Management and Disposal of Waste Tires to Develop a Company for the Manufacture of Products Based on Recycled Rubber in Tamaulipas, México
Abstract
:1. Introduction
2. Experimental Procedure
Simulation Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortíz-Rodríguez, O.; Ocampo-Duque, W.; Duque-Salazar, L. Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle del Cauca, Colombia. Energies 2017, 10, 2117–2129. [Google Scholar] [CrossRef]
- Ziouzios, D.; Baras, N.; Balafas, V.; Dasygenis, M.; Stimoniaris, A. Intelligent and Real-Time Detection and Classification Algorithm for Recycled Materials Using Convolutional Neural Networks. Recycling 2022, 7, 9–22. [Google Scholar] [CrossRef]
- Adhikari, B.; De, D.; Maiti, S. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 2000, 25, 909–948. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Recycling Waste Tires into Ground Tire Rubber (GTR)/Rubber Compounds: A Review. J. Compos. Sci. 2020, 4, 103–145. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview. Constr. Build. Mater. 2013, 67, 217–224. [Google Scholar] [CrossRef]
- Price, W.; Smith, E.D. Waste tire recycling: Environmental benefits and commercial challenges. Int. J. Environ. Technol. Manag. 2006, 6, 362–374. [Google Scholar] [CrossRef]
- Stevenson, K.; Stallwood, B.; Hart, A. Tire Robber Recycling and Bioremediation: A review. Biorem. J. 2008, 12, 1–11. [Google Scholar] [CrossRef]
- Siddika, A.; Al Mamun, M.; Alyousef, R.; Mugahed Amran, Y.; Aslani, F.; Alabduljabbar, H. Properties and utilizations of waste tire rubber in concrete: A review. Constr. Build. Mater. 2019, 224, 711–731. [Google Scholar] [CrossRef]
- Sathiskumar, C.; Karthikeyan, S. Recycling of waste tires and its energy storage application of by-products—A review. Sustain. Mater. Technol. 2019, 22, e00125. [Google Scholar] [CrossRef]
- Shakya, P.R.; Shrestha, P.; Tamrakar, C.S.; Bhattarai, P.K. Studies on potential emission of hazardous gases due to uncontrolled open-air burning of waste vehicle tyres and their possible impacts on the environment. Atmos. Environ. 2008, 42, 6555–6559. [Google Scholar] [CrossRef]
- Fiksel, J.; Bakshi, B.; Baral, A.; Guerra, E.; DeQuervain, B. Comparative life cycle assessment of beneficial applications for scrap tires. Clean. Technol. Environ. 2011, 13, 19–35. [Google Scholar] [CrossRef]
- Hejna, A.; Korol, J.; Przybysz-Romatowska, M.; Zedler, Ł.; Chmielnicki, B.; Formela, K. Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers-a review. Waste Manag. 2020, 108, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Markovski, S.; Rodwell, G.; Rahman, M.T.; Kurmus, H.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; et al. Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resour. Conserv. Recycl. 2020, 155, 104679. [Google Scholar] [CrossRef]
- Levlin, J.E.; Read, B.; Grossmann, H.; Hooimeijer, A.; Ervasti, I.; Lozo, B.; Julien Saint Amand, F.; Cochaux, A.; Faul, A.; Ringman, J.; et al. The Future of Paper Recycling in Europe: Opportunities and Limitations; Stawicki, B., Ed.; The Paper Industry Technical Association: Bury, UK, 2010. [Google Scholar]
- Zaman, A.U. A comprehensive study of the environmental and economic benefits of resource recovery from global waste management systems. J. Clean. Prod. 2016, 124, 41–50. [Google Scholar] [CrossRef]
- Galvagno, S.; Casu, S.; Casabianca, T.; Calabrese, A.; Cornacchia, G. Pyrolysis process for the treatment of scrap tyres: Preliminary experimental results. Waste Manag. 2002, 22, 917–923. [Google Scholar] [CrossRef]
- Ruwona, W.; Danha, G.; Muzenda, E. A review on material and energy recovery from waste tyres. Procedia Manuf. 2019, 35, 216–222. [Google Scholar] [CrossRef]
- Malyshkov, G.B.; Nikolaichuk, L.A.; Sinkov, L.S. Legislative regulation of waste management system development in Russian federation. Int. J. Eng. Res. Technol. 2019, 12, 631–635. [Google Scholar]
- Yang, Z.; Ji, R.; Liu, L.; Wang, X.; Zhang, Z. Recycling of municipal solid waste incineration by-product for cement composites preparation. Constr. Build. Mater. 2018, 162, 794–801. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Ferrāo, P.; Ribeiro, P.; Silva, P. A management system for end-of-life tyres: A Portuguese case study. Waste Manag. 2000, 28, 604–614. [Google Scholar] [CrossRef]
- Gigli, S.; Landi, D.; Germani, M. Cost-benefit analysis of a circular economy project: A study on a recycling system for end-of-life tyres. J. Clean. Prod. 2019, 229, 680–694. [Google Scholar] [CrossRef]
- Alwaeli, M. End-of-life vehicles recovery and recycling and the route to comply with EU directive targets. Environ. Prot. Eng. 2016, 42, 191–202. [Google Scholar] [CrossRef]
- Torreta, V.; Rada, E.C.; Raggazi, M.; Trulli, E.; Istrate, I.E.; Cioca, L.L. Treatment and disposal of tyres: Two EU approaches. A review. Waste Manag. 2015, 45, 152–160. [Google Scholar] [CrossRef] [PubMed]
- European Tyre & Rubber, Manufacturers’ Association. Press Release. 2021. Available online: https://www.etrma.org/wp-content/uploads/2021/05/20210520_ETRMA_PRESS-RELEASE_ELT-2019.pdf (accessed on 11 May 2022).
- Van Beukering, P.J.H.; Janssen, M.A. Trade and recycling of used tyres in Western and Eastern Europe. Resour. Conserv. Recycl. 2001, 33, 235–265. [Google Scholar] [CrossRef]
- Sharma, V.K.; Fortuna, F.; Mincarini, M.; Berillo, M.; Cornacchia, G. Disposal of waste tyres for energy recovery and safe environment. Appl. Energy 2000, 65, 381–394. [Google Scholar] [CrossRef]
- Eriksson, O. Energy and waste management. Energies 2017, 10, 1072–1078. [Google Scholar] [CrossRef]
- Asaro, L.; Gratton, M.; Saghar, S.; Hocine, N.A. Recycling of rubber wastes by devulcanization. Resour. Conserv. Rec. 2018, 133, 250–262. [Google Scholar] [CrossRef]
- Alfayez, S.A.; Suleiman, A.R.; Nehdi, M.L. Recycling Tire Rubber in Asphalt Pavements: State of the Art. Sustainability 2020, 12, 9076. [Google Scholar] [CrossRef]
- Masri, T.; Yagoub, M.; Rouag, A.; Benchabane, A.; Guerira, B. Characterization of a Composite Material Composed by Rubber Tire and Expanded Polystyrene Wastes. J. Compos. Adv. Mater. 2023, 33, 13–19. [Google Scholar] [CrossRef]
- Merkisz-Guranowska, A. Waste recovery of end-of-life vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 421, 032019. [Google Scholar] [CrossRef]
- Shulman, V.L. Tire recycling. In Waste; Academic Press: Cambridge, MA, USA, 2019; pp. 489–515. [Google Scholar]
- Chen, Z.; Liang, Y.; Lin, Y.; Cai, J. Recycling of waste tire rubber as aggregate in impact-resistant engineered cementitious composites. Constr. Build. Mater. 2022, 359, 129477. [Google Scholar] [CrossRef]
- Antony, A.; Provodnikova, A.; Kumar, S.; Balachandan, B. Sustainable Materials in Tire Industry: A comparative Study of Europe and Asian Markets. Glob. J. Bus. Integral Secur. Int. Conf. Bus. Integral Secur. (IBIS) 2021, 1–14. [Google Scholar]
- Sitepu, M.H.; Armayani; Matondang, A.R.; Sembiring, M.T. Used tires recycle management and processing: A review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 801, 012116. [Google Scholar] [CrossRef]
- Roychand, R.; Gravina, R.; Zhuge, Y.; Ma, X.; Youssf, O.; Mills, J. A comprehensive review on the mechanical properties of waste tire rubber concrete. Constr. Build. Mater. 2020, 237, 117651. [Google Scholar] [CrossRef]
- Tsang, H.H. Uses of Scrap Rubber Tires. In Rubber: Types, Properties and Uses, 1st ed.; Popa, G.A., Ed.; Nova Science Publisher, Inc.: New York, NY, USA, 2012; pp. 477–492. [Google Scholar]
- Ramarad, S.; Khalid, M.; Ratnam, C.T.; Luqman Chuah, A.; Rashmi, W. Waste tire rubber in polymer blends: A review on the evolution, properties, and future. Prog. Mater. Sci. 2015, 72, 100–140. [Google Scholar] [CrossRef]
- Asociación de Manejo Responsible de Llantas Usadas, A.C. 2022. Available online: https://reciclallantas.org.mx/ (accessed on 26 January 2025).
- Rogachuk, B.E.; Okolie, J.A. Waste tires based biorefinery for biofuels and value-added materials production. Chem. Eng. J. Adv. 2023, 14, 100476. [Google Scholar] [CrossRef]
- Nanda, S.; Reddy, S.N.; Hunter, H.N.; Vo, D.V.N.; Kozinski, J.A.; Gökalp, I. Catalytic subcritical and supercritical water gasification as a resource recovery approach from waste tires for hydrogen-rich syngas production. J. Supercrit. Fluids 2019, 154, 104627. [Google Scholar] [CrossRef]
- Raffoul, S.; Garcia, R.; Escolano-Margarit, D.; Guadagnini, M.; Hajirasouliha, I.; Pilakoutas, K. Behaviour of unconfined and FRP-confined rubberized concrete in axial compression. Constr. Build. Mater. 2017, 147, 388–397. [Google Scholar] [CrossRef]
- Yadav, J.S.; Tiwari, S.K. Effect of inclusion of crumb rubber on the unconfined compressive strength and wet-dry durability of cement stabilized clayey soil. J. Build. Mater. Struct. 2016, 3, 68–84. [Google Scholar] [CrossRef]
- Liu, L.; Cai, G.; Zhang, J.; Liu, X.; Liu, K. Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering; A compressive review. Renew. Sustain. Energy Rev. 2020, 126, 109831. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C.; Panicker, V.J. Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. J. Clean. Prod. 2016, 112, 504–513. [Google Scholar] [CrossRef]
- Mereki, D.; Machola, B.; Mokokwe, K. Status of waste tires and management practice in Botswana. J. Air Waste Manag. Assoc. 2019, 69, 1230–1246. [Google Scholar] [CrossRef] [PubMed]
- Berendsohn, R. Our Waste Tire Problem Is Getting Worse. 2018. Available online: https://www.popularmechanics.com/cars/car-technology/a22553570/waste-tires/ (accessed on 18 December 2022).
- Rosagel, S. Reciclaje de Llantas en México. 2013. Available online: http://havelsa.com/reciclaje-de-llantas-unam/ (accessed on 18 January 2024).
- Formela, K. Sustainable development of waste tires recycling technologies recent advances, challenges and future trends. Adv. Ind. Eng. Polym. Res. 2021, 4, 209–222. [Google Scholar] [CrossRef]
- Dabic-Miletic, S.; Simic, V.; Karagoz, S. End-of-life tire management: A critical review. Environ. Sci. Pollut. Res. 2021, 28, 68053–68070. [Google Scholar] [CrossRef]
- Kinnaman, T.C. The economics of municipal solid waste management. Waste Manag. 2009, 29, 2615–2617. [Google Scholar] [CrossRef]
- Topcu, I.B.; Unverdi, A. Scrap tires/crumb rubber. In Waste and Supplementary Cementitious Materials in Concrete; Elsevier: Amsterdam, The Netherlands, 2018; pp. 51–77. [Google Scholar]
- Evans, A.; Evans, R. The Composition of a Tyre: Typical Components; The Waste & Resources Action Programme: Banbury, UK, 2006; p. 5. [Google Scholar]
- Baranwal, K.C. Akron rubber development laboratory, ASTM standards & testing of recycle rubber. In Proceedings of the Rubber Division Meeting, San Francisco, CA, USA, 28–30 April 2003. [Google Scholar]
- Messerle, V.; Ustimenko, A. Plasma processing of rubber powder from end-of-life tires: Numerical analysis and experiment. Processes 2024, 12, 994–1011. [Google Scholar] [CrossRef]
- Ćetković, J.; Lakić, S.; Žarković, M.; Vujadinović, R.; Knežević, M.; Živković, A.; Cvijović, J. Environmental benefits of air emission reduction in the waste tire management practice. Processes 2022, 10, 787–810. [Google Scholar] [CrossRef]
- Sagara, M.; Nibeditab, K.; Manoharb, N.; Raj Kumarb, K.; Suchismitab, S.; Pradnyesha, A.; Babul Reddyc, A.; Rotimi Sadikuc, E.; Guptad, U.N.; Lachitd, P.; et al. A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber. Waste Manag. 2018, 74, 110–122. [Google Scholar] [CrossRef]
- Khan, S.R.; Zeedhan, M.; Masood, A. Enhancement of hydrocarbons production through co-pyrolysis of acid-treated biomass and waste tire in a fixed bed reactor. Waste Manag. 2020, 106, 21–31. [Google Scholar] [CrossRef]
- Mckeen, L.W. The Effect of Long Term Thermal Exposure on Plastic and Elastomers; William Andrew: Norwich, NY, USA, 2004. [Google Scholar]
- Li, Y.; Zhang, S.; Wang, R.; Dang, F. Potential use of waste tire rubber as aggregate in cement concrete—A comprehensive review. Constr. Build. Mater. 2019, 225, 1183–1201. [Google Scholar] [CrossRef]
- Junqing, X.; Jiaxue, Y.; Jianglin, X.; Chenliang, S.; Wenzhi, H.; Juwen, H. High-value utilization of waste tires: A review with focus on modified carbon from pyrolysis. Sci. Total Environ. 2020, 742, 140235. [Google Scholar]
- Czajczynska, D.; Krzyzynska, R.; Jouhara, H.; Spencer, N. Use of pyrolytic gas from waste tire as a fuel: A review. Energy 2017, 134, 1121–1131. [Google Scholar] [CrossRef]
- Hita, I.; Arabiourrutia, M.; Olazar, M.; Bilbao, J.; Arandes, J.M.; Castaño Sánchez, P. Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renew. Sustain. Energy Rev. 2016, 56, 745–759. [Google Scholar] [CrossRef]
- Aziz, M.A.; Rahman, M.A.; Molla, H. Design, fabrication and performance test of a fixed bed batch type pyrolysis plant with scrap tire in Bangladesh. J. Radiat. Res. Appl. Sci. 2018, 11, 311–316. [Google Scholar] [CrossRef]
- Machin, E.B.; Pedroso, D.T.; de Carvalho, J.A. Energetic valorization of waste tires. Renew. Sustain. Energy Rev. 2017, 68, 306–315. [Google Scholar] [CrossRef]
- Abdul-Kader, W.; Haque, M.S. Sustainable tyre remanufacturing: An agent-based simulation modelling approach. Int. J. Sustain. Eng. 2011, 4, 330–347. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Moreno-Navarro, F.; Rubio-Gámez, M. The use of deconstructed tires as elastic elements in railway tracks. Materials 2014, 7, 5903–5919. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Hernández Santana, M.; Verdejo, R.; López-Manchado, M.A. Giving a second opportunity to tire waste: An alternative path for the development of sustainable self-healingstyrene-butadiene rubber compounds overcoming the magic triangle of tires. Polymers 2019, 11, 2122. [Google Scholar] [CrossRef]
- Symeonides, D.; Loizia, P.; Zorpas, A.A. Tire waste management system in Cyprus in the framework of circular economy strategy. Environ. Sci. Pollut. Res. 2019, 26, 35445–35460. [Google Scholar] [CrossRef]
- Girskas, G.; Nagrockiené, D. Crushed rubber waste impact of concrete basic properties. Constr. Build. Mater. 2017, 140, 36–42. [Google Scholar] [CrossRef]
- De Souza, C.D.R.; D’Agosto, M.D.A. Value chain analysis applied to the scrap tire reverse logistics chain: An applied study of co-processing in the cement industry. Resour. Conserv. Recycl. 2013, 78, 15–25. [Google Scholar] [CrossRef]
- Kannan, D.; Diabat, A.; Shankar, K.M. Analyzing the drivers of end-of-life tire management using interpretive structural modeling (ISM). Int. J. Adv. Manuf. Technol. 2014, 72, 1603–1614. [Google Scholar] [CrossRef]
- Amin, S.H.; Zhang, G.; Akhtar, P. Effects of uncertainty on a tire closed-loop supply chain network. Expert. Syst. Appl. 2017, 73, 82–91. [Google Scholar] [CrossRef]
- Pereira, M.M.; Machado, R.L.; Ignacio Pires, S.R.; Pereira Dantas, M.J.; Zaluski, P.P.; Frazzon, E.M. Forecasting scrap tires returns in closed-loop supply chains in Brazil. J. Clean. Prod. 2018, 188, 741–750. [Google Scholar] [CrossRef]
- Nowakowski, P.; Król, A. The influence of preliminary processing of end-of-life tires on transportation cost and vehicle exhausts emissions. Environ. Sci. Pollut. Res. 2020, 28, 24256–24269. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía (INEGI). Economía y Sectores Productivos. Parque Vehicular. Available online: https://www.inegi.org.mx/temas/vehiculos/ (accessed on 26 January 2025).
- Arciniega, G.M.; Ávila, D.J.; Quintero, O.P. Propuesta de plan de manejo integral de llantas usadas, generadas en la ciudad de los mochis, Sinaloa. Rev. Ra Ximhai 2023, 19, 157–181. [Google Scholar] [CrossRef]
- Mrad, M.; El-Samra, R. Waste Tire Management: Lebanon Case Study. J. Waste Manag. Dispos. 2020, 3, 102–113. [Google Scholar]
- Rumyantseva, A.; Rumyantseva, E.; Berezyuk, M.; Plastinina, J. Waste recycling as an aspect of the transition to a circular economy. Int. Con. Sustain. Clim. Chang. 2020, 534, 012002. [Google Scholar] [CrossRef]
- Dobrota, D.; Dobrota, G.; Dobrescu, T.; Mohora, C. The Redesigning of Tires and the Recycling Process to Maintain an Efficient Circular Economy. Sustainability 2019, 11, 5204. [Google Scholar] [CrossRef]
- Li, W.; Wang, Q.; Jin, J.; Li, S. A life cycle assessment case study of ground rubber production from scrap tires. Int. J. Life Cycle Assess. 2014, 19, 1833–1842. [Google Scholar] [CrossRef]
- Feriha, K.M.; Hussein, R.A.; Ismail, G.A.; El-Naggar, H.M.; El-Sebaie, O.D. Feasibility study for end-of-life tire recycling in new tire production. Egypt. J. Environ. Eng. Ecol. Sci. 2014, 3, 5. [Google Scholar] [CrossRef]
- Martínez, J. An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy. Renew. Sustain. Energy. Rev. 2021, 144, 111032. [Google Scholar] [CrossRef]
- European Tyre and Rubber Manufacturers Association (ETRMA). Annual Report. 2017. Available online: https://www.etrma.org/key-topics/materials/natural-rubber/ (accessed on 26 January 2025).
- U.S. Tire Manufacturers Association (USTMA). U.S. Scrap Tire Management Summary. 2019. Available online: https://www.ustires.org/ (accessed on 26 January 2025).
- INEGI. Censo Económico. 2019. Available online: https://www.inegi.org.mx/programas/ce/2019/ (accessed on 31 December 2024).
- Available online: https://www.economia.gob.mx/datamexico/es/profile/product/rubber-and-articles-thereof (accessed on 31 December 2024).
No. | Latitude | Longitude | Zip Code | Volume per Month |
---|---|---|---|---|
1 | 23.7714937 | −99.10897795 | 87084 | 345 |
2 | 23.75838008 | −99.14054089 | 87025 | 330 |
3 | 23.73799865 | −99.13060673 | 87099 | 290 |
4 | 23.75191317 | −99.13582153 | 87020 | 355 |
5 | 23.73630059 | −99.13655438 | 87000 | 265 |
6 | 23.73754865 | −99.14562349 | 87000 | 280 |
7 | 23.74148655 | −99.15123171 | 87050 | 280 |
8 | 23.73854219 | −99.13484738 | 87058 | 275 |
9 | 23.73851576 | −99.15384217 | 87000 | 315 |
10 | 23.73800776 | −99.13065426 | 87092 | 335 |
11 | 23.75828296 | −99.1405605 | 87025 | 280 |
12 | 23.72177642 | −99.16411794 | 87070 | 255 |
13 | 23.71989183 | −99.16504888 | 87070 | 320 |
14 | 23.73835656 | −99.13498066 | 87090 | 265 |
15 | 23.72165973 | −99.16399515 | 87070 | 285 |
16 | 23.73993653 | −99.13895657 | 87050 | 275 |
17 | 23.75773567 | −99.16493846 | 87018 | 290 |
Total | 5040 |
Route | Distance Traveled (km) per Month | Number of Tours per Month | Number of Tires Collected | Approximate Weight (kg) |
---|---|---|---|---|
1 | 128 | 8 | 1320 | 10,560 |
2 | 168 | 8 | 1750 | 14,000 |
3 | 120 | 8 | 1970 | 15,760 |
Total | 416 | 24 | 5040 | 40,320 |
Resources | Cost | Programmed Hours | Occupation |
---|---|---|---|
Worker 1 | USD 30/h | $ 112.33 | 97.3% |
QC Inspector | USD 35/h | $ 112.33 | 28.4% |
Tire shedder | USD 111/h | $ 112.33 | 3.56% |
Binder | USD 341 piece | ||
Total | USD 4951.5 |
Resources | Cost | Programmed Hours | Occupation |
---|---|---|---|
Shredder worker | USD 30/h | 21.77 | 19% |
Supplies worker | USD 30/h | 21.77 | 16.3% |
Mixing/molding worker | USD 30/h | 21.77 | 79.6% |
QC inspector | USD 35/h | 21.77 | 61.3% |
Tire shedder | USD 111/h | 21.77 | 18.4% |
Binder | USD 343/piece | ||
Total | USD 1657 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-García, R.D.; Maldonado-Reyes, A.; Reyes-Gallegos, M.M.; Rodríguez-García, J.A.; Calles-Arriaga, C.A.; Rocha-Rangel, E. Management and Disposal of Waste Tires to Develop a Company for the Manufacture of Products Based on Recycled Rubber in Tamaulipas, México. Processes 2025, 13, 394. https://doi.org/10.3390/pr13020394
López-García RD, Maldonado-Reyes A, Reyes-Gallegos MM, Rodríguez-García JA, Calles-Arriaga CA, Rocha-Rangel E. Management and Disposal of Waste Tires to Develop a Company for the Manufacture of Products Based on Recycled Rubber in Tamaulipas, México. Processes. 2025; 13(2):394. https://doi.org/10.3390/pr13020394
Chicago/Turabian StyleLópez-García, Ricardo Daniel, Araceli Maldonado-Reyes, María Magdalena Reyes-Gallegos, José Amparo Rodríguez-García, Carlos Adrián Calles-Arriaga, and Enrique Rocha-Rangel. 2025. "Management and Disposal of Waste Tires to Develop a Company for the Manufacture of Products Based on Recycled Rubber in Tamaulipas, México" Processes 13, no. 2: 394. https://doi.org/10.3390/pr13020394
APA StyleLópez-García, R. D., Maldonado-Reyes, A., Reyes-Gallegos, M. M., Rodríguez-García, J. A., Calles-Arriaga, C. A., & Rocha-Rangel, E. (2025). Management and Disposal of Waste Tires to Develop a Company for the Manufacture of Products Based on Recycled Rubber in Tamaulipas, México. Processes, 13(2), 394. https://doi.org/10.3390/pr13020394