A Novel Mobile Phase for Green Chromatographic Determination of Haloperidol: Application to Commercial Pharmaceutical Products and Forced Degradation Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Method Validation
Linearity
Precision
Accuracy
Limit of Detection (LOD) and Limit of Quantification (LOQ)
Application of the Method to the Analysis of the Commercial Product
Haloperidol Forced Degradation Studies
Hydrolysis Degradation
Oxidative Degradation
Thermal Degradation
Photolytic Degradation
3. Results
3.1. HPLC Analysis of Haloperidol
3.2. Method Validation
3.2.1. Linearity
3.2.2. Precision
3.2.3. Accuracy
3.2.4. Limit of Detection (LOD) and Limit of Quantification (LOQ)
3.2.5. Specificity
3.3. Application of the Proposed RP-HPLC Method for Commercial Drugs
3.4. Forced Degradation Study of Haloperidol
3.4.1. Hydrolysis Degradation
3.4.2. Oxidative Degradation
3.4.3. Thermal Degradation
3.4.4. Photolytic Degradation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tardy, M.; Huhn, M.; Kissling, W.; Engel, R.R.; Leucht, S. Haloperidol versus low-potency first-generation antipsychotic drugs for schizophrenia. Cochrane Database Syst. Rev. 2014, 2014, CD009268. [Google Scholar]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- White, J. PubMed 2.0. Med. Ref. Serv. Q. 2020, 39, 382–387. [Google Scholar] [CrossRef]
- ClinCalc. ClinCalc DrugStats Database. 2020. Available online: https://clincalc.com/DrugStats/ (accessed on 8 October 2024).
- Piggott, T.; Moja, L.; Huttner, B.; Okwen, P.; Raviglione, M.; Kredo, T.; Schünemann, H. WHO Model list of essential medicines: Visions for the future. Bull. World Health Organ. 2024, 102, 722. [Google Scholar] [CrossRef]
- Prommer, E. Role of haloperidol in palliative medicine: An update. Am. J. Hosp. Palliat. Med. 2012, 29, 295–301. [Google Scholar] [CrossRef]
- Hanafi, I.; Arafat, S.; Al Zayed, L.; Sukkar, M.; Albeirakdar, A.; Krayem, D.; Essali, A. Haloperidol (route of administration) for people with schizophrenia. Cochrane Database Syst. Rev. 2017, 2017, CD012833. [Google Scholar] [CrossRef]
- Kumar, R.S.; Nalini, C. Analytical determinations of haloperidol and its combinations in pharmaceutical dosage forms and biological matrices. J. Liq. Chromatogr. Relat. Technol. 2021, 44, 33–51. [Google Scholar] [CrossRef]
- Pharmacopeial, U.S. The United States Pharmacopeia 2018: USP 41. In The National Formulary; American Pharmaceutical Association: Washington, DC, USA, 2018. [Google Scholar]
- Rahman, N.; Sameen, S.; Kashif, M. Spectroscopic study on the interaction of haloperidol and 2, 4-dinitrophenylhydrazine and its application for the quantification in drug formulations. Anal. Chem. Lett. 2016, 6, 874–885. [Google Scholar] [CrossRef]
- Yasir, M.; Sara, U. Development and validation of UV spectrophotometric method for the estimation of haloperidol. J. Pharm. Res. Int. 2014, 4, 1407–1415. [Google Scholar] [CrossRef]
- The British Pharmacopoeia. The British Pharmacopoeia Commission Secretariat of the Medicines and Healthcare Products Regulatory Agency (MHRA); TSO (The Stationery Office): London, UK, 2019. [Google Scholar]
- Rahman, N.; Khatoon, A.; Rahman, H. Studies on the development of spectrophotometric method for the determination of haloperidol in pharmaceutical preparations. Quim. Nova 2012, 35, 392–397. [Google Scholar] [CrossRef]
- Sambamurty Raju, S.; Raju, P.N.; Ashok Babu, R.; Anjani Devi, A. Validated UV and Visible Spectrophotometric Methods for the quantification of Haloperidol in Pharmaceutical dosage forms. Actapharmica 2015, 2, 107–111. [Google Scholar]
- Wate, S.; Borkar, A. Simultaneous spectrophotometric estimation of haloperidol and trihexyphenidyl in tablets. Indian J. Pharm. Sci. 2010, 72, 265. [Google Scholar]
- Ouanes, S.; Kallel, M.; Trabelsi, H.; Safta, F.; Bouzouita, K. Zero-crossing derivative spectrophotometry for the determination of haloperidol in presence of parabens. J. Pharm. Biomed. Anal. 1998, 17, 361–364. [Google Scholar] [CrossRef]
- Maślanka, A.; Krzek, J.; Stolarczyk, M.; Walczak, M.; Głogowska, A. Stability studies of clonazepam, diazepam, haloperidol, and doxepin with diverse polarities in an acidic environment. J. AOAC Int. 2011, 94, 1791–1799. [Google Scholar] [CrossRef]
- Mennickent, S.; Pino, L.; Vega, M.; de Diego, M. Chemical stability of haloperidol injection by high performance thin-layer chromatography. J. Sep. Sci. 2008, 31, 201–206. [Google Scholar] [CrossRef]
- Panaggio, A.; Greene, D.S. High Pressure Liquid Chromatographic Determination of Haloperidol Stability. Drug Dev. Ind. Pharm. 1983, 9, 485–492. [Google Scholar] [CrossRef]
- Driouich, R.; Trabelsi, H.; Bouzouita, K.A. Stability—Indicating assay for haloperidol syrup by high-performance liquid chromatography. Chromatographia 2001, 53, 629–634. [Google Scholar] [CrossRef]
- Trabelsi, H.; Bouabdallah, S.; Bouzouita, K.; Safta, F. Determination and degradation study of haloperidol by high performance liquid chromatography. J. Pharm. Biomed. Anal. 2002, 29, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Monser, L.; Trabelsi, H. A rapid LC method for the determination of haloperidol and its degradation products in pharmaceuticals using a porous graphitic carbon column. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 261–271. [Google Scholar] [CrossRef]
- Ali, I.; Aboul-Enein, H.Y. Fast Determination of Haloperidol in Pharmaceutical Preparations Using HPLC with a Monolithic Silica Column. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 3169–3179. [Google Scholar] [CrossRef]
- Gadhavi, R.; Patel, J. Development and validation of stability indicating assay method of haloperidol in oral solution. JPSBR 2014, 4, 319–329. [Google Scholar]
- Goud, E.S.; Reddy, V.K.; Krishnadevaraya, S. Development and validation of a reverse-phase liquid chromatographic method for assay and related substances of haloperidol for 50 mg/mL and 100 mg/mL. Int. J. Pharm. Sci. 2013, 5, 389–396. [Google Scholar]
- Demoen, P.J. Properties and analysis of haloperidol and its dosage forms. J. Pharm. Sci. 1961, 50, 350–353. [Google Scholar] [CrossRef]
- Janicki, C.A.; Ko, C.Y. Haloperidol. Anal. Profiles Drug Subst. 1981, 9, 341–369. [Google Scholar]
- Ölçer, M.; Hakyemez, G. Investigations of some physicochemical properties of haloperidol which may affect its activity. J. Clin. Pharm. Ther. 1988, 13, 341–349. [Google Scholar] [CrossRef] [PubMed]
- (EDQM), an institution of the Council of Europe. European pharmacopoeia. Eur. Dir. Qual. Med. Health Care Counc. Eur. (EDQM) 2017, 9, 3104–3105. [Google Scholar]
- Rowe, R.C.; Sheskey, P.; Quinn, M. Handbook of Pharmaceutical Excipients; Libros Digitales-Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- European Commission. European Pharmacopoeia, 5th, ed.; Council of Europe: Strasbourg, France, 2004. [Google Scholar]
- Validation of Analytical Procedures: Text and Methodology Q2 (R1). Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118971147.ch5 (accessed on 8 October 2024).
- Guidelines for Drug Stability and Stability Testing. Available online: https://www.academia.edu/117092767/Guidelines_for_Drug_Stability_and_Stability_Testing9 (accessed on 8 October 2024).
- European Medical Agency. Photostability Testing of New Active Substances and Medicinal Products, ICH Topic Q1B; European Medical Agency: Amsterdam, The Netherland, 1998. [Google Scholar]
- Trawiński, J.; Skibiński, R. Studies on photodegradation process of psychotropic drugs: A review. Environ. Sci. Pollut. Res. 2017, 24, 1152–1199. [Google Scholar] [CrossRef] [PubMed]
- Djilali, K.; Maachi, R.; Mesbah, Z.A.; Nasrallah, N.; Touzout, N.; Tahraoui, H.; Zhang, J.; Amrane, A. Breaking Barriers in Pharmaceutical Analysis: Streamlined UV Spectrometric Quantification and Stability Profiling of Haloperidol and Methylparaben in Liquid Formulations. Anal. Biochem. 2024, 695, 115632. [Google Scholar] [CrossRef]
- Djilali, K.; Maachi, R.; Tahraoui, H.; Mesbah, Z.A.; Amrane, A. Advancing Thermal Stability Analysis of Haloperidol: Integrative Approaches and Optimization Strategies for Enhanced Pharmaceutical Formulations. J. Mol. Struct. 2024, 1315, 138870. [Google Scholar] [CrossRef]
- Jain, A.; Dubey, B.; Basedia, D.; Dhakar, S.; Ahirwar, M.; Jain, P. Comparison of RP-HPLC and UV Spectrophotometric Methods for Estimation of Haloperidol in Pure and Pharmaceutical Formulation. J. Drug Deliv. Ther. 2018, 8, 277–282. [Google Scholar] [CrossRef]
- Petkovska, R.; Dimitrovska, A. Use of chemometrics for development and validation of an RP-HPLC method for simultaneous determination of haloperidol and related compounds. Acta Pharm. 2008, 58, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.N. Basic statistical methods for analytical chemistry. Part 2. Calibration and regression methods. A review. Analyst 1991, 116, 3–14. [Google Scholar] [CrossRef]
- Stöckl, D.; Dewitte, K.; Thienpont, L.M. Validity of linear regression in method comparison studies: Is it limited by the statistical model or the quality of the analytical input data? Clin. Chem. 1998, 44, 2340–2346. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, A.C. The British Pharmacopoeia, 1864 to 2014: Medicines, International Standards and The State; Routledge: London, UK, 2016. [Google Scholar]
- Vallender, M.; Gaur, R.; Azizi, M.; Gan, J.; Hansal, P.; Harper, K.; Mannan, R.; Panchal, A.; Patel, K.; Rana, J. British Pharmacopoeia 2009; The Stationery Office: London, UK, 2009. [Google Scholar]
- Raggi, M.; Casamenti, G.; Mandrioli, R.; Sabbioni, C.; Volterra, V. A rapid LC method for the identification and determination of CNS drugs in pharmaceutical formulations. J. Pharm. Biomed. Anal. 2000, 23, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Stewart, J. HPLC analysis of haloperidol and its related compound in the drug substance and a tablet dosage form using a non-porous silica octadecylsilane column. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1857–1866. [Google Scholar] [CrossRef]
- Blessy, M.; Patel, R.D.; Prajapati, P.N.; Agrawal, Y.K. Development of forced degradation and stability indicating studies of drugs—A review. J. Pharm. Anal. 2014, 4, 159–165. [Google Scholar] [CrossRef] [PubMed]
Concentration (µg/mL) | Area ± SD (n = 2) | RSD (%) | Characteristics of Calibration Curve |
---|---|---|---|
2.5 | 82.26 ± 0.01 | 0.01 | Equation of the curve Y = 35.32x − 18.19 Correlation coefficient (R) R = 0.999 Mean coefficient of variation (RSD) RSDmean = 0.83% < 2% |
5 | 162.6 ± 2.83 | 1.74 | |
10 | 312.09 ± 2.57 | 0.83 | |
25 | 871.09 ± 13.26 | 1.52 | |
50 | 1748.52 ± 0.90 | 0.05 |
Statistical Parameters | Results |
---|---|
Linearity range | 1–50 µg/mL |
Slope | 35.18 |
RSD | 0.39% |
Origin ordinate | 12.91 |
Correlation coefficient | 0.9996 |
Fisher’s test | F = 92,731.38222 Fcritical = 6.97209 |
Concentration of 50 (µg/mL) | Peak Area |
---|---|
Injection 1 | 1756.30 |
Injection 2 | 1747.88 |
Injection 3 | 1728.72 |
Injection 4 | 1749.15 |
Injection 5 | 1747.17 |
Mean | 1745.84 |
Standard deviation (SD) | 10.23 |
RSD (%) | 0.59% |
Concentration (µg/mL) | Day | Mean ± SD | Relative Standard Deviation RSD (%) |
---|---|---|---|
5 | 1 | 162.6 ± 2.83 | 1.74 |
2 | 166.73 ± 3.00 | 1.8 | |
3 | 162.92 ± 2.38 | 1.46 | |
25 | 1 | 871.09 ± 13.26 | 1.52 |
2 | 823.61 ± 15.39 | 1.93 | |
3 | 839.14 ± 6.58 | 0.78 | |
50 | 1 | 1748.52 ± 0.90 | 0.05 |
2 | 1748.16 ± 1.40 | 0.08 | |
3 | 1752.74 ± 5.04 | 0.29 |
Concentration (µg/mL) | Mean ± SD | Relative Standard Deviation (RSD) (%) | Recovery Rate (%) |
---|---|---|---|
5 | 162.60 ± 2.83 | 1.74 | 100 |
25 | 871.09 ± 13.26 | 1.52 | 100 |
50 | 1748.52 ± 0.90 | 0.05 | 99 |
Parameters | Results |
---|---|
Range of linearity (µg/mL) | 1 to 50 |
Equation of linearity | Y = 35.18x − 12.91 |
Coefficient of correlation (R) | 0.999 |
Precision | RSD = 1.07 < 2% |
Accuracy | RSD = 1.10 < 2% |
LOD (µg/mL) | 0.31 |
LOQ (µg/mL) | 0.95 |
Stationary Phase | Mobile Phase | Wavelength of Detection | Retention Time (min) | LOD | LOQ | Pharmaceutical Form | Reference |
---|---|---|---|---|---|---|---|
Restek pinnacle II C18 column (250 × 4.6 mm, 5 mm) | Methanol/tetrabutyl ammonium hydrogen sulfate (55:45, v/v) | 254 nm | 7 | 0.90 µg/mL | 2.75 µg/mL | Oral solution | [24] |
YMC—pack ODS-A (150 × 4.6 mm, 3 mm) | 25% tetra-butyl ammonium hydrogen sulfate/acetonitrile/isopropyl alcohol (gradient elution) | 230 nm | 37.9 | 0.137 µg/mL | 0.458 µg/mL | injection | [25] |
Non-porous silica ODS column (33 × 4.6 mm, 1.5 mm) | 50 mM phosphate buffer with 0.2% triethylamine (pH 2.5)/acetonitrile (77:23:10, v/v/v) | 220 nm | 1.3 | 1 ng/mL | --- | tablet | [45] |
Spheri-5 RP-18 column (25 cm × 4.6 mm) | 50 mM phosphate buffer (pH 2.5)/acetonitrile/tetrahydrofuron/ triethylamine (63:34:3:0.1, v/v/v/v) | 246 nm | 9.3 | 15 ng/mL | 50 ng/mL | tablet | [21] |
Thermo C18 column (250 × 4.6 mm, 5 mm) | Methanol/acetonitrile (50:50, v/v) | 244 nm | 2.23 | 0.40 µg/mL | 1.20 µg/mL | tablet | [38] |
Monolithic silica column (100 × 4.6 mm) | 100 mM phosphate buffer (pH 3.0)/acetonitrile (70:30, v/v) | 230 nm | 4.26 | 1 ng/mL | 3 ng/mL | injection | [23] |
Carbon column (100 × 4.6 mm, 7 mm) | Tetrahydrofuran/water with 0.5% trichloroacetic acid (55:45, v/v) | 254 nm | 4.25 | 0.1 µg/mL | --- | tablet | [22] |
Zorbax Eclipse XDB C18 column (50 × 4.6 mm, 1.8 mm) | Organic phase with phosphate buffer (pH 6.5) and acetonitrile (gradient elution) | 230 nm | 3.77 | 1.16 µg/mL | 3.86 µg/mL | --- | [39] |
Microbondapak CN column (30 cm × 3.9 mm) | Tetrahydrofuran/water with 0.75% phosphoric acid (40:60, v/v) | 254 nm | 5.4 | --- | --- | --- | [19] |
C18 octadecylsilane, bonded-phase column (250 × 4.6 mm, 5 m) | Methanol/phosphate buffer (pH 2.0)/triethylamine (50:50:0.2) | 254 nm | --- | --- | --- | Solution | [20] |
Varian ResElut C8 column (150 × 4.6 mm, 5 mm) | Acetonitrile/12.6 mM tetramethylammonium perchlorate aqueous solution, pH 2.8 (45:55, v/v) | 230 nm | 6.4 | --- | --- | Solution | [44] |
Type of Stress | Conditions | Degradation (%) |
---|---|---|
Hydrolytic | 0.1 N HCl, 60 °C, 7 days | 16.07 |
1.0 N HCl, 60 °C, 7 days | 24.82 | |
0.1 N NaOH, 60 °C, 7 days | 15.80 | |
1.0 N NaOH, 60 °C, 7 days | 17.26 | |
Oxidative | H2O2 0.3%, 25 °C, 7 days | 0.00 |
H2O2 0.3%, 60 °C, 7 days | 0.00 | |
H2O2 3.0%, 25 °C, 7 days | 0.00 | |
H2O2 3.0%, 60 °C, 7 days | 0.00 | |
Thermal | Haloperidol powder, 60 °C, 15 days | 0.00 |
Haloperidol powder, 80 °C, 15 days | 0.00 | |
Haloperidol solution, 60 °C, 7 days | 10.03 | |
Haloperidol solution, 80 °C, 7 days | 16.78 | |
Photolytic | Haloperidol powder, sunlight, 48 h | 6.20 |
Haloperidol powder, UV light, 48 h | 0.00 | |
Haloperidol solution, sunlight exposure to air, 48 h | 57.36 | |
Haloperidol solution, UV light, 48 h | 12.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djilali, K.; Maachi, R.; Danish, M.; Lekmine, S.; Hadjadj, M.; Ait Mesbah, Z.; Benslama, O.; Tahraoui, H.; Ola, M.S.; Ali, A.; et al. A Novel Mobile Phase for Green Chromatographic Determination of Haloperidol: Application to Commercial Pharmaceutical Products and Forced Degradation Studies. Processes 2025, 13, 260. https://doi.org/10.3390/pr13010260
Djilali K, Maachi R, Danish M, Lekmine S, Hadjadj M, Ait Mesbah Z, Benslama O, Tahraoui H, Ola MS, Ali A, et al. A Novel Mobile Phase for Green Chromatographic Determination of Haloperidol: Application to Commercial Pharmaceutical Products and Forced Degradation Studies. Processes. 2025; 13(1):260. https://doi.org/10.3390/pr13010260
Chicago/Turabian StyleDjilali, Khadidja, Rachida Maachi, Mohammed Danish, Sabrina Lekmine, Mohamed Hadjadj, Zohra Ait Mesbah, Ouided Benslama, Hichem Tahraoui, Mohammad Shamsul Ola, Ahmad Ali, and et al. 2025. "A Novel Mobile Phase for Green Chromatographic Determination of Haloperidol: Application to Commercial Pharmaceutical Products and Forced Degradation Studies" Processes 13, no. 1: 260. https://doi.org/10.3390/pr13010260
APA StyleDjilali, K., Maachi, R., Danish, M., Lekmine, S., Hadjadj, M., Ait Mesbah, Z., Benslama, O., Tahraoui, H., Ola, M. S., Ali, A., Zhang, J., & Amrane, A. (2025). A Novel Mobile Phase for Green Chromatographic Determination of Haloperidol: Application to Commercial Pharmaceutical Products and Forced Degradation Studies. Processes, 13(1), 260. https://doi.org/10.3390/pr13010260