A Comparative Evaluation of the Antioxidant Ability of Polygonum cuspidatum Extracts with That of Resveratrol Itself
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Extracts
2.2.1. Pressurized Liquid Extraction
- temperature: 25 °C;
- static extraction time: 10 min;
- extraction pressure: 40 bar;
- solvent volume used to rinse the extraction vessel: 100% of the capacity of the empty vessel;
- purging time with nitrogen: 60 s at a pressure of 10 bar;
- the extraction solvents used: water, methanol–water mixture (50/50, v/v), and methanol.
2.2.2. Ultrasound-Assisted Solvent Extraction
- extraction solvent: water, methanol, and/or methanol–water mixture (50/50, v/v);
- temperature: 25 °C;
- the ultrasound frequency: 37 kHz;
- the generator power: 100% of the maximum power (720 W);
- the extraction time: 10 min;
- the ratio of plant material to the volume of the extraction mixture: 0.4 g/50 mL.
2.2.3. Maceration
2.2.4. Sea Sand Disruption Method
2.3. Chromatographic Analysis
2.4. Determination of Antioxidant Properties
2.4.1. ABTS Method
2.4.2. DPPH Method
2.4.3. FRAP Method
- FeCl3·6H2O (final concentration of Fe(III) in the aqueous solution was 20 mM);
- TPTZ in 40 mM HCl (final concentration of TPTZ was 10 mM);
- 0.3 M CH3COOH/CH3COONa buffer at pH = 3.6.
2.4.4. CUPRAC Method
2.5. Determination of Polyphenolic Compounds
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Influence of Extraction Method and the Type of Solvent on the Efficiency of Trans-Resveratrol Extraction from Polygonum Cuspidatum
3.1.1. Influence of Extraction Solvent Type
3.1.2. Effect of Extraction Method
3.2. Comparison of Antioxidant Properties of Extracts Assessed by Different Methods with the Activity of Resveratrol Itself
3.2.1. Activity Assessed by the ABTS Method
3.2.2. Activity Assessed by the DPPH, FRAP, and CUPRAC Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Ventegodt, S.; Andersen, N.J.; Merrick, J. Holistic Medicine: Scientific Challenges. Sci. World J. 2003, 3, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Jasubhai, S. A Holistic Approach to Mental and Physical Well-Being. Forte J. Neurosci. Psychol. 2019, 1, 21–23. [Google Scholar] [CrossRef]
- Wang, Y. The scientific nature of traditional Chinese medicine in the post-modern era. J. Tradit. Chin. Med. Sci. 2019, 6, 195–200. [Google Scholar] [CrossRef]
- Su, X.; Yao, Z.; Li, S.; Sun, H. Synergism of Chinese Herbal Medicine: Illustrated by Danshen Compound. Evid.-Based Complement. Altern. Med. 2016, 2016, 7279361. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Chen, L.; Jafari, M.; Tang, J. Network-based modeling of herb combinations in traditional Chinese medicine. Brief. Bioinform. 2021, 22, bbab106. [Google Scholar] [CrossRef]
- Peng, W.; Qin, R.; Li, X.; Zhou, H. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: A review. J. Ethnopharmacol. 2013, 148, 729–745. [Google Scholar] [CrossRef]
- Yang, W.; Li, F.; Xing, X.; Wang, Z.; Yu, X. Study in Pesticide Activities of Polygonum cuspidatum Extracts and its Active Ingredient Resveratrol. Nat. Prod. Commun. 2019, 14, 1934578X19861022. [Google Scholar] [CrossRef]
- Guo, C.; Bai, M.; Miao, M.; Miao, Y. Analysis of the Chemical, Pharmacological and Clinical Applications of Polygonum cuspidatum. IOP Conf. Ser. Mater. Sci. Eng. 2018, 301, 012062. [Google Scholar] [CrossRef]
- Ke, J.; Lia, M.-T.; Xu, S.; Mac, J.; Liu, M.-Y.; Han, Y. Advances for pharmacological activities of Polygonum cuspidatum—A review. Pharm. Biol. 2023, 61, 177–188. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Han, J.-H.; Lim, C.-H.; Fang, X.-Q.; Jang, H.-S.; Lee, S.-Y.; Yim, W.-J.; Lim, J.-H. Effects of Fermented Polygonum cuspidatum on the Skeletal Muscle Functions. Nutrients 2024, 16, 305. [Google Scholar] [CrossRef] [PubMed]
- Quinty, V.; Colas, C.; Nasreddine, R.; Nehmé, R.; Piot, C.; Draye, M.; Destandau, E.; Da Silva, D.; Chate, G. Screening and Evaluation of Dermo-Cosmetic Activities of the Invasive Plant Species Polygonum cuspidatum. Plants 2023, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://en.wikipedia.org/wiki/Reynoutria_japonica. (accessed on 14 November 2024).
- Wang, D.-G.; Liu, W.-Y.; Chen, G.-C. A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. J. Pharm. Anal. 2013, 3, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 2015, 837042. [Google Scholar] [CrossRef]
- Kursvietiene, L.; Kopustinskiene, M.D.; Staneviciene, I.; Mongirdiene, A.; Kubová, K.; Masteikova, R.; Bernatoniene, J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidant 2023, 12, 2056. [Google Scholar] [CrossRef]
- Arbo, B.D.; André-Miral, C.; Nasre-Nasser, R.G.; Schimith, L.E.; Santos, M.G.; Costa-Silva, D.; Muccillo-Baisch, A.L.; Hort, M.A. Resveratrol Derivatives as Potential Treatments for Alzheimer’s and Parkinson’s Disease. Front. Aging Neurosci. 2020, 12, 103. [Google Scholar] [CrossRef]
- Rossi, D.; Guerrini, A.; Bruni, R.; Brognara, E.; Borgatti, M.; Gambari, R.; Maietti, S.; Sacchetti, G. Trans-resveratrol in nutraceuticals: Issues in retail quality and effectiveness. Molecules 2012, 17, 12393–12405. [Google Scholar] [CrossRef]
- Olas, B.; Wachowicz, B. Resveratrol and vitamin C as antioxidants in blood platelets. Thromb. Res. 2002, 106, 143–148. [Google Scholar] [CrossRef]
- Kenchappa, V.; Wahl, M.; Heinle, H. Liposomes as carriers of resveratrol and vitamin E: Evaluating ameliorative antioxidant effect using chemical and cellular test systems. Int. J. Vitam. Nutr. Res. 2022, 92, 342–348. [Google Scholar] [CrossRef]
- Agustin-Salazar, S.; Gamez-Meza, N.; Medina-Juàrez, L.À.; Soto-Valdez, H.; Cerruti, P. From nutraceutics to materials: Effect of resveratrol on the stability of polylactide. ACS Sustain. Chem. Eng. 2014, 2, 1534–1542. [Google Scholar] [CrossRef]
- Wianowska, D.; Typek, R.; Dawidowicz, A.L. Chlorogenic acid stability in pressurized liquid extraction conditions. J. AOAC Int. 2015, 98, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Wianowska, D.; Olszowy-Tomczyk, M.; Garbaczewska, S. A Central Composite Design in increasing the quercetin content in the aqueous onion waste isolates with antifungal and antioxidant properties. Eur. Food Res. Technol. 2022, 248, 497. [Google Scholar] [CrossRef]
- Wianowska, D. Application of Sea Sand Disruption Method for HPLC Determination of Quercetin in Plants. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1037–1043. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.J.; Oldoni, T.; de Alencar, S.M.; Reis, A.; Loguercio, A.D.; Grande, R.H.M. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz. Dent. J. 2012, 23, 22–27. [Google Scholar] [CrossRef]
- Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Zbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant activity of selected phenolic acids–Ferric Reducing Antioxidant Power Assay and QSAR analysis of the structural features. Molecules 2020, 25, 3088. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Başkan, K.S.; Erçağ, E.; Çelik, S.E.; Baki, S.; Yildis, L.; Karaman, S.; Apak, R. A comprehensive review of CUPRAC methodology. Anal. Methods 2011, 3, 2439–2453. [Google Scholar] [CrossRef]
- Choma, I.M.; Olszowy, M.; Studziński, M.; Gnat, S. Determination of chlorogenic acid, polyphenols and antioxidants in green coffee by thin-layer chromatography, effect-directed analysis and dot blot—Comparison to HPLC and spectrophotometry methods. J. Sep. Sci. 2019, 42, 1542–1549. [Google Scholar] [CrossRef]
- Barp, L.; Višnjevec, A.M.; Moret, S. Pressurized Liquid Extraction: A powerful tool to implement extraction and purification of food contaminants. Foods 2023, 12, 2017. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, L.; Zhang, P.; Liu, T.; Yang, G.; Lin, R.; Zhou, J. Extraction of polydatin and resveratrol from Polygonum cuspidatum root: Kinetics and modeling. Food Bioprod. Process. 2015, 94, 518–524. [Google Scholar] [CrossRef]
- Wianowska, D.; Olszowy-Tomczyk, M. Matrix Solid-Phase Disperion. In Microextraction Techniques, 1st ed.; Rodríguez-Delgado, M.A., Socas-Rodríguez, B., Herrera-Herrera, A.V., Eds.; Springer: Cham, Switzerland, 2024; pp. 161–191. [Google Scholar]
- Robinson, K.; Mock, C.; Liang, D. Pre-formulation studies of resveratrol. Drug Dev. Ind. Pharm. 2015, 41, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Ghazwani, M.; Alam, P.; Alqarni, M.H.; Yusufoglu, H.S.; Shakeel, F. Solubilization of trans-resveratrol in some mono-solvents and various propylene glycol + water mixtures. Molecules 2021, 26, 3091. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Shao, Y.; Yan, W. Measurement and correlation of solubilities of trans-resveratrol in ethanol +water and acetone + water mixed solvents at different temperatures. J. Chem. Eng. Data 2008, 53, 2562–2566. [Google Scholar] [CrossRef]
- Romdhani, A.; Osorio, I.P.; Martínez, F.; Jouyban, A.; Acree, W.E., Jr. Further calculations on the solubility of trans-resveratrol in (Transcutol® + water) mixtures. J. Mol. Liq. 2021, 330, 115645. [Google Scholar] [CrossRef]
- Martins Strieder, M.; Keven Silva, E.; Angela, A.; Meireles, M. Specific Energy: A New Approach to Ultrasound-Assisted Extraction of Natural Colorants. Food Public. Health 2019, 9, 45–52. [Google Scholar] [CrossRef]
- Fletes-Vargas, G.; Rodríguez-Rodríguez, R.; Pacheco, N.; Pérez-Larios, A.; Espinosa-Andrews, H. Evaluation of the Biological Properties of an Optimized Extract of Polygonum cuspidatum Using Ultrasonic-Assisted Extraction. Molecules 2023, 28, 4079. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Wianowska, D. Comparison of the Antioxidant Properties of Extracts Obtained from Walnut Husks as well as the Influence of Juglone on Their Evaluation. Appl. Sci. 2024, 14, 2972. [Google Scholar] [CrossRef]
- Lin, Y.W.; Yang, F.J.; Chen, C.L.; Lee, W.T.; Chen, R.S. Free radical scavenging activity and antiproliferative potential of Polygonum cuspidatum root extracts. J. Nat. Med. 2010, 64, 146–152. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, X.; Wang, H.; Liang, Y.; Zhu, J.; Li, H.; Zhang, Z.; Wu, Q. Antioxidant potential of ethanolic extract of Polygonum cuspidatum and application in peanut oil. Food Chem. 2007, 105, 1518–1524. [Google Scholar] [CrossRef]
- Choi, D.-H.; Han, J.-H.; Yu, K.-H.; Hong, M.; Lee, S.-Y.; Park, K.-H.; Lee, S.-Y.; Kwon, T.-H. Antioxidant and Anti-Obesity Activities of Polygonum cuspidatum Extract through Alleviation of Lipid Accumulation on 3T3-L1 Adipocytes. J. Microbiol. Biotechnol. 2020, 30, 21–30. [Google Scholar] [CrossRef]
- Lee, M.-H.; Lin, C.-C. Comparison of the Antioxidant and Transmembrane Permeative Activities of the Different Polygonum cuspidatum Extracts in Phospholipid-Based Microemulsions. J. Agric. Food Chem. 2011, 59, 9135–9914. [Google Scholar] [CrossRef]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef]
Extraction Method | Extraction Solvent | ||
---|---|---|---|
MeOH | MeOH/H2O | H2O | |
PLE | 15.99 ± 0.47 a | 30.44 ± 0.91 d | 12.44 ± 0.37 f |
Maceration | 24.18 ± 0.72 b | 33.14 ± 0.99 e | 13.95 ± 0.42 g |
UASE | 20.56 ± 0.61 c | 28.75 ± 0.86 d | 14.39 ± 0.43 g |
SSDM | 20.64 ± 0.62 c | 21.14 ± 0.63 c | 13.55 ± 0.40 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olszowy-Tomczyk, M.; Wianowska, D. A Comparative Evaluation of the Antioxidant Ability of Polygonum cuspidatum Extracts with That of Resveratrol Itself. Processes 2025, 13, 9. https://doi.org/10.3390/pr13010009
Olszowy-Tomczyk M, Wianowska D. A Comparative Evaluation of the Antioxidant Ability of Polygonum cuspidatum Extracts with That of Resveratrol Itself. Processes. 2025; 13(1):9. https://doi.org/10.3390/pr13010009
Chicago/Turabian StyleOlszowy-Tomczyk, Małgorzata, and Dorota Wianowska. 2025. "A Comparative Evaluation of the Antioxidant Ability of Polygonum cuspidatum Extracts with That of Resveratrol Itself" Processes 13, no. 1: 9. https://doi.org/10.3390/pr13010009
APA StyleOlszowy-Tomczyk, M., & Wianowska, D. (2025). A Comparative Evaluation of the Antioxidant Ability of Polygonum cuspidatum Extracts with That of Resveratrol Itself. Processes, 13(1), 9. https://doi.org/10.3390/pr13010009