Deep-Frying Performance of Palm Olein and Sunflower Oil Variants: Antioxidant-Enriched and High-Oleic Oil as Potential Substitutes
Abstract
1. Introduction
2. Materials and Methods
2.1. Oil Samples
2.2. Oil Identification
2.3. Analysis of Oil Quality and Stability
Rancimat Test
2.4. Sensory Evaluation
2.5. Oil Transparency
2.6. Statistics
3. Results and Discussion
3.1. Sample Identification
3.2. Oil Quality and Oxidative Stability
3.3. Sensory Characteristics
3.4. Hierarchical Cluster Analysis (HCA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-MCPD | 3-monochloropropane-1,2-diol |
RSO | refined sunflower oil |
TBHQ | tert-butylhydroquinone |
RE | rosemary extract |
HOSO | high-oleic sunflower oil |
PO | palm olein |
AV | acid value |
PV | peroxide value |
p-AnV | anisidine value |
TOTOX | total oxidation index |
CD | conjugated dienes |
CT | conjugated trienes |
IP | induction period |
IV | iodine value |
RI | refractive index |
HCA | hierarchical cluster analysis |
References
- Romano, R.; Filosa, G.; Pizzolongo, F.; Durazzo, A.; Lucarini, M.; Severino, P.; Souto, E.B.; Santini, A. Oxidative stability of high oleic sunflower oil during deep-frying process of purple potato Purple Majesty. Heliyon 2021, 7, e06294. [Google Scholar] [CrossRef]
- Luo, X.; Hu, B.; Jia, C.; Liu, R.; Rong, J.; Zhao, S.; Niu, M.; Xu, Y.; Yin, T.; You, J. Study by means of 1H nuclear magnetic resonance of the oxidation process in high oleic sunflower oil and palm oil during deep-frying of fish cakes. Food Res. Int. 2024, 179, 113942. [Google Scholar] [CrossRef] [PubMed]
- Álvarez Graña, S.; Abarquero, D.; Claro, J.; Combarros-Fuertes, P.; Fresno, J.M.; Tornadijo, M.E. Behaviour of sunflower (Helianthus annuus L.) oil and high oleic sunflower oil during the frying of churros. Food Chem. Adv. 2025, 6, 100899. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Chemistry of deep-fat frying oils. J. Food Sci. 2007, 72, R77–R86. [Google Scholar] [CrossRef]
- Manzo, N.; Santini, A.; Pizzolongo, F.; Aiello, A.; Romano, R. Effects of α-tocopherol and oleic acid content in sunflower oil subjected to discontinuous and prolonged frying process. Prog. Nutr. 2019, 21, 686–692. [Google Scholar]
- Gertz, C.; Aladedunye, F.; Matthäus, B. A new analytical and statistical approach to predict the sensory properties of deep frying fats and oils to determine the point of discard during processing. Eur. J. Lipid Sci. Technol. 2017, 119, 1600393. [Google Scholar] [CrossRef]
- Patil, R.S.; Waghmare, J.; Annapure, U. Comparative assessment of the frying performance of palm olein and sunflower oil during deep-fat frying of Indian battered food products. J. Agric. Food Res. 2023, 14, 100778. [Google Scholar] [CrossRef]
- Poudel, B.; Kusma, R. Study on the frying practices, conditions and the quality of frying oils used by eateries in Tokha municipality. Appl. Food Res. 2025, 5, 101312. [Google Scholar] [CrossRef]
- Nieto, G.; Lorenzo, J.M. Plant source: Vegetable oils. In Food Lipids; Elsevier: Amsterdam, The Netherlands, 2022; pp. 69–85. [Google Scholar]
- Mazumdar, S.; Zohra, F.T.; Shimul, I.M.; Lima, R.A.; Khan, T.N.; Hasan, M.R.; Khuku, T.K.; Hasan, M.S.; Hasan, A.J.; Biswas, A.; et al. Effects of frying practice patterns on quality and safety of vegetable oils: A survey and laboratory analysis-based study in Bangladesh. Int. J. Gastron. Food Sci. 2025, 41, 101270. [Google Scholar] [CrossRef]
- GadAllah, A.M.; Mohamed, M.A.; Azab, M.N. Deep-frying palm olein oil-fried street falafel induces testicular toxicity in rats. Toxicol. Rep. 2023, 11, 233–240. [Google Scholar] [CrossRef]
- EFSA. Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. 2016, 14, 4426. [Google Scholar]
- Wong, Y.H.; Goh, K.M.; Nyam, K.L.; Nehdi, I.A.; Sbihi, H.M.; Tan, C.P. Effects of natural and synthetic antioxidants on changes in 3-MCPD esters and glycidyl ester in palm olein during deep-fat frying. Food Control 2019, 96, 488–493. [Google Scholar] [CrossRef]
- Lužaić, T.; Romanić, R.; Grahovac, N.; Jocić, S.; Cvejić, S.; Hladni, N.; Pezo, L. Prediction of mechanical extraction oil yield of new sunflower hybrids—Artificial neural network model. J. Sci. Food Agric. 2021, 101, 5827–5833. [Google Scholar] [CrossRef]
- Romanić, R.; Lužaić, T. Dehulling effectiveness of high-oleic and linoleic sunflower oilseeds using air-jet impact dehuller: A comparative study. Food Sci. Technol. 2022, 42, e58620. [Google Scholar] [CrossRef]
- Grahovac, N.; Lužaić, T.; Živančev, D.; Stojanović, Z.; Đurović, A.; Romanić, R.; Kravić, S.; Miklič, V. Assessing nutritional characteristics and bioactive compound distribution in seeds, oil, and cake from confectionary sunflowers cultivated in Serbia. Foods 2024, 13, 1882. [Google Scholar] [CrossRef] [PubMed]
- Lužaić, T.; Kravić, S.; Stojanović, Z.; Grahovac, N.; Jocić, S.; Cvejić, S.; Pezo, L.; Romanić, R. Investigation of oxidative characteristics, fatty acid composition and bioactive compounds content in cold pressed oils of sunflower grown in Serbia and Argentina. Heliyon 2023, 9, e18201. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M. Antioxidant activity of seafennel (Crithmum maritimum L.) essential oil and rose (Rosa canina) extract on natural olive oil. Acta Aliment. 2000, 29, 377–384. [Google Scholar] [CrossRef]
- Sharma, S.; Cheng, S.F.; Bhattacharya, B.; Chakkaravarthi, S. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends Food Sci. Technol. 2019, 91, 305–318. [Google Scholar] [CrossRef]
- Arabsorkhi, B.; Pourabdollah, E.; Mashadi, M. Investigating the effect of replacing the antioxidants ascorbyl palmitate and tocopherol instead of TBHQ on the shelf life of sunflower oil using temperature accelerated method. Food Chem. Adv. 2023, 2, 100246. [Google Scholar] [CrossRef]
- Ahmed, M.N.; Abourat, K.; Gagour, J.; Sakar, E.H.; Majourhat, K.; Gharby, S. Saffron (Crocus sativus L.) stigmas as a potential natural additive to improve oxidative stability attributes of sunflower (Helianthus annuus L.) oil stored under different conditions. Grain Oil Sci. Technol. 2024, 7, 133–149. [Google Scholar] [CrossRef]
- Moczkowska, M.; Karp, S.; Horbanczuk, O.K.; Hanula, M.; Wyrwisz, J.; Kurek, M.A. Effect of rosemary extract addition on oxidative stability and quality of hemp seed oil. Food Bioprod. Process. 2020, 124, 33–47. [Google Scholar] [CrossRef]
- Yeşilsua, A.F.; Özyurt, G. Oxidative stability of microencapsulated fish oil with rosemary, thyme and laurel extracts: A kinetic assessment. J. Food Eng. 2019, 240, 171–182. [Google Scholar] [CrossRef]
- Ruiz-Aracama, A.; Alberdi-Cedeno, J.; Nieva-Echevarria, B.; Martinez-Yusta, A.; Goicoechea-Oses, E. Effect of rosemary extract on sunflower oil degradation studied by 1H NMR: Differences under frying conditions and accelerated storage. Food Chem. 2025, 474, 143146. [Google Scholar] [CrossRef]
- Lužaić, T.; Nakov, G.; Kravić, S.; Jocić, S.; Romanić, R. Influence of hull and impurity content in high-oleic sunflower seeds on pressing efficiency and cold-pressed oil yield. Appl. Sci. 2025, 15, 3012. [Google Scholar] [CrossRef]
- Romano, R.; Giordano, A.; Le Grottaglie, L.; Manzo, N.; Paduano, A.; Sacchi, R. Volatile compounds in intermittent frying by gas chromatography and nuclear magnetic resonance. J. Agric. Food Chem. 2021, 69, 14447–14456. [Google Scholar] [CrossRef]
- Lužaić, T.; Grahovac, N.; Hladni, N.; Romanić, R. Evaluation of oxidative stability of new cold-pressed sunflower oils during accelerated thermal stability tests. Food Sci. Technol. 2022, 42, e67320. [Google Scholar] [CrossRef]
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2017.
- Romanić, R.; Lužaić, T.; Pezo, L.; Radić, B.; Kravić, S. Omega 3 Blends of Sunflower and Flaxseed Oil—Modeling Chemical Quality and Sensory Acceptability. Foods 2024, 13, 3722. [Google Scholar] [CrossRef]
- ISO 3961:2024; Animal and Vegetable Fats and Oils—Determination of Iodine Value. International Organization for Standardization: Geneva, Switzerland, 2024.
- ISO 6320:2017; Animal and Vegetable Fats and Oils—Determination of Refractive Index. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 660:2020; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value-Iodometric (Visual) Endpoint Determination. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6885:2016; Animal and Vegetable Fats and Oils—Determination of Anisidine Value. International Organization for Standardization: Geneva, Switzerland, 2016.
- Zhou, X.; Zhou, D.Y.; Liu, Z.Y.; Yin, F.W.; Liu, Z.Q.; Li, D.Y.; Shahidi, F. Hydrolysis and oxidation of lipids in mussel Mytilus edulis during cold storage. Food Chem. 2019, 272, 109–116. [Google Scholar] [CrossRef] [PubMed]
- ISO 3656/Amd 1:2013/2017; Animal and Vegetable Fats and Oils—Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction-Amendment 1. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6886:2016; Animal and Vegetable Fats and Oils—Determination of Oxidative Stability (Accelerated Oxidation Test). International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- Codex Alimentarius; Standard for Named Vegetable Oils Codex Stan 210-1999; Codex Alimentarius: Rome, Italy, 1999.
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional characteristics assessment of sunflower seeds, oil and cake: Perspective of using sunflower oilcakes as a functional ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef] [PubMed]
- Grompone, M.A. Sunflower and high-oleic sunflower oils. In Bailey’s Industrial Oil and Fat Products, 7th ed.; Wiley: Hoboken, NJ, USA, 2020; pp. 1–54. [Google Scholar]
- Kusumoto, I.; Hennebelle, M.; Crawford, L.M.; Wang, S.C.; Taha, A.Y. Oil polyunsaturated fatty acid composition but not tocopherol levels determine oxylipin formation in plant and algae oils during pan-frying. J. Food Compos. Anal. 2024, 136, 106739. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Kong, W.Q.; Qin, Z.; Liu, H.M.; Wang, X.D. Modified Chinese quince oligomeric proanthocyanidin protects deep-frying oil quality by inhibiting oxidation. Food Chem. 2024, 444, 138642. [Google Scholar] [CrossRef] [PubMed]
- Akoh, C.C. Food Lipids: Chemistry, Nutrition, and Biotechnology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–1029. [Google Scholar]
- Li, H.; van de Voort, F.R.; Sedman, J.; Ismail, A.A. Rapid Determination of cis and trans content, iodine value, and saponification number of edible oils by Fourier transform near-infrared spectroscopy. J. Am. Oil Chem. Soc. 1999, 76, 491–497. [Google Scholar]
- Emelike, N.J.T.; Ujong, A.E.; Achinewu, S.C. Physicochemical and antioxidant properties of oils used by local fried food vendors in D/Line-Port Harcourt, Rivers State. Agric. Food Sci. Res. 2020, 7, 89–96. [Google Scholar]
- Urbančič, S.; Kolar, M.H.; Dimitrijević, D.; Demšar, L.; Vidrih, R. Stabilisation of sunflower oil and reduction of acrylamide formation of potato with rosemary extract during deep-fat frying. LWT 2014, 57, 671–678. [Google Scholar] [CrossRef]
- Basiron, Y. Palm Oil. In Bailey’s Industrial Oil and Fat Products, 6th ed.; Shahidi, F., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 2, pp. 333–429. [Google Scholar]
- Xi, B.; Zhang, J.; Li, C.; Xu, X.; Zeng, Q.; Zhang, Y.; Chen, B.; Shen, Y. Effects of natural and synthetic antioxidants addition on the characteristic flavor and metabolites of walnut oil during oxidation. Food Biosci. 2024, 61, 104788. [Google Scholar] [CrossRef]
- Tarmizi, A.H.A.; Ahmad, K.; Sahri, M.M.; May, C.Y. Rancimat test for measuring the oxidative stability of cooking oils upon prolonged frying: Short communication. J. Oil Palm Res. 2016, 28, 531–535. [Google Scholar] [CrossRef]
Parameter | RSO | RSO′ | RSO+TBHQ | RSO+TBHQ′ | RSO+RE | RSO+RE′ | HOSO | HOSO′ | PO | PO′ |
---|---|---|---|---|---|---|---|---|---|---|
Fatty acid (% w/w) | ||||||||||
C12:0 | nd | nd | nd | nd | nd | nd | nd | nd | 0.24 ± 0.02 aA | 0.24 ± 0.02 aA |
C14:0 | 0.07 ± 0.01 abA | 0.09 ± 0.01 abA | 0.07 ± 0.01 abA | 0.10 ± 0.01 abA | 0.07 ± 0.01 abA | 0.10 ± 0.01 abA | 0.04 ± 0.00 abA | 0.05 ± 0.01 abA | 0.93 ± 0.09 bB | 0.95 ± 0.10 bB |
C16:0 | 6.21 ± 0.25 dB | 7.49 ± 0.30 dC | 6.17 ± 0.25 dB | 7.50 ± 0.30 dC | 6.17 ± 0.25 dB | 7.51 ± 0.30 dC | 4.16 ± 0.17 cA | 4.54 ± 0.18 cA | 38.90 ± 0.58 eD | 39.55 ± 0.59 eD |
C16:1 | 0.09 ± 0.01 abA | 0.10 ± 0.01 abA | 0.09 ± 0.01 abA | 0.10 ± 0.01 abA | 0.09 ± 0.01 abA | 0.10 ± 0.01 abA | 0.12 ± 0.01 abA | 0.12 ± 0.01 abA | 0.18 ± 0.02 aB | 0.18 ± 0.02 aB |
C17:0 | 0.04 ± 0.00 aA | 0.04 ± 0.00 aA | 0.04 ± 0.00 aA | 0.04 ± 0.00 aA | 0.04 ± 0.00 aA | 0.04 ± 0.00 aA | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.10 ± 0.01 aA | 0.10 ± 0.01 aB |
C17:1 | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.05 ± 0.01 abA | 0.05 ± 0.01 abA | 0.03 ± 0.00 aA | 0.03 ± 0.00 aB |
C18:0 | 3.31 ± 0.13 cA | 3.46 ± 0.14 cA | 3.29 ± 0.13 cA | 3.41 ± 0.14 cA | 3.32 ± 0.13 cA | 3.45 ± 0.14 cA | 3.36 ± 0.13 cA | 3.37 ± 0.13 cA | 4.33 ± 0.17 cB | 4.38 ± 0.18 cB |
C18:1 trans | nd | nd | nd | nd | nd | nd | 0.08 ± 0.01 abA | 0.08 ± 0.01 abA | nd | nd |
C18:1 cis | 35.82 ± 0.54 eA | 36.92 ± 0.55 eA | 35.72 ± 0.54 eA | 36.41 ± 0.55 eA | 35.77 ± 0.54 eA | 36.74 ± 0.55 eA | 81.94 ± 1.23 eC | 81.59 ± 1.22 eC | 43.22 ± 0.65 fB | 43.15 ± 0.65 fB |
C18:2 trans | 0.07 ± 0.01 abA | 0.08 ± 0.01 abAB | 0.07 ± 0.01 abA | 0.08 ± 0.01 abAB | 0.07 ± 0.01 abA | 0.08 ± 0.01 abAB | 0.11 ± 0.01 abB | 0.11 ± 0.01 abB | 0.21 ± 0.02 aC | 0.21 ± 0.02 aC |
C18:2 cis | 52.72 ± 0.79 fD | 50.15 ± 0.75 fC | 52.87 ± 0.79 fD | 50.69 ± 0.76 fC | 52.79 ± 0.79 fD | 50.32 ± 0.75 fC | 8.11 ± 0.32 dA | 8.07 ± 0.32 dA | 10.90 ± 0.16 dB | 10.28 ± 0.15 dB |
C18:3 | 0.09 ± 0.01 abA | 0.08 ± 0.01 abA | 0.09 ± 0.01 abA | 0.09 ± 0.01 abA | 0.08 ± 0.01 abA | 0.08 ± 0.01 abA | 0.06 ± 0.01 abA | 0.06 ± 0.01 abA | 0.22 ± 0.02 aB | 0.20 ± 0.02 aB |
C20:0 | 0.25 ± 0.03 abA | 0.27 ± 0.03 abA | 0.25 ± 0.03 abA | 0.26 ± 0.03 abA | 0.25 ± 0.03 abA | 0.26 ± 0.03 abA | 0.32 ± 0.03 abAB | 0.32 ± 0.03 abAB | 0.40 ± 0.04 abB | 0.40 ± 0.04 abB |
C20:1 | 0.17 ± 0.02 abA | 0.18 ± 0.02 abA | 0.17 ± 0.02 abA | 0.17 ± 0.02 abA | 0.17 ± 0.02 abA | 0.17 ± 0.02 abA | 0.26 ± 0.03 abB | 0.26 ± 0.03 abB | 0.16 ± 0.02 aA | 0.16 ± 0.02 aA |
C22:0 | 0.82 ± 0.08 bBC | 0.83 ± 0.08 bBCD | 0.82 ± 0.08 bBC | 0.81 ± 0.08 bB | 0.83 ± 0.08 bBCD | 0.81 ± 0.08 bB | 1.01 ± 0.04 bD | 1.00 ± 0.04 bCD | 0.07 ± 0.01 aA | 0.07 ± 0.01 aA |
C24:0 | 0.31 ± 0.03 abB | 0.31 ± 0.03 abB | 0.31 ± 0.03 abB | 0.31 ± 0.03 abB | 0.31 ± 0.03 abB | 0.31 ± 0.03 abB | 0.35 ± 0.04 abB | 0.35 ± 0.04 abB | 0.09 ± 0.01 aA | 0.09 ± 0.01 aA |
SFA | 11.01 ± 0.53 aAB | 12.49 ± 0.59 aB | 10.95 ± 0.53 aAB | 12.43 ± 0.59 aB | 10.99 ± 0.53 aAB | 12.48 ± 0.59 aB | 9.27 ± 0.41 aA | 9.67 ± 0.42 aA | 45.06 ± 0.93 bC | 45.78 ± 0.96 bC |
MUFA | 36.11 ± 0.57 bA | 37.23 ± 0.58 bA | 36.01 ± 0.57 bA | 36.71 ± 0.58 bA | 36.06 ± 0.57 bA | 37.04 ± 0.58 bA | 82.45 ± 1.29 bC | 82.10 ± 1.28 bC | 43.59 ± 0.69 bB | 43.52 ± 0.69 bB |
PUFA | 52.88 ± 0.81 cD | 50.31 ± 0.77 cC | 53.03 ± 0.81 cD | 50.86 ± 0.78 cC | 52.94 ± 0.81 cD | 50.48 ± 0.77 cC | 8.28 ± 0.34 aA | 8.24 ± 0.34 aA | 11.33 ± 0.20 aB | 10.69 ± 0.19 aB |
IV (gI2/100 g) | 123 ± 3 C | 119 ± 2 C | 123 ± 2 C | 120 ± 2 C | 123 ± 3 C | 119 ± 2 C | 85 ± 1 B | 85 ± 2 B | 57 ± 1 A | 56 ± 1 A |
RI () | 1.4659 ± 0.0001 C | 1.4655 ± 0.0002 C | 1.4659 ± 0.0002 C | 1.4655 ± 0.0002 C | 1.4659 ± 0.0002 C | 1.4655 ± 0.0002 C | 1.4615 ± 0.0002 B | 1.4614 ± 0.0002 B | 1.4582 ± 0.0002 A | 1.4581 ± 0.0002 A |
Samples | Induction Period (h) | Transparency (%) | |
---|---|---|---|
100 °C | 120 °C | ||
RSO | 9.6 | 2.3 | 92.7 ± 0.5 f |
RSO′ | / | / | 82.7 ± 0.3 c |
RSO+TBHQ | 23.4 | 5.9 | 90.5 ± 0.6 e |
RSO+TBHQ′ | / | / | 84.5 ± 0.3 d |
RSO+RE | 11.5 | 2.9 | 92.7 ± 0.4 f |
RSO+RE′ | / | / | 83.0 ± 0.4 c |
HOSO | 26.2 | 6.6 | 90.4 ± 0.5 e |
HOSO′ | / | / | 89.3 ± 0.3 e |
PO | 27.0 | 6.8 | 58.7 ± 0.2 b |
PO′ | / | / | 50.3 ± 0.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lužaić, T.; Škrbić, J.; Nakov, G.; Petrović, J.; Romanić, R. Deep-Frying Performance of Palm Olein and Sunflower Oil Variants: Antioxidant-Enriched and High-Oleic Oil as Potential Substitutes. Processes 2025, 13, 3285. https://doi.org/10.3390/pr13103285
Lužaić T, Škrbić J, Nakov G, Petrović J, Romanić R. Deep-Frying Performance of Palm Olein and Sunflower Oil Variants: Antioxidant-Enriched and High-Oleic Oil as Potential Substitutes. Processes. 2025; 13(10):3285. https://doi.org/10.3390/pr13103285
Chicago/Turabian StyleLužaić, Tanja, Jelena Škrbić, Gjore Nakov, Jovana Petrović, and Ranko Romanić. 2025. "Deep-Frying Performance of Palm Olein and Sunflower Oil Variants: Antioxidant-Enriched and High-Oleic Oil as Potential Substitutes" Processes 13, no. 10: 3285. https://doi.org/10.3390/pr13103285
APA StyleLužaić, T., Škrbić, J., Nakov, G., Petrović, J., & Romanić, R. (2025). Deep-Frying Performance of Palm Olein and Sunflower Oil Variants: Antioxidant-Enriched and High-Oleic Oil as Potential Substitutes. Processes, 13(10), 3285. https://doi.org/10.3390/pr13103285