Data-Driven Perovskite Design via High-Throughput Simulation and Machine Learning
Abstract
1. Introduction
2. Methods for Perovskite Material Screening
2.1. Current Databases for Perovskite Materials
2.2. Applications of Molecular Simulation in Perovskites
2.3. Application of DFT in Perovskite
3. ML–Assisted Screening of Perovskite Materials
3.1. Data Collection and Preprocessing
3.2. Model Selection and Evaluation
3.3. Model Interpretation and Validation
4. Applications of High-Throughput Simulation and ML in Perovskite Design
4.1. Structural Formability and Stability of Perovskite Design
4.2. Applications of Perovskites in Photoelectric Effects
4.2.1. Halide and Oxide Perovskite Solar Cells
4.2.2. Formamidinium Lead Triiodide Perovskite Light-Emitting Diodes
4.2.3. Two-Dimensional Metal Halide Perovskite Single-Crystal Photodetectors
4.3. Perovskites as Catalytic Materials
4.3.1. Perovskite Halide Photocatalyst
4.3.2. Perovskite Oxide Electrocatalyst
4.3.3. Perovskite Oxide Chemical Looping Oxygen Carrier
4.4. Applications of Perovskites in Energy Storage
5. Challenges and Future Directions for Applying ML to Perovskite Design
5.1. Bottlenecks and Challenges
- (1)
- Data Scarcity and Low Quality
- (2)
- Model Generalization and Interpretability Gaps
- (3)
- Emphasis on Structure Prediction, Neglect of Fabrication and Application
5.2. Future Directions: Multimodal-Coupled Perovskite Design
6. Conclusions
- Months 0–6—Strengthen HT simulations as reliable ML data
- Months 6–12—Embed physics for interpretability and reliability
- Months 12–24—Multimodal, process-aware, end-to-end workflows
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veldhuis, S.A.; Boix, P.P.; Yantara, N.; Li, M.; Sum, T.C.; Mathews, N.; Mhaisalkar, S.G. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 2016, 28, 6804–6834. [Google Scholar] [CrossRef]
- Emery, A.A.; Wolverton, C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Sci. Data 2017, 4, 170153. [Google Scholar] [CrossRef]
- Du, X.; Damewood, J.K.; Lunger, J.R.; Millan, R.; Yildiz, B.; Li, L.; Gómez-Bombarelli, R. Machine-learning-accelerated simulations to enable automatic surface reconstruction. Nat. Comput. Sci. 2023, 3, 1034–1044. [Google Scholar] [CrossRef]
- Jacobsson, T.J.; Hultqvist, A.; García-Fernández, A.; Anand, A.; Al-Ashouri, A.; Hagfeldt, A.; Crovetto, A.; Abate, A.; Ricciardulli, A.G.; Vijayan, A.; et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 2022, 7, 107–115. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Jacobsson, T.J.; Luo, J. Big data driven perovskite solar cell stability analysis. Nat. Commun. 2022, 13, 7639. [Google Scholar] [CrossRef]
- Aladerah, B.; Alrousan, A.; Obeidat, A.; Al-Sharif, A. Properties of cubic GdAlO3 perovskite under pressure: Density functional theory and Monte Carlo simulations. J. Comput. Electron. 2024, 24, 12. [Google Scholar] [CrossRef]
- Kholmurodov, K.; Ibragimova, S.; Gladishev, P.; Vannikov, A.; Tameev, A.; Zelenyak, T. Molecular Dynamics Simulations of Perovskites: The Effect of Potential Function Representation on Equilibrium Structural Properties. Open J. Phys. Chem. 2015, 5, 110–121. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Ji, K.; Xie, Y.; Li, C. Perovskite-based two-dimensional ferromagnet Sr2RuO4 monolayer. Acta Phys. Sin. 2024, 73, 226101. [Google Scholar] [CrossRef]
- Gu, F.; Li, Q.; Li, S.; Xiao, J. Micro-mechanism of interaction between components of perovskite energetic material ABX3 on structure and sensitivity: DFT study. Appl. Mater. Today 2025, 42, 102593. [Google Scholar] [CrossRef]
- Yin, W.-J.; Shi, T.; Yan, Y. Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber. Appl. Phys. Lett. 2014, 104, 063903. [Google Scholar] [CrossRef]
- Bessa, M.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, D.; Brinson, C.; Chen, W.; Liu, W. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput. Methods Appl. Mech. Eng. 2017, 320, 633–667. [Google Scholar] [CrossRef]
- Hu, T.; Ye, Z.; Wang, Y.; Gao, X.; Sun, Z.; Li, J.L.; Chen, S.; Lian, C.; Xu, Q.; Li, F. Synergistic Effect of H-bond Reconstruction and Interface Regulation for High-Voltage Aqueous Energy Storage. Adv. Energy Mater. 2023, 13, 2300567. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Qu, Z.; Jiang, S.; Liu, Y.; Wu, Z.; Yang, F.; Hu, W.; Xu, Z.; Dai, Y. Accelerating stability of ABX3 perovskites analysis with machine learning. Ceram. Int. 2024, 50, 6250–6258. [Google Scholar] [CrossRef]
- Wan, Z.; Ding, B.; Su, J.; Su, Z.; Li, Z.; Jia, C.; Jiang, Z.; Qin, Q.; Zhang, M.; Shi, J.; et al. Efficient perovskite solar modules with an ultra-long processing window enabled by cooling stabilized intermediate phases. Energy Environ. Sci. 2024, 17, 6302–6313. [Google Scholar] [CrossRef]
- Yang, C.; Chong, X.; Hu, M.; Yu, W.; He, J.; Zhang, Y.; Feng, J.; Zhou, Y.; Wang, L.-W. Accelerating the Discovery of Hybrid Perovskites with Targeted Band Gaps via Interpretable Machine Learning. ACS Appl. Mater. Interfaces 2023, 15, 40419–40427. [Google Scholar] [CrossRef]
- Mishra, P.; Zhang, M.; Kar, M.; Hellgren, M.; Casula, M.; Lenz, B.; Chen, A.; Recatala, J.; Padhy, S.; Trouche, M.; et al. Synthesis of Machine Learning-Predicted Cs2PbSnI6 Double Perovskite Nanocrystals. ACS Nano 2025, 19, 6107–6119. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Sun, Q.; Yin, W.-J. Thermodynamic Stability Trend of Cubic Perovskites. JACS 2017, 139, 14905–14908. [Google Scholar] [CrossRef]
- Shetty, V.; Shedthi, B.S.; Kumaraswamy, J. Predicting the thermodynamic stability of perovskite oxides using multiple machine learning techniques. Mater. Today 2022, 52, 457–461. [Google Scholar] [CrossRef]
- Kundavu, K.; Mondal, S.; Bhattacharya, A. Machine learning the vibrational free energy of perovskites. Mater. Adv. 2023, 4, 4238–4249. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.-E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [PubMed]
- De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinský, M.; Haug, F.-J.; Yum, J.-H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039. [Google Scholar] [CrossRef]
- Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.; Eperon, G.; Grancini, G.; Menelaou, C.; Alcocer, M.; Leijtens, T.; Herz, L.; Petrozza, A.; Snaith, H. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef]
- Bull, K.; He, Y.-H.; Jejjala, V.; Challenger, M. Machine learning CICY threefolds. Phys. Lett. B 2018, 785, 65–72. [Google Scholar] [CrossRef]
- Yan, W.; Liu, Y.; Zang, Y.; Cheng, J.; Wang, Y.; Chu, L.; Tan, X.; Liu, L.; Zhou, P.; Li, W.; et al. Machine learning enabled development of unexplored perovskite solar cells with high efficiency. Nano Energy 2022, 99, 107394. [Google Scholar] [CrossRef]
- Li, Y.; Yao, L.; Huo, X.; Wei, D.; Meng, J.; Dong, J.; Qiao, B.; Zhao, S.; Xu, Z.; Song, D. Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning. RSC Adv. 2021, 11, 15688–15694. [Google Scholar] [CrossRef]
- Zhai, X.; Chen, M. Accelerated Design for Perovskite-Oxide-Based Photocatalysts Using Machine Learning Techniques. Materials 2024, 17, 3026. [Google Scholar] [CrossRef]
- Talapatra, A.; Uberuaga, B.; Stanek, C.; Pilania, G. Band gap predictions of double perovskite oxides using machine learning. Commun. Mater. 2023, 4, 46. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, Y.; Wang, D.; Zhu, Z.; Zhou, P.; Tu, Y.; Yang, G.; Chen, H.; Zang, Y.; Du, J.; et al. Exploration of highly stable and highly efficient new lead-free halide perovskite solar cells by machine learning. Cell Rep. Phys. Sci. 2024, 5, 102321. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.; Krieg, F.; Caputo, R.; Hendon, C.; Yang, R.; Walsh, A.; Kovalenko, M. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed]
- Bretscher, H.; Li, Z.; Xiao, J.; Qiu, D.; Refaely-Abramson, S.; Alexander-Webber, J.; Tanoh, A.; Fan, Y.; Delport, G.; Williams, C.; et al. Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2021, 15, 8780–8789. [Google Scholar] [CrossRef]
- Zhang, L.; Li, N.; Liu, D.; Tao, G.; Xu, W.; Li, M.; Chu, Y.; Cao, C.; Lu, F.; Hao, C.; et al. Deep Learning for Additive Screening in Perovskite Light-Emitting Diodes. Angew. Chem. Int. Ed. 2022, 61, e202209337. [Google Scholar] [CrossRef] [PubMed]
- Rogalski, A.; Hu, W.; Wang, F.; Wang, Y.; Martyniuk, P. Perovskite versus Standard Photodetectors. Materials 2024, 17, 4029. [Google Scholar] [CrossRef]
- Ghimire, S.; Klinke, C. Two-Dimensional halide perovskites: Synthesis, optoelectronic properties, stability, and applications. Nanoscale 2021, 13, 12394–12422. [Google Scholar] [CrossRef]
- Miah, M.; Khandaker, M.; Islam, M.; Alam, M.; Osman, H.; Ullah, M.H. Perovskite materials in X-ray detection and imaging: Recent progress, challenges, and future prospects. RSC Adv. 2024, 14, 6656–6698. [Google Scholar] [CrossRef]
- Pandey, S.V.; Parikh, N.; Kalam, A.; Prochowicz, D.; Satapathi, S.; Akin, S.; Tavakoli, M.M.; Yadav, P. A machine learning framework for predicting device performance in 2D metal halide perovskite photodetector. Sol. Energy 2024, 270, 112399. [Google Scholar] [CrossRef]
- Humayun, M.; Li, Z.; Israr, M.; Khan, A.; Luo, W.; Wang, C.; Shao, Z. Perovskite Type ABO3 Oxides in Photocatalysis, Electrocatalysis, and Solid Oxide Fuel Cells: State of the Art and Future Prospects. Chem. Rev. 2025, 125, 3165–3241. [Google Scholar] [CrossRef]
- Labhasetwar, N.; Govindachetty, S.; Suresh, K.M.; Nilesh, M.; Rohini, K.; Pradeep, D.; Grasset, F. Perovskite-type catalytic materials for environmental applications. Sci. Technol. Adv. Mater. 2015, 16, 036002. [Google Scholar] [CrossRef]
- Bresolin, B.-M.; Park, Y.; Bahnemann, D.W. Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts 2020, 10, 709. [Google Scholar] [CrossRef]
- Subha, N.; Sankar, A.R.; Navaneethakrishnan, S.; Lavanya, J.; Aakash, M. Perovskite-based Z-scheme photocatalytic system for hydrogen production. Catal. Commun. 2024, 187, 106903. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, L.; Bai, Y.; Chen, Z.J.; Zheng, Q.; Shi, Y.Y.; Zhang, C.; Jiang, G.C.; Li, Z.Q. Mn-Doped Perovskite Nanocrystals for Photocatalytic CO2 Reduction: Insight into the Role of the Charge Carriers with Prolonged Lifetime. Sol. RRL 2022, 6, 2200294. [Google Scholar] [CrossRef]
- Masri, M.; Girisha, K.B.; Hezam, A.; Alkanad, K.; Prashantha, K.; Manjunath, S.H.; Udayabhanu; Masri, F.; Qahtan, T.F.; Byrappa, K. Metal halide perovskite-based photocatalysts for organic pollutants degradation: Advances, challenges, and future directions. Colloid Surf. A 2024, 687, 133387. [Google Scholar] [CrossRef]
- Biswas, M.; Desai, R.; Mannodi-Kanakkithodi, A. Screening of novel halide perovskites for photocatalytic water splitting using multi-fidelity machine learning. PCCP 2024, 26, 23177–23188. [Google Scholar] [CrossRef] [PubMed]
- Gazda, M.; Jasinski, P.; Kusz, B.; Bochentyn, B.; Gdula-Kasica, K.; Lendze, T.; Lewandowska-Iwaniak, W.; Mielewczyk-Gryn, A.; Molin, S. Perovskites in Solid Oxide Fuel Cells. Solid State Phenom. 2011, 183, 65–70. [Google Scholar] [CrossRef]
- Kim, D.; Oh, L.S.; Park, J.H.; Kim, H.J.; Lee, S.G.Y.; Lim, E. Perovskite-based electrocatalysts for oxygen evolution reaction in alkaline media: A mini review. Front. Chem. 2022, 10, 1024865. [Google Scholar] [CrossRef]
- Chen, J.Y.; Gao, X.; Chen, X.D.; Zhen, Z.; Chen, Y.; Zeng, X.T.; Cui, L.F. Recent advances of perovskite oxide-based cathodes in solid oxide electrolysis cells for CO2 electroreduction. Mater. Today Phys. 2023, 38, 101237. [Google Scholar] [CrossRef]
- Li, Z.; Achenie, L.E.K.; Xin, H. An Adaptive Machine Learning Strategy for Accelerating Discovery of Perovskite Electrocatalysts. ACS Catal. 2020, 10, 4377–4384. [Google Scholar] [CrossRef]
- Jiang, C.; He, H.Y.; Guo, H.Q.; Zhang, X.X.; Han, Q.Y.; Weng, Y.H.; Fu, X.Z.; Zhu, Y.L.; Yan, N.; Tu, X.; et al. Transfer learning guided discovery of efficient perovskite oxide for alkaline water oxidation. Nat. Commun. 2024, 15, 6301. [Google Scholar] [CrossRef]
- Li, Z.; Mao, X.; Feng, D.; Li, M.; Xu, X.; Luo, Y.; Zhuang, L.; Lin, R.; Zhu, T.; Liang, F.; et al. Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures. Nat. Commun. 2024, 15, 9318. [Google Scholar] [CrossRef]
- Jacobs, R.; Liu, J.; Abernathy, H.; Morgan, D. Machine Learning Design of Perovskite Catalytic Properties. Adv. Energy Mater. 2024, 14, 2303684. [Google Scholar] [CrossRef]
- Dawa, T.; Sajjadi, B. Exploring the potential of perovskite structures for chemical looping technology: A state-of-the-art review. Fuel Process. Technol. 2024, 253, 108022. [Google Scholar] [CrossRef]
- Ahmad, A.; Al Mamun, M.A.; Al-Mamun, M.; Huque, S.; Ismail, M. LFO Perovskites as Oxygen Carriers for Chemical Looping Oxygen Uncoupling (CLOU). J. Therm. Anal. Calorim. 2022, 147, 6605–6613. [Google Scholar] [CrossRef]
- Dou, J.; Krzystowczyk, E.; Mishra, A.; Liu, X.B.; Li, F.X. Perovskite Promoted Mixed Cobalt-Iron Oxides for Enhanced Chemical Looping Air Separation. ACS Sustain. Chem. Eng. 2018, 6, 15528–15540. [Google Scholar] [CrossRef]
- Ramos, A.E.; Maiti, D.; Daza, Y.A.; Kuhn, J.N.; Bhethanabotla, V.R. Co, Fe, and Mn in La-perovskite oxides for low temperature thermochemical CO2 conversion. Catal. Today 2019, 338, 52–59. [Google Scholar] [CrossRef]
- Galinsky, N.; Mishra, A.; Zhang, J.; Li, F.X. Ca1−xAxMnO3 (A = Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU). Appl. Energy 2015, 157, 358–367. [Google Scholar] [CrossRef]
- Wang, X.J.; Gao, Y.F.; Krzystowczyk, E.; Iftikhar, S.; Dou, J.; Cai, R.X.; Wang, H.Y.; Ruan, C.Y.; Ye, S.; Li, F.X. High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications. Energy Environ. Sci. 2022, 15, 1512–1528. [Google Scholar] [CrossRef]
- Ramazani, A.; Duell, B.A.; Popczun, E.J.; Natesakhawat, S.; Nandi, T.; Lekse, J.W.; Duan, Y.H. High-throughput ab initio calculations and machine learning to discover SrFeO3-6-based perovskites for chemical-looping applications. Cell Rep. Phys. Sci. 2024, 5, 16. [Google Scholar] [CrossRef]
- Duell, B.A.; Ramazani, A.; Natesakhawat, S.; Popczun, E.J.; Lekse, J.W.; Duan, Y. Targeted Chemical Looping Materials Discovery by an Inverse Design. Adv. Intell. Syst. 2025, 7, 2401118. [Google Scholar] [CrossRef]
- Cai, R.; Bektas, H.; Wang, X.; McClintock, K.; Teague, L.; Yang, K.; Li, F. Accelerated Perovskite Oxide Development for Thermochemical Energy Storage by a High-Throughput Combinatorial Approach. Adv. Energy Mater. 2023, 13, 2203833. [Google Scholar] [CrossRef]
- Sotoudeh, M.; Baumgart, S.; Dillenz, M.; Döhn, J.; Forster-Tonigold, K.; Helmbrecht, K.; Stottmeister, D.; Gross, A. Ion Mobility in Crystalline Battery Materials. Adv. Energy Mater. 2023, 14, 2302550. [Google Scholar] [CrossRef]
- Dawson, J.; Famprikis, T.; Johnston, K. Anti-Perovskites for Solid-State Batteries: Recent Developments, Current Challenges and Future Prospects. J. Mater. Chem. A 2021, 9, 18746–18772. [Google Scholar] [CrossRef]
- Ha, T.; Su, R.; Xing, J.; Zhang, Q.; Xiong, Q. Metal halide perovskite nanomaterials: Synthesis and applications. Chem. Sci. 2016, 8, 2522–2536. [Google Scholar] [CrossRef]
- Kim, K.; Siegel, D. Machine Learning Reveals Factors that Control Ion Mobility in Anti-Perovskite Solid Electrolytes. J. Mater. Chem. A 2022, 10, 15169–15182. [Google Scholar] [CrossRef]
- Xiang, S.; Lu, S.; Li, J.; Xie, K.; Zhu, R.; Wang, H.; Huang, K.; Li, C.; Wu, J.; Chen, S.; et al. Ionic Conductivity Study of Antiperovskite Solid-State Electrolytes Based on Interpretable Machine Learning. ACS Appl. Energy Mater. 2025, 8, 1620–1628. [Google Scholar] [CrossRef]
- Zhang, Z.; Chu, J.; Zhang, H.; Liu, X.; He, M. Mining ionic conductivity descriptors of antiperovskite electrolytes for all-solid-state batteries via machine learning. J. Energy Storage 2024, 75, 109714. [Google Scholar] [CrossRef]
- Jo, B.; Chen, W.; Jung, H. Comprehensive review of advances in machine-learning-driven optimization and characterization of perovskite materials for photovoltaic devices. J. Energy Chem. 2024, 101, 298–323. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Qiangqiang, Z.; Ullah, A.; Zhong, X.; Wei, Y.; Zhang, C.; Xu, R.; De Wolf, S.; Wang, K. Machine-Learning-Assisted Design of Buried- Interface Engineering Materials for High- Efficiency and Stable Perovskite Solar Cells. ACS Energy Lett. 2024, 9, 5924–5934. [Google Scholar] [CrossRef]
- Yang, C.; Hu, W.; Liu, J.; Han, C.; Gao, Q.; Mei, A.; Zhou, Y.; Guo, F.; Han, H. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. Light. Sci. Appl. 2024, 13, 227. [Google Scholar] [CrossRef]
- Whitaker, J.B.; Kim, D.H.; Larson, B.W.; Zhang, F.; Berry, J.J.; van Hest, M.F.A.M.; Zhu, K. Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels 2018, 2, 2442–2449. [Google Scholar] [CrossRef]
- Milot, R.; Eperon, G.; Snaith, H.; Johnston, M.; Herz, L. Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films. Adv. Funct. Mater. 2015, 25, 6218–6227. [Google Scholar] [CrossRef]
- Rong, Y.; Hou, X.; Hu, Y.; Mei, A.; Liu, L.; Wang, P.; Han, H. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun. 2017, 8, 14555. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Antai, Y.; Zhong, C.; Zhu, X.; Meng, H.; Feng, Z.; Tang, J.; Yang, C.; Zhang, J.; Liu, J.; et al. Integration of Microstructural Image Data into Machine Learning Models for Advancing High-Performance Perovskite Solar Cell Design. ACS Energy Lett. 2025, 10, 1884–1891. [Google Scholar] [CrossRef]
- Yao, M.; Ji, J.; Li, X.; Zhu, Z.; Ge, J.-Y.; Singh, D.J.; Xi, J.; Yang, J.; Zhang, W. MatHub-2d: A database for transport in 2D materials and a demonstration of high-throughput computational screening for high-mobility 2D semiconducting materials. Sci. China Mater. 2023, 66, 2768–2776. [Google Scholar] [CrossRef]
- Thomas, J.C.; Chen, W.; Xiong, Y.; Barker, B.A.; Zhou, J.; Chen, W.; Rossi, A.; Kelly, N.; Yu, Z.; Zhou, D.; et al. A substitutional quantum defect in WS2 discovered by high-throughput computational screening and fabricated by site-selective STM manipulation. Nat. Commun. 2024, 15, 3556. [Google Scholar] [CrossRef]
- Li, J.-B.; Jiang, Z.-K.; Wang, R.; Zhao, J.-Z.; Wang, R. Ferroelectric order in hybrid organic-inorganic perovskite NH4PbI3 with non-polar molecules and small tolerance factor. npj Comput. Mater. 2023, 9, 62. [Google Scholar] [CrossRef]
- Li, H.; Yang, J.; Yao, J.; Sheng, C. Digitized material design and performance prediction driven by high-throughput computing. Front. Mater. 2025, 12, 9439. [Google Scholar] [CrossRef]
- Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J.P.; Kornbluth, M.; Molinari, N.; Smidt, T.E.; Kozinsky, B. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 2022, 13, 2453. [Google Scholar] [CrossRef]
- Lan, T.; Wang, H.; An, Q. Enabling high throughput deep reinforcement learning with first principles to investigate catalytic reaction mechanisms. Nat. Commun. 2024, 15, 6281. [Google Scholar] [CrossRef]
- Lu, S.; Zhou, Q.; Ouyang, Y.; Guo, Y.; Li, Q.; Wang, J. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 2018, 9, 3405. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Rolston, N.; Flick, A.C.; Colburn, T.W.; Ren, Z.; Dauskardt, R.H.; Buonassisi, T. Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule 2022, 6, 834–849. [Google Scholar] [CrossRef]
- Yu, R.; Zeng, W.; Zhou, L.; Van Tendeloo, G.; Mai, L.; Yao, Z.; Wu, J. Layer-by-layer delithiation during lattice collapse as the origin of planar gliding and microcracking in Ni-rich cathodes. Cell Rep. Phys. Sci. 2023, 4, 101480. [Google Scholar] [CrossRef]
- Li, R.; Yao, L.; Sun, J.; Sun, Z.; Zhang, K.; Xue, J.; Wang, R. Challenges and perspectives for the perovskite module research. Chem 2025, 11, 102542. [Google Scholar] [CrossRef]
- Graupner, D.R.; Kilin, D.S. Nonadiabatic Dynamics in Two-Dimensional Perovskites Assisted by Machine Learned Force Fields. J. Phys. Chem. C 2024, 128, 3935–3944. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Hu, X.-M.; Xiang, Y.; Li, C.-F.; Guo, G.-C.; Tura Brugués, J.; Gong, Q.; He, Q.; Liu, B.-H. Randomness versus Nonlocality in Multiple-Input and Multiple-Output Quantum Scenario. Phys. Rev. Lett. 2025, 134, 090201. [Google Scholar] [CrossRef] [PubMed]






| Descriptor | Model | Dataset | Metric | Found Candidates |
|---|---|---|---|---|
| CCD PW Anion polarizability | AdaBoost ERTR | 603 DFT migration barriers | Vacancy RMSE (71 meV) Interstitial RMSE (46 meV) | Decreasing path distance Increasing width Highly polarizable anions |
| A-site electronegativity A-site density A-site ionic radius | ERT | 403 sets of experimental SSE data 149,652 types of virtual AP materials | Classification accuracy (94%) MAE (0.57) R2 (0.76) ROC_AUC (0.946) | 16,807 superionic conductors |
| The ratio of tolerance factor to atomic packing factor (t/η) | Symbolic regression | 106 experimental samples | RMSP (0.8) | Li6NClBr2 Li6NBrBr2 Li6NBrI2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sun, D.; Zhao, B.; Zhu, T.; Liu, C.; Xu, Z.; Zhou, T.; Xu, C. Data-Driven Perovskite Design via High-Throughput Simulation and Machine Learning. Processes 2025, 13, 3049. https://doi.org/10.3390/pr13103049
Wang Y, Sun D, Zhao B, Zhu T, Liu C, Xu Z, Zhou T, Xu C. Data-Driven Perovskite Design via High-Throughput Simulation and Machine Learning. Processes. 2025; 13(10):3049. https://doi.org/10.3390/pr13103049
Chicago/Turabian StyleWang, Yidi, Dan Sun, Bei Zhao, Tianyu Zhu, Chengcheng Liu, Zixuan Xu, Tianhang Zhou, and Chunming Xu. 2025. "Data-Driven Perovskite Design via High-Throughput Simulation and Machine Learning" Processes 13, no. 10: 3049. https://doi.org/10.3390/pr13103049
APA StyleWang, Y., Sun, D., Zhao, B., Zhu, T., Liu, C., Xu, Z., Zhou, T., & Xu, C. (2025). Data-Driven Perovskite Design via High-Throughput Simulation and Machine Learning. Processes, 13(10), 3049. https://doi.org/10.3390/pr13103049
