Composite Anion Exchange Membranes Based on Functionalized Graphene Oxide and Poly(Terphenylene Piperidinium) for Application in Water Electrolysis and Fuel Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Methods and Characterization
2.2.1. Synthesis Methods
- Functionalization of graphene oxide
- Synthesis of Poly(terphenylene piperidinium)
- Fabrication of PTPiQA-QGO-X membranes
2.2.2. Characterization
- Morphology, composition, and mechanical and thermal stability
- Ion exchange capacity
- Water uptake and linear swelling ratio
- Hydroxide conductivity
- Alkaline stability
3. Results and Discussion
3.1. Structural and Morphological Characterizations of GO and QGO
3.2. Structural and Morphological Characterizations of Polymer
3.3. Structural Characterizations of PTPiQA and PTPiQA-QGO-X Membranes
3.3.1. FT-IR
3.3.2. UV Visible Spectroscopy
3.4. Morphology of PTPiQA and PTPiQA-QGO-X Membranes
3.5. Water Uptake and Swelling Ratio
3.6. Ion Exchange Capacity
3.7. Hydroxide Conductivity
3.8. Mechanical and Thermal Stability
3.9. Alkaline Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kober, T.; Schiffer, H.-W.; Densing, M.; Panos, E. Global Energy Perspectives to 2060—WEC’s World Energy Scenarios 2019. Energy Strategy Rev. 2020, 31, 100523. [Google Scholar] [CrossRef]
- Vujanović, M.; Wang, Q.; Mohsen, M.; Duić, N.; Yan, J. Recent Progress in Sustainable Energy-Efficient Technologies and Environmental Impacts on Energy Systems. Appl. Energy 2021, 283, 116280. [Google Scholar] [CrossRef]
- Zou, C.; Li, S.; Xiong, B.; Liu, H.; Ma, F. Revolution and Significance of “Green Energy Transition” in the Context of New Quality Productive Forces: A Discussion on Theoretical Understanding of “Energy Triangle”. Pet. Explor. Dev. 2024, 51, 1611–1627. [Google Scholar] [CrossRef]
- Mondal, S.; Palit, D. Challenges in Natural Resource Management for Ecological Sustainability. In Natural Resources Conservation and Advances for Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 29–59. ISBN 978-0-12-822976-7. [Google Scholar]
- Adams, S.; Acheampong, A.O. Reducing Carbon Emissions: The Role of Renewable Energy and Democracy. J. Clean. Prod. 2019, 240, 118245. [Google Scholar] [CrossRef]
- Ion-Ebrasu, D.; Pollet, B.G.; Caprarescu, S.; Chitu, A.; Trusca, R.; Niculescu, V.; Gabor, R.; Carcadea, E.; Varlam, M.; Vasile, B.S. Graphene Inclusion Effect on Anion-Exchange Membranes Properties for Alkaline Water Electrolyzers. Int. J. Hydrogen Energy 2020, 45, 17057–17066. [Google Scholar] [CrossRef]
- Gupta, G.; Scott, K.; Mamlouk, M. Soluble Polystyrene-b-poly (Ethylene/Butylene)-b-polystyrene Based Ionomer for Anion Exchange Membrane Fuel Cells Operating at 70 °C. Fuel Cells 2018, 18, 137–147. [Google Scholar] [CrossRef]
- Letchumanan, I.; Mohamad Yunus, R.; Mastar@Masdar, M.S.; Karim, N.A. Advancements in Electrocatalyst Architecture for Enhanced Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells: A Comprehensive Review. Int. J. Hydrogen Energy 2025, 104, 527–546. [Google Scholar] [CrossRef]
- Hossen, M.; Hasan, S.; Sardar, R.I.; Haider, J.B.; Mottakin; Tammeveski, K.; Atanassov, P. State-of-the-Art and Developmental Trends in Platinum Group Metal-Free Cathode Catalyst for Anion Exchange Membrane Fuel Cell (AEMFC). Appl. Catal. B Environ. 2023, 325, 121733. [Google Scholar] [CrossRef]
- Vincent, I.; Kruger, A.; Bessarabov, D. Development of Efficient Membrane Electrode Assembly for Low Cost Hydrogen Production by Anion Exchange Membrane Electrolysis. Int. J. Hydrogen Energy 2017, 42, 10752–10761. [Google Scholar] [CrossRef]
- Zakaria, Z.; Kamarudin, S.K. A Review of Alkaline Solid Polymer Membrane in the Application of AEM Electrolyzer: Materials and Characterization. Int. J. Energy Res. 2021, 45, 18337–18354. [Google Scholar] [CrossRef]
- Willdorf-Cohen, S.; Zhegur-Khais, A.; Ponce-González, J.; Bsoul-Haj, S.; Varcoe, J.R.; Diesendruck, C.E.; Dekel, D.R. Alkaline Stability of Anion-Exchange Membranes. ACS Appl. Energy Mater. 2023, 6, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Sun, C.; Mei, J.; Tang, X.; Hasanien, H.M.; Jiang, J.; Fan, F.; Song, K. Fuel Cell Life Prediction Considering the Recovery Phenomenon of Reversible Voltage Loss. J. Power Sources 2025, 625, 235634. [Google Scholar] [CrossRef]
- Yan, S.; Yang, M.; Sun, C.; Xu, S. Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method. Energies 2023, 16, 6010. [Google Scholar] [CrossRef]
- Marino, M.G.; Kreuer, K.D. Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids. ChemSusChem 2015, 8, 513–523. [Google Scholar] [CrossRef]
- Wang, T.; Chen, D.; Wang, C.; Wei, H.; Ding, Y. Isomeric Poly(Arylene Piperidinium) Electrolyte Membranes with High Alkaline Durability. Adv. Funct. Mater. 2025, 35, 2422504. [Google Scholar] [CrossRef]
- Palanivel, T.; Mamlouk, M.; Pollet, B.G.; Vinodh, R. Exploring Properties of Hyperbranched Polymers in Anion Exchange Membranes for Fuel Cells and Its Potential Integration for Water Electrolysis: A Review. J. Energy Chem. 2025, 102, 670–702. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, C.; Wang, T.; Wang, X.; Wang, X.; Li, X.; Ding, Y.; Wei, H. Imidazolium Structural Isomer Pyrazolium: A Better Alkali-Stable Anion Conductor for Anion Exchange Membranes. J. Membr. Sci. 2022, 660, 120843. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Pan, J.; Zhao, J.; Cao, H.; Zhu, H.; Yan, F. Alkaline Stable Pyrrolidinium-Type Main-Chain Polymer: The Synergetic Effect between Adjacent Cations. J. Membr. Sci. 2021, 618, 118689. [Google Scholar] [CrossRef]
- Barnes, A.M.; Du, Y.; Zhang, W.; Seifert, S.; Buratto, S.K.; Coughlin, E.B. Phosphonium-Containing Block Copolymer Anion Exchange Membranes: Effect of Quaternization Level on Bulk and Surface Morphologies at Hydrated and Dehydrated States. Macromolecules 2019, 52, 6097–6106. [Google Scholar] [CrossRef]
- Liu, F.H.; Yang, Q.; Gao, X.L.; Wu, H.Y.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Anion Exchange Membranes with Dense N-Spirocyclic Cations as Side-Chain. J. Membr. Sci. 2020, 595, 117560. [Google Scholar] [CrossRef]
- Ponce-González, J.; Whelligan, D.K.; Wang, L.; Bance-Soualhi, R.; Wang, Y.; Peng, Y.; Peng, H.; Apperley, D.C.; Sarode, H.N.; Pandey, T.P.; et al. High Performance Aliphatic-Heterocyclic Benzyl-Quaternary Ammonium Radiation-Grafted Anion-Exchange Membranes. Energy Environ. Sci. 2016, 9, 3724–3735. [Google Scholar] [CrossRef]
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced Graphene Oxide Today. J. Mater. Chem. C 2020, 8, 1198–1224. [Google Scholar] [CrossRef]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Zhao, Y.; Fu, Y.; Hu, B.; Lü, C. Quaternized Graphene Oxide Modified Ionic Cross-Linked Sulfonated Polymer Electrolyte Composite Proton Exchange Membranes with Enhanced Properties. Solid State Ion. 2016, 294, 43–53. [Google Scholar] [CrossRef]
- Zarrin, H.; Fu, J.; Jiang, G.; Yoo, S.; Lenos, J.; Fowler, M.; Chen, Z. Quaternized Graphene Oxide Nanocomposites as Fast Hydroxide Conductors. ACS Nano 2015, 9, 2028–2037. [Google Scholar] [CrossRef]
- Das, G.; Park, B.J.; Kim, J.; Kang, D.; Yoon, H.H. Quaternized Cellulose and Graphene Oxide Crosslinked Polyphenylene Oxide Based Anion Exchange Membrane. Sci. Rep. 2019, 9, 9572. [Google Scholar] [CrossRef]
- Manjula, N.; Balaji, R.; Ramya, K.; Rajalakshmi, N. Hydrogen Production by Electrochemical Methanol Reformation Using Alkaline Anion Exchange Membrane Based Cell. Int. J. Hydrogen Energy 2020, 45, 10304–10312. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, S.; Wan, R.; Yang, Y.; He, R. Functionalized Graphene Oxide Cross-Linked Poly(2,6-Dimethyl-1,4-Phenylene Oxide)-Based Anion Exchange Membranes with Superior Ionic Conductivity. J. Power Sources 2022, 517, 230720. [Google Scholar] [CrossRef]
- Karakoti, M.; Im, K.S.; Jang, H.S.; Park, J.H.; Lee, D.J.; Kwon, H.W.; Nam, S.Y. Investigating the Impact of Functionalized Graphene Oxide on the Properties and Performance of Poly(2,6-Dimethyl-1,4-Phenylene Oxide)-Based Anion Exchange Membranes for Fuel Cells. Electrochim. Acta 2025, 520, 145868. [Google Scholar] [CrossRef]
- Shin, D.W.; Guiver, M.D.; Lee, Y.M. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. Chem. Rev. 2017, 117, 4759–4805. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhu, X.; Jin, C. Development of a High-Performance Anion Exchange Membrane Using Poly(Isatin Biphenylene) with Flexible Heterocyclic Quaternary Ammonium Cations for Alkaline Fuel Cells. J. Mater. Chem. A 2019, 7, 6883–6893. [Google Scholar] [CrossRef]
- Du, X.; Zhang, H.; Yuan, Y.; Wang, Z. Constructing Micro-Phase Separation Structure to Improve the Performance of Anion-Exchange Membrane Based on Poly(Aryl Piperidinium) Cross-Linked Membranes. J. Power Sources 2021, 487, 229429. [Google Scholar] [CrossRef]
- Gu, Y.; Dong, T.; Zhang, Y.; Li, Z.; Wang, Y.; Gao, J.; Lei, Y.; Wu, J.; Wang, Y.; Wang, Z. Microphase Separation Structures Facilitated by Dipole Molecules and Hydrogen Bonding in Poly (Biphenyl Piperidine-Isatin) Anion Exchange Membranes. J. Power Sources 2024, 592, 233918. [Google Scholar] [CrossRef]
- Yue, X.B.; Liu, Y.J.; Lai, L.W.; Wang, X.H.; Peng, H.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Regulating the Microphase Separation Structure of Poly(Aryl-Alkylene) Anion Exchange Membranes through the Spatial Structure of the Main Chain. Int. J. Hydrogen Energy 2024, 62, 186–196. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, C.; Yi, G.; Jiang, Z.; Su, X.; Liu, Q.; Lee, J.Y.; Lee, S.Y.; Lee, Y.M.; Zhang, Q. Durable Multiblock Poly(Biphenyl Alkylene) Anion Exchange Membranes with Microphase Separation for Hydrogen Energy Conversion. Angew. Chem. Int. Ed. 2023, 62, e202311509. [Google Scholar] [CrossRef]
- Yang, B.; Cunman, Z. Progress in Constructing High-Performance Anion Exchange Membrane: Molecular Design, Microphase Controllability and In-Device Property. Chem. Eng. J. 2023, 457, 141094. [Google Scholar] [CrossRef]
- Xu, F.; Su, Y.; Lin, B. Progress of Alkaline Anion Exchange Membranes for Fuel Cells: The Effects of Micro-Phase Separation. Front. Mater. 2020, 7, 4. [Google Scholar] [CrossRef]
- Wang, X.; Lin, C.; Gao, Y.; Lammertink, R.G.H. Anion Exchange Membranes with Twisted Poly(Terphenylene) Backbone: Effect of the N-Cyclic Cations. J. Membr. Sci. 2021, 635, 119525. [Google Scholar] [CrossRef]
- Lee, A.Y.; Yang, K.; Anh, N.D.; Park, C.; Lee, S.M.; Lee, T.G.; Jeong, M.S. Raman Study of D* Band in Graphene Oxide and Its Correlation with Reduction. Appl. Surf. Sci. 2021, 536, 147990. [Google Scholar] [CrossRef]
- He, H.; Chen, Q.; Fu, R.; Liu, Z.; Ge, L.; Xu, T. Side Chain Crosslinked Anion Exchange Membrane for Acid Concentration by Electrodialysis. Chem. Bio. Eng. 2024, 1, 647–657. [Google Scholar] [CrossRef]
- Carboni, N.; Mazzapioda, L.; Caprì, A.; Gatto, I.; Carbone, A.; Baglio, V.; Navarra, M.A. Composite Anion Exchange Membranes Based on Graphene Oxide for Water Electrolyzer Applications. Electrochim. Acta 2024, 486, 144090. [Google Scholar] [CrossRef]
- Wang, X.; Thomas, A.M.; Lammertink, R.G.H. Dimensionally Stable Anion Exchange Membranes Based on Macromolecular-Cross-Linked Poly(Arylene Piperidinium) for Water Electrolysis. ACS Appl. Mater. Interfaces 2024, 16, 2593–2605. [Google Scholar] [CrossRef]
- Lee, J.H.; Yeon, J.S.; Kim, J.; Park, J.H.; Yoo, S.S.; Hong, S.; Kim, M.; Park, M.J.; Park, H.S.; Yoo, P.J. Accelerated Li-Ion Transport through a Zwitterion-Anchored Separator for High-Performance Li–S Batteries. J. Mater. Chem. A 2021, 9, 25463–25473. [Google Scholar] [CrossRef]
- Hiesgen, R.; Morawietz, T.; Handl, M.; Corasaniti, M.; Friedrich, K.A. Atomic Force Microscopy on Cross Sections of Fuel Cell Membranes, Electrodes, and Membrane Electrode Assemblies. Electrochim. Acta 2015, 162, 86–99. [Google Scholar] [CrossRef]
- Kardi, S.N.; Ibrahim, N.; Rashid, N.A.A.; Darzi, G.N. Investigating Effect of Proton-Exchange Membrane on New Air-Cathode Single-Chamber Microbial Fuel Cell Configuration for Bioenergy Recovery from Azorubine Dye Degradation. Environ. Sci. Pollut. Res. 2019, 26, 21201–21215. [Google Scholar] [CrossRef] [PubMed]
- Gordano, A. AFM Analysis of Polymeric Membranes Fouling. IgMin Res 2024, 2, 399–405. [Google Scholar] [CrossRef]
- Boussu, K.; Van Der Bruggen, B.; Volodin, A.; Snauwaert, J.; Van Haesendonck, C.; Vandecasteele, C. Roughness and Hydrophobicity Studies of Nanofiltration Membranes Using Different Modes of AFM. J. Colloid Interface Sci. 2005, 286, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Song, W.; Sun, L.; Yang, C.; Zhang, X.; Wu, M.; Wu, L.; Ge, X.; Xu, T. Anion Exchange Membrane with Pendulous Piperidinium on Twisted All-Carbon Backbone for Fuel Cell. Membranes 2024, 14, 121. [Google Scholar] [CrossRef]
- Ozawa, Y.; Iwataki, T.; Uchida, M.; Kakinuma, K.; Miyatake, K. The Effect of the Piperidinium Structure on Anion-Exchange Membranes for Applications in Alkaline Water Electrolysis Cells. J. Mater. Chem. A 2023, 11, 19925–19935. [Google Scholar] [CrossRef]
- Wu, X.; Chen, N.; Hu, C.; Klok, H.; Lee, Y.M.; Hu, X. Fluorinated Poly(Aryl Piperidinium) Membranes for Anion Exchange Membrane Fuel Cells. Adv. Mater. 2023, 35, 2210432. [Google Scholar] [CrossRef] [PubMed]
- Mayadevi, T.S.; Sung, S.; Varghese, L.; Kim, T.-H. Poly(Meta/Para-Terphenylene-Methyl Piperidinium)-Based Anion Exchange Membranes: The Effect of Backbone Structure in AEMFC Application. Membranes 2020, 10, 329. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lammertink, R.G.H. Dimensionally Stable Multication-Crosslinked Poly(Arylene Piperidinium) Membranes for Water Electrolysis. J. Mater. Chem. A 2022, 10, 8401–8412. [Google Scholar] [CrossRef]
- Mothupi, M.L.; Msomi, P.F. Quaternized Polyethersulfone (QPES) Membrane with Imidazole Functionalized Graphene Oxide (ImGO) for Alkaline Anion Exchange Fuel Cell Application. Sustainability 2023, 15, 2209. [Google Scholar] [CrossRef]
- Arunkumar, I.; Kim, A.R.; Lee, S.H.; Yoo, D.J. Enhanced Fumion Nanocomposite Membranes Embedded with Graphene Oxide as a Promising Anion Exchange Membrane for Fuel Cell Application. Int. J. Hydrogen Energy 2024, 52, 139–153. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, W.; Xu, K.; Li, M.; Fan, M.; Wang, K. Preparation of Anion Exchange Membrane with Branch Polyethyleneimine as Main Skeleton Component. Mater. Des. 2018, 160, 698–707. [Google Scholar] [CrossRef]
- Lim, J.H.; Hou, J.; Chun, J.; Lee, R.D.; Yun, J.; Jung, J.; Lee, C.H. Importance of Hydroxide Ion Conductivity Measurement for Alkaline Water Electrolysis Membranes. Membranes 2022, 12, 556. [Google Scholar] [CrossRef]
- Ziv, N.; Dekel, D.R. A Practical Method for Measuring the True Hydroxide Conductivity of Anion Exchange Membranes. Electrochem. Commun. 2018, 88, 109–113. [Google Scholar] [CrossRef]
- Zhao, Y.; Duan, L. Research on Measuring Pure Membrane Electrical Resistance under the Effects of Salinity Gradients and Diffusion Boundary Layer and Double Layer Resistances. Membranes 2022, 12, 816. [Google Scholar] [CrossRef]
- Zhang, D.; Ye, N.; Chen, S.; Wan, R.; Yang, Y.; He, R. Enhancing Properties of Poly(2,6-Dimethyl-1,4-Phenylene Oxide)-Based Anion Exchange Membranes with 5-Mercaptotetrazole Modified Graphene Oxides. Renew. Energy 2020, 160, 250–260. [Google Scholar] [CrossRef]
- Kahfi, A.; Kusumawati, N.; Setiarso, P.; Muslim, S.; Cahyani, S.A.; Zakiyah, N. Study in the Impact of Quaternized Graphene Oxide (QGO) Composition as Modifier on the Chemical, Physical, Mechanical, and Performance Properties of Polyvinylidene Fluoride (PVDF)-Based Nanocomposite Membrane. CST 2024, 9, 30–37. [Google Scholar] [CrossRef]
- Yang, Y.; Li, P.; Zheng, X.; Sun, W.; Dou, S.X.; Ma, T.; Pan, H. Anion-Exchange Membrane Water Electrolyzers and Fuel Cells. Chem. Soc. Rev. 2022, 51, 9620–9693. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, C.; Varcoe, J.R.; Poynton, S.D.; Xu, T.; Fu, Y. Novel Silica/Poly(2,6-Dimethyl-1,4-Phenylene Oxide) Hybrid Anion-Exchange Membranes for Alkaline Fuel Cells: Effect of Silica Content and the Single Cell Performance. J. Power Sources 2010, 195, 3069–3076. [Google Scholar] [CrossRef]
- Manohar, M.; Kim, D. Enhancement of Alkaline Conductivity and Chemical Stability of Quaternized Poly(2,6-Dimethyl-1,4-Phenylene Oxide) Alkaline Electrolyte Membrane by Mild Temperature Benzyl Bromination. RSC Adv. 2020, 10, 36704–36712. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, K.H.; Chu, J.Y.; Kim, A.R.; Yoo, D.J. Enhanced Hydroxide Conductivity and Dimensional Stability with Blended Membranes Containing Hyperbranched PAES/Linear PPO as Anion Exchange Membranes. Polymers 2020, 12, 3011. [Google Scholar] [CrossRef]
- Lee, K.H.; Chu, J.Y. Remarkable Conductivity and Durability of Anion Exchange Membrane with Poly(Fluorene-Terphenyl Piperidinium) Incorporating Graphene Oxide. Int. J. Energy Res. 2025, 2025, 4352185. [Google Scholar] [CrossRef]
- Goel, P.; Mandal, P.; Bhuvanesh, E.; Shahi, V.K.; Chattopadhyay, S. Temperature Resistant Cross-Linked Brominated Poly Phenylene Oxide-Functionalized Graphene Oxide Nanocomposite Anion Exchange Membrane for Desalination. Sep. Purif. Technol. 2021, 255, 117730. [Google Scholar] [CrossRef]
Membrane | Sa (nm) | Sq (nm) | Sz (nm) |
---|---|---|---|
PTPiQA | 4.51 | 5.38 | 20.80 |
PTPiQA-QGO-0.1% | 0.24 | 0.30 | 2.12 |
PTPiQA-QGO-0.3% | 0.28 | 0.41 | 2.41 |
PTPiQA-QGO-0.5% | 0.57 | 0.92 | 3.28 |
PTPiQA-QGO-0.7% | 0.52 | 0.67 | 4.07 |
Membrane | (WU) (%) | (SR) (%) | (IEC) (meq g−1) | OH− Conductivity at 20 °C (mS cm−1) |
---|---|---|---|---|
PTPiQA | 46.4 ± 4.77 | 19.2 ± 0.42 | 2.48 ± 0.11 | 17.28 ± 1.86 |
PTPiQA-QGO-0.1% | 48.7 ± 4.37 | 20.7 ± 1.5 | 2.51 ± 0.18 | 22.49 ± 1.45 |
PTPiQA-QGO-0.3% | 50.3 ± 3.73 | 22.4 ± 2.85 | 2.57 ± 0.09 | 71.56 ± 4.6 |
PTPiQA-QGO-0.5% | 53.2 ± 4.62 | 23.1 ± 2.3 | 2.76 ± 0.19 | 13.29 ± 0.92 |
PTPiQA-QGO-0.7% | 55.7 ± 3.03 | 24.3 ± 2.06 | 2.42 ± 0.1 | 13.63 ± 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palanivel, T.; Elwan, H.A.; Mamlouk, M.; Doherty, S.; Pollet, B.G. Composite Anion Exchange Membranes Based on Functionalized Graphene Oxide and Poly(Terphenylene Piperidinium) for Application in Water Electrolysis and Fuel Cells. Processes 2025, 13, 3047. https://doi.org/10.3390/pr13103047
Palanivel T, Elwan HA, Mamlouk M, Doherty S, Pollet BG. Composite Anion Exchange Membranes Based on Functionalized Graphene Oxide and Poly(Terphenylene Piperidinium) for Application in Water Electrolysis and Fuel Cells. Processes. 2025; 13(10):3047. https://doi.org/10.3390/pr13103047
Chicago/Turabian StylePalanivel, Tamilazhagan, Hosni Ahmed Elwan, Mohamed Mamlouk, Simon Doherty, and Bruno G. Pollet. 2025. "Composite Anion Exchange Membranes Based on Functionalized Graphene Oxide and Poly(Terphenylene Piperidinium) for Application in Water Electrolysis and Fuel Cells" Processes 13, no. 10: 3047. https://doi.org/10.3390/pr13103047
APA StylePalanivel, T., Elwan, H. A., Mamlouk, M., Doherty, S., & Pollet, B. G. (2025). Composite Anion Exchange Membranes Based on Functionalized Graphene Oxide and Poly(Terphenylene Piperidinium) for Application in Water Electrolysis and Fuel Cells. Processes, 13(10), 3047. https://doi.org/10.3390/pr13103047