Recovery and Reuse of Acetone from Pharmaceutical Industry Waste by Solar Distillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solar Distillation
Solar Distiller Efficiency Evaluation
2.2. Characterization of Distilled Acetone
2.2.1. Nuclear Magnetic Resonance
2.2.2. FTIR Spectroscopy
2.2.3. Gas Chromatography
2.3. Process of Removing Impurities from Catalyst Granules Using Distilled Acetone Obtained by Solar Distillation
2.4. The Evaluation of the Residue Obtained at the End of the Solar Distillation Process
3. Results and Discussion
3.1. Solar Distillation
The Evaluation of the Efficiency of the Solar Still
3.2. Characterization of Distilled Acetone
3.2.1. Nuclear Magnetic Resonance
3.2.2. FTIR Spectroscopy
3.2.3. Gas Chromatography
3.3. Process of Removing Impurities from Catalyst Granules Using Distilled Acetone from Solar Distillation
3.4. The Evaluation of the Solids Obtained at the End of Solar Distillation Using XPS and EDS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil, M.J.; Soto, A.M.; Usma, J.I.; Gutiérrez, O.D. Contaminantes emergentes en agua, efectos y posibles tratamientos. Prod. Limpia 2012, 7, 52–73, ISSN 1909-0455. [Google Scholar]
- Howard Ramírez, M. Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerg. Contam. 2020, 6, 179–193. [Google Scholar] [CrossRef]
- González Mendoza, J.C. Gestión de la Recuperación de Disolventes en Una Empresa Farmoquímica, Facultad de Química. Bachelor’s Thesis, Universidad Autónoma del Estado de México, Toluca, Mexico. Available online: http://hdl.handle.net/20.500.11799/67637 (accessed on 23 May 2023).
- Sabine, A. Quantification of Active Ingredient Losses from Formulating Pharmaceutical Industries and Contribution to Wastewater Treatment Plant Emissions. Environ. Sci. Technol. 2020, 54, 15046–15056. [Google Scholar] [CrossRef]
- Smallwood, I.M. Solvent Recovery Handbook, 2nd ed.; Blackell Science: Oxford, UK, 2002. [Google Scholar]
- Ortega, D.A. Enfoque de la biotecnología industrial en Ecuador y la provincia de Esmeraldas. Polo Conoc. 2020, 48, 1228–1239. [Google Scholar]
- Ramírez, C.A.; Burgos, A.M.; López Crisostomo, K.B. Revisión sistemática de literatura en el uso de fluidos supercríticos para lograr una producción más limpia en la industria textil. Ing. Ind. 2020, 39, 119–140. [Google Scholar] [CrossRef]
- Quesada, J.; Faba, L.; Díaz, E.; Ordóñez, S. La biomasa como alternativa al petróleo para la obtención de productos químicos: Acetona y etanol como moléculas plataforma. Av. Cienc. Ing. 2014, 5, 31–49. [Google Scholar]
- Alvárez Amparán, M.A.; Cedeño Caero, L. Cumene hidroperoxide effect on the oxidative desulfurization. Rev. Mex. Ing. Quim. 2014, 13, 787–797, 1665-2738. [Google Scholar]
- Lau, P.; Koenig, K. Management, disposal and recycling of waste industrial organic solvents in Hong Kong. Chemosphere 2001, 44, 9–15. [Google Scholar] [CrossRef]
- Guo, Y. A Review on Advanced Treatment of Pharmaceutical Wastewater. Earth Environ. Sci. 2017, 63, 012025. [Google Scholar] [CrossRef]
- Sánchez Levoso, A. Modelado del Proceso de Extracción de Ácido Acético con Recuperación de Disolvente Orgánico. Bachelor’s Thesis, Universidad Politécnica de Madrid, Madrid, Spain. Available online: https://oa.upm.es/42845/ (accessed on 23 May 2023).
- Rajesh, K.; Aggarwal, R.K.; Gupta, D.; Dhar Sharma, J. Predicting total conduction losses of the building using artificial neural network. Int. J. Energy Environ. Eng. 2013, 1, 1–4. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, R.P.; Saini, J.S. A review of thermohydraulic performance of artificially roughened solar air heaters. Renew. Sust. Energ. Rev. 2014, 37, 100–122. [Google Scholar] [CrossRef]
- Kumar, A.; Kim, M.H. Solar air-heating system with packed-bed energy-storage systems. Renew. Sust. Energy Rev. 2017, 72, 215–227. [Google Scholar] [CrossRef]
- Acosta Esquijarosa, J.; Rodríguez Donis, I.; Lodeiro Prieto, L.; Nuevas Paz, L. Separación de los componentes de la mezcla azeotrópica acetona–n-hexano mediante un proceso combinado: Extracción líquido-líquido y destilación discontinua. Cien. Bio. 2010, 41, 37–42. [Google Scholar]
- Ponce Rocha, J.D.; Morales Espinosa, N.; Gómez Castro, F.I.; Morales Rodríguez, R. Evaluación y análisis del sistema de separación y purificación para la mezcla acetona-butanol-etanol (ABE). Cien. Nat. Exac. 2017, 3, 686–690. [Google Scholar]
- Anguebes Franseschi, F.; Bolaños Reynoso, E.; Castro Montoya, A.; Cantú Lozano, D. Separación de la Mezcla Azeotrópica Acetona-Metanol con Cloruro de Litio. Inf. Tecnol. 2015, 15, 111–116. [Google Scholar] [CrossRef]
- Srinivasan, A.; Viraraghavan, T. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manag. 2010, 91, 1915–1929. [Google Scholar] [CrossRef]
- Durkaieswaran, P.; Kalidasa Murugavel, K. Various special designs of single basin passive solar still. A review. Renew. Sust. Energy Rev. 2015, 49, 1048–1060. [Google Scholar] [CrossRef]
- Ibrahim Ayman, G.M.; Allam Elsayed, V.; Elshamarka Salman, E. A modified basin type solar still: Experimental performance and economic study. Energy 2015, 93, 335–342. [Google Scholar] [CrossRef]
- Manikandan, V.; Shanmugasundaram, K.; Shanmugan, S.; Janarthanan, B.; Chandrasekaran, J. Wick typesolarstills: A review. Renew. Sustain. Energy Rev. 2013, 20, 22–335. [Google Scholar] [CrossRef]
- Kalogirou, S. Solar Energy Engineering Processes and Systems, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Matrawy, K.K.; Alosaimy, A.S.; Mahrous, A.F. Modeling and experimental study of a corrugated wick type solar still: Comparative study with a simple basin type. Energy Convers. Manag. 2015, 105, 1261–1268. [Google Scholar] [CrossRef]
- Chávez Sánchez, S.; Terres Peña, H.; Lizardi Ramos, A.; López Callejas, R.; Vaca Mier, M.; Alaníaz Chávez, R.A. Destilación de alcohol etílico empleando energía solar. J. TeDIQ 2020, 6, 136–140. [Google Scholar]
- Swarbrick, J.; Baynes, R.E. El Papel de la Acetona en la Fabricación Farmacéutica; En Manual de Fabricación Farmacéutica: Producción y Procesos, 2nd ed.; CRC Press: New York, NY, USA, 2007. [Google Scholar]
- Swarbrick, J. Encyclopedia of Pharmaceutical Technology; Wiley-Interscience: New York, NY, USA, 2007; Volume 3, pp. 125–145. [Google Scholar]
- Smith, J.R.; Johnson, T.P. Volatilidad y tasas de evaporación de solventes orgánicos: Un estudio comparativo de acetona y otros solventes. Rev. Ing. Química 2020, 56, 7. [Google Scholar]
- Green, D.W.; Perry, R.H. Manual de Ingenieros Químicos de Perry, 8th ed.; Educación McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Ramírez, S.; Leyva, C.; Ancheyta, J.; Centeno, G. One the importance of calculating fresh-basis catalyst composition from spent catalyst analysis. Fuel 2009, 88, 2311–2314. [Google Scholar] [CrossRef]
- Cortés Torres, R.; Nolasco Terrón, E.Y.; Olea Mejía, O.; Varela Guerrero, V.; Barrera Díaz, C.E.; Cuevas Díaz, E. Solvent mediated impurity removal process for a spent hydroprocessing catalyst and its iuse in alcohol oxidations. Catal. Today 2018, 305, 126–132. [Google Scholar] [CrossRef]
Method | Recovery Rate | Reference |
---|---|---|
Separation of the components of the azeotropic mixture acetone–n-hexane by a combined process: liquid–liquid extraction and batch distillation | 87.9% | [16] |
Evaluation and analysis of the separation and purification system for the acetone–butanol–ethanol mixture using liquid–liquid distillation/extraction sequences | 98.88% | [17] |
Separation of the azeotropic mixture acetone–methanol with lithium chloride as an extractive agent | 88.85% | [18] |
This project: | ||
Solar distillation | 85% | |
Solar distillation–concentration | 80% | - |
Compound | Vapor Pressure at 20 °C | Volatility Level | Reference |
---|---|---|---|
Acetone | 233 mmHg | High | [28] |
Chlorine | 5160 mmHg | High | [29] |
Carbon | 0 mmHg | Does not volatilize | |
Nitrogen | 0.12 mmHg | Does not volatilize | |
Oxygen | 0.38 mmHg | Does not volatilize |
Element | Atomic % Cation |
---|---|
C K | 63.85 |
N K | 18.94 |
Cl K | 3.46 |
Rb L | 0.40 |
Total | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarango Brito, E.C.; Barrera Díaz, C.E.; Ávila Córdoba, L.I.; Frontana Uribe, B.A.; Solís Casados, D.A. Recovery and Reuse of Acetone from Pharmaceutical Industry Waste by Solar Distillation. Processes 2025, 13, 361. https://doi.org/10.3390/pr13020361
Tarango Brito EC, Barrera Díaz CE, Ávila Córdoba LI, Frontana Uribe BA, Solís Casados DA. Recovery and Reuse of Acetone from Pharmaceutical Industry Waste by Solar Distillation. Processes. 2025; 13(2):361. https://doi.org/10.3390/pr13020361
Chicago/Turabian StyleTarango Brito, Eva Carina, Carlos Eduardo Barrera Díaz, Liliana Ivette Ávila Córdoba, Bernardo Antonio Frontana Uribe, and Dora Alicia Solís Casados. 2025. "Recovery and Reuse of Acetone from Pharmaceutical Industry Waste by Solar Distillation" Processes 13, no. 2: 361. https://doi.org/10.3390/pr13020361
APA StyleTarango Brito, E. C., Barrera Díaz, C. E., Ávila Córdoba, L. I., Frontana Uribe, B. A., & Solís Casados, D. A. (2025). Recovery and Reuse of Acetone from Pharmaceutical Industry Waste by Solar Distillation. Processes, 13(2), 361. https://doi.org/10.3390/pr13020361