang, Y.; Tan, L. Comparison of microwave, ultrasound and ultrasound-microwave assisted solvent extraction methods on phenolic profile and antioxidant activity of extracts from jackfruit (Artocarpus heterophyllus Lam.) pulp. LTW 2023, 173, 114395. [Google Scholar] [CrossRef]
- Puente-Garza, C.A.; García-Lara, S.; Gutiérrez-Uribe, J.A. Enhancement of saponins and flavonols by micropropagation of Agave salmiana. Ind. Crops Prod. 2017, 105, 225–230. [Google Scholar] [CrossRef]
- Rochín-Medina, J.J.; Mora-Rochín, S.; Navarro-Cortez, R.O.; Tovar-Jimenez, X.T.; Quiñones-Reyes, G.; Ayala-Luján, J.L.; Guayo-Rojas, J. Content of phenolic compounds and antioxidant capacity of varieties of bean sowed in Zacatecas. Acta Univ. 2021, 31, e3059. [Google Scholar] [CrossRef]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2017, 17, 173–182. [Google Scholar] [CrossRef]
Independent Variable | Variable Level | |
---|---|---|
Low (−1) | High (1) | |
Irradiation time (min) | 5 | 15 |
Temperature (°C) | 40 | 50 |
Solvent to sample ratio (w/v) | 1:20 | 1:30 |
Run | Parameters | ||
---|---|---|---|
Irradiation Time (min) X1 | Temperature (°C) X2 | Solvent-to-Sample Ratio (g/mL) X3 | |
1 | 15 | 40 | 1:25 |
2 | 5 | 45 | 1:30 |
3 | 10 | 45 | 1:25 |
4 | 10 | 50 | 1:20 |
5 | 10 | 40 | 1:20 |
6 | 10 | 40 | 1:30 |
7 | 15 | 50 | 1:25 |
8 | 10 | 45 | 1:25 |
9 | 15 | 45 | 1:20 |
10 | 5 | 40 | 1:25 |
11 | 5 | 45 | 1:20 |
12 | 5 | 50 | 1:25 |
13 | 10 | 50 | 1:30 |
14 | 15 | 45 | 1:30 |
15 | 10 | 45 | 1:25 |
Component | % (Dry Basis) |
---|---|
Glucans | 12.11 ± 3.99 |
Xylan | 2.30 ± 0.38 |
Lignin | 8.97 ± 0.25 |
Extractives | 42.72 ± 0.45 |
Protein | 4.78 ± 0.10 |
Lipids | 2.17 ± 0.08 |
Pectin | 7.43 ± 0.09 |
Ash content | 10.78 ± 0.50 |
Run | DPPH• Free Radical Scavenging Activity (%) | ABTS+• Free Radical Scavenging Activity (%) |
---|---|---|
1 | 57.44 ± 2.58 CD | 83.07 ± 2.05 ab |
2 | 67.12 ± 0.87 AB | 78.96 ± 3.89 abc |
3 | 62.90 ± 0.28 D | 86.45 ± 0.67 a |
4 | 46.80 ± 2.98 E | 85.72 ± 3.43 a |
5 | 61.46 ± 2.63 ABCD | 80.47 ± 1.86 abc |
6 | 68.27 ± 3.02 A | 85.18 ± 0.47 ab |
7 | 36.35 ± 0.59 F | 81.65 ± 1.71 abc |
8 | 62.90 ± 0.28 EF | 79.82 ± 4.74 abc |
9 | 58.59 ± 3.31 BCD | 79.90 ± 2.22 abc |
10 | 41.91 ± 2.07 EF | 82.13 ± 1.96 ab |
11 | 65.78 ± 1.22 ABC | 82.54 ± 1.37 ab |
12 | 59.45 ± 4.48 BCD | 80.83 ± 1.47 abc |
13 | 59.16 ± 5.24 BCD | 80.22 ± 2.33 abc |
14 | 58.39 ± 2.41 CD | 77.50 ± 2.32 bc |
15 | 62.90 ± 0.28 ABCD | 74.40 ± 1.40 c |
Source | Sum of Squares | Df | Mean Square | F Value | p-Value (Prob > F) |
---|---|---|---|---|---|
Model | 1090.13 | 9 | 121.125 | 6.03 | <0.031 |
X1 | 68.94 | 1 | 68.94 | 3.43 | 0.123 |
X2 | 93.29 | 1 | 93.29 | 4.64 | 0.084 |
X3 | 51.62 | 1 | 51.62 | 2.57 | 0.17 |
X1X2 | 373.06 | 1 | 373.06 | 18.58 | <0.008 |
X1X3 | 0.59 | 1 | 0.59 | 0.03 | 0.871 |
X2X3 | 7.73 | 1 | 7.73 | 0.38 | 0.562 |
X12 | 103.09 | 1 | 103.09 | 5.13 | 0.073 |
X22 | 287.92 | 1 | 287.92 | 14.34 | <0.013 |
X32 | 86.95 | 1 | 86.95 | 4.33 | 0.092 |
Residual | 100.42 | 5 | 20.084 | ||
Lack of fit | 100.42 | 3 | 33.473 | ||
Pure error | 0 | 2 | 0 | ||
Cor total | 1190.55 | 14 | |||
R2 | 0.91 | ||||
Adjusted R2 | 0.76 | ||||
Coefficient of variation | 4.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes-Güicho, V.d.J.; Reyes, A.G.; Nuncio, A.; Sepúlveda-Torre, L.; Landa-Cansigno, C.; Rodríguez-De la Garza, J.A.; Medina-Morales, M.A.; Ríos-González, L.J.; Morales-Martínez, T.K. Box-Behnken Design for DPPH Free Radical Scavenging Activity Optimization from Microwave-Assisted Extraction of Polyphenolic Compounds from Agave lechuguilla Torr. Residues. Processes 2024, 12, 2005. https://doi.org/10.3390/pr12092005
Cervantes-Güicho VdJ, Reyes AG, Nuncio A, Sepúlveda-Torre L, Landa-Cansigno C, Rodríguez-De la Garza JA, Medina-Morales MA, Ríos-González LJ, Morales-Martínez TK. Box-Behnken Design for DPPH Free Radical Scavenging Activity Optimization from Microwave-Assisted Extraction of Polyphenolic Compounds from Agave lechuguilla Torr. Residues. Processes. 2024; 12(9):2005. https://doi.org/10.3390/pr12092005
Chicago/Turabian StyleCervantes-Güicho, Vianey de J., Ana G. Reyes, Alberto Nuncio, Leonardo Sepúlveda-Torre, Cristina Landa-Cansigno, José A. Rodríguez-De la Garza, Miguel A. Medina-Morales, Leopoldo J. Ríos-González, and Thelma K. Morales-Martínez. 2024. "Box-Behnken Design for DPPH Free Radical Scavenging Activity Optimization from Microwave-Assisted Extraction of Polyphenolic Compounds from Agave lechuguilla Torr. Residues" Processes 12, no. 9: 2005. https://doi.org/10.3390/pr12092005
APA StyleCervantes-Güicho, V. d. J., Reyes, A. G., Nuncio, A., Sepúlveda-Torre, L., Landa-Cansigno, C., Rodríguez-De la Garza, J. A., Medina-Morales, M. A., Ríos-González, L. J., & Morales-Martínez, T. K. (2024). Box-Behnken Design for DPPH Free Radical Scavenging Activity Optimization from Microwave-Assisted Extraction of Polyphenolic Compounds from Agave lechuguilla Torr. Residues. Processes, 12(9), 2005. https://doi.org/10.3390/pr12092005