Production of Sustainable Yarn Incorporating Process Waste to Promote Sustainability
Abstract
:1. Introduction
2. Materials and Methodology
3. Results and Discussions
3.1. Yarn Strength and Elongation%
3.2. Yarn Hairiness and Its Variations
3.3. Coefficient of Mass Variation (CVm%)
3.4. Imperfection Index (IPI) of Yarn
3.5. YQI (Yarn Quality Index)
3.6. Statistical Analysis
3.7. Sustainable Approach
3.8. Fabric (Denim) Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, P.K.; Izrayeel, A.M.D.; Mahur, B.K.; Ahuja, A.; Rastogi, V.K. A comprehensive review of textile waste valorization techniques and their applications. Environ. Sci. Pollut. Res. 2022, 29, 65962–65977. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Textiles in Europe’s Circular Economy. 2019. Available online: https://www.eea.europa.eu/publications/textiles-in-europes-circular-economy (accessed on 20 January 2025).
- Gyde, C.; McNeill, L. Fashion rental: Smart business or ethical folly. Sustainability 2021, 13, 8888. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Shi, D.; Li, X. Governance of sustainable supply chains in the fast fashion industry. Eur. Manag. J. 2014, 32, 823–836. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Motamed, B.; Ramakrishna, S.; Naebe, M. Death by waste: Fashion and textile circular economy case. Sci. Total Environ. 2020, 718, 137317. [Google Scholar] [CrossRef] [PubMed]
- Ütebay, B.; Çelik, P.; Çay, A. Textile Wastes: Status and Perspectives. In Waste in Textile and Leather Sectors; IntechOpen: London, UK, 2020. [Google Scholar]
- Rani, S.; Jamal, Z. Recycling of textiles waste for environmental protection. Int. J. Home Sci. 2018, 4, 164–168. [Google Scholar]
- McKinsey and Company. Mckinsey Global Fashion Index. Available online: http://dln.jaipuria.ac.in:8080/jspui/bitstream/123456789/11012/1/The-State-of-Fashion-2019.pdf (accessed on 20 January 2025).
- Furferi, R.; Volpe, Y.; Mantellassi, F. Circular economy guidelines for the textile industry. Sustainability 2022, 14, 11111. [Google Scholar] [CrossRef]
- Manickam, P.; Duraisamy, G. 3Rs and circular economy. In Circular Economy in Textiles and Apparel; Woodhead Publishing: Cambridge, UK, 2019; pp. 77–93. [Google Scholar]
- Chen, X.; Memon, H.A.; Wang, Y.; Marriam, I.; Tebyetekerwa, M. Circular economy and sustainability of the clothing and textile industry. Mater. Circ. Econ. 2021, 3, 12. [Google Scholar] [CrossRef]
- Burton, K. Reducing textile waste in the apparel industry: Examining EPR as an option. Cloth. Cult. 2018, 5, 33–45. [Google Scholar] [CrossRef]
- Yalcin-Enis, I.; Kucukali-Ozturk, M.; Sezgin, H. Risks and management of textile waste. Nanosci. Biotechnol. Environ. Appl. 2019, 1, 29–53. [Google Scholar]
- Awgichew, D.; Sakthivel, S.; Solomon, E.; Bayu, A.; Legese, R.; Asfaw, D.; Senthil Kumar, S. Experimental study and effect on recycled fibers blended with rotor/OE yarns for the production of handloom fabrics and their properties. Adv. Mater. Sci. Eng. 2021, 1, 4334632. [Google Scholar] [CrossRef]
- Pal, R.; Gander, J. Modelling environmental value: An examination of sustainable business models within the fashion industry. J. Clean. Prod. 2018, 184, 251–263. [Google Scholar] [CrossRef]
- Azad, A.K.; Haq, U.N.; Khairul Akter, M.M.; Uddin, M.A. Recycling Practices of Pre-Consumer Waste Generated from Textile Industry. In Sustainable Manufacturing Practices in the Textiles and Fashion Sector; Springer: Berlin/Heidelberg, Germany, 2024; Volume 1, pp. 301–324. [Google Scholar]
- Aishwariya, S.; Jaisri, J. Harmful effects of textile wastes. Sustainability 2020, 1, 1–10. [Google Scholar]
- Uddin, A.J.; Roy, P. Transforming melange fabric waste into mélange yarn employing compact, Siro, and compact-Siro spinning: A cleaner and sustainable strategy. Clean. Waste Syst. 2024, 8, 100142. [Google Scholar] [CrossRef]
- Abedin, M.M.; Siddique, I.M. A Research on Reducing Waste and Better Managing Resources in the Spinning Industry using Efficient Methods. Chem. Res. J. 2024, 9, 40–49. [Google Scholar]
- Uddin, A.J.; Rahman, M. Sustainable and cleaner production of elastic core-spun yarns for stretch denim with maximal utilization of recycled cotton extracted from pre-consumer fabric waste. Heliyon 2024, 10, e25444. [Google Scholar] [CrossRef] [PubMed]
- Njeru, S. Textile solid waste management: Adding value and uniqueness through design. Ann. Univ. Oradea. Fascicle Text. Leatherwork 2023, 24, 69. [Google Scholar]
- Manocha, R.; Dharwal, M. The Afterlife of Waste: Sustainable Fashion Businesses & Solutions. In Novel Sustainable Alternative Approaches for the Textiles and Fashion Industry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 121–153. [Google Scholar]
- Arafat, Y.; Uddin, A.J. Recycled fibers from pre-and post-consumer textile waste as blend constituents in manufacturing 100% cotton yarns in ring spinning: A sustainable and eco-friendly approach. Heliyon 2022, 8, e11275. [Google Scholar] [CrossRef] [PubMed]
- ISO 16549:2021; Textiles—Unevenness of Textile Strands—Capacitance Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- ISO 2062:2009; Textiles—Yarns from Packages—Determination of Single-End Breaking Force and Elongation at Break Using Constant Rate of Extension (CRE) Tester. International Organization for Standardization (ISO): Geneva, Switzerland, 2009.
- Barella, A.; Vigo, J.P.; Tura, J.M.; Esperon, H.O. An application of mini-computers to the optimization of the open-end-spinning process. Part I: Consideration of the case of two variables. J. Text. Inst. 1976, 67, 253–260. [Google Scholar] [CrossRef]
- Chattopadhyay, S.K.; Guruprasad, R. Blending of cotton and poly (lactic acid) fiber: Combined optimization of blend ratio and yarn twist using mixture-process design. J. Nat. Fibers 2021, 18, 631–643. [Google Scholar] [CrossRef]
- Chowdhury, M.F.M.; Islam, M.N. Qualitative and statistical analysis of cotton-flax blend yarn. Heliyon 2022, 8, e10161. [Google Scholar] [CrossRef]
- Habib, A.; Olgun, Y.; Babaarslan, O. Development of Dual-Core Spun Yarn Using Different Filaments as a Core and its Impact on Denim Fabric Properties. Text. Leather Rev. 2024, 7, 534–549. [Google Scholar] [CrossRef]
- Mathangadeera, R.W.; Hequet, E.F.; Kelly, B.; Dever, J.K.; Kelly, C.M. Importance of cotton fiber elongation in fiber processing. Ind. Crops Prod. 2020, 147, 112217. [Google Scholar] [CrossRef]
- Olgun, Y.; Babaarslan, O.; Habib, A. Development of dual-core spun yarn using different fibers as a core by Hamel twisting (elasto twist) technique and its impact on the denim fabric performance. J. Text. Inst. 2024, 116, 1–11. [Google Scholar] [CrossRef]
- Duru, O.; Habib, A.; Babaarslan, O. Innovative techniques for developing hybrid yarns using different core insertion methods: A comparative study. Heliyon 2024, 10, e40170. [Google Scholar] [CrossRef]
- Kaminszky, R.; Avram, D.; Fogorasi, M.S.; Dochia, M.; Barbu, I.; Popa, A.; Bucevschi, A. Innovative solution for reducing yarn hairiness on ring spinning machines. J. Nat. Fibers 2023, 20, 2248386. [Google Scholar] [CrossRef]
- Raiskio, S.; Periyasamy, A.; Hummel, M.; Heikkilä, P. Transforming mechanically recycled cotton and linen from post-consumer textiles into quality ring yarns and knitted fabrics. Waste Manag. Bull. 2025, 3, 76–86. [Google Scholar] [CrossRef]
- Zhong, P.; Kang, Z.; Han, S.; Hu, R.; Pang, J.; Zhang, X.; Huang, F. Evaluation method for yarn diameter unevenness based on image sequence processing. Text. Res. J. 2015, 85, 369–379. [Google Scholar] [CrossRef]
- Islam, M.R.; Khan, A.N. Statistical analysis of Cotton-Jute blended ratio for producing good quality blended yarn. Heliyon 2024, 10, e25027. [Google Scholar] [CrossRef] [PubMed]
- Karthik, T.; Murugan, R. Influence of friction spinning process parameters on spinnability of pergularia/cotton-blended yarns. J. Nat. Fibers 2014, 11, 54–73. [Google Scholar] [CrossRef]
- Anand, K.T.; Rajan, A.J.; Bapu, B.R. Development of a Method to Compute the Overall Key Performance Index for a Spinning Mill to Aid Supply Chain Management. Fibres Text. East. Eur. 2019, 27, 138. [Google Scholar] [CrossRef]
- Habib, A.; Budak, F.; Babaarslan, O.; Hamzi, A.; Abushaega, M.M.; Masum, M. Comparative Analysis of the Effects of European Union Environmental Policies on the Textile and Clothing Sector of Turkey and Bangladesh: Implications for Sustainable Development Goals. J. Lifestyle SDGs Rev. 2025, 5, e03840. [Google Scholar] [CrossRef]
- Textile Exchange, 2024. Preferred Fiber & Materials Market Report. 2024. Available online: https://textileexchange.org/app/uploads/2024/09/Materials-Market-Report-2024.pdf (accessed on 20 January 2025).
- Habib, A.; Cozeli, N.; Babaarslan, O.; Kanat, H.; Tan, S. Sustainable Production of Open-End Rotor Yarn for Denim with Maximum Utilization of Recycled Cotton Sourced from Pre-consumer Hard Waste. Text. Leather Rev. 2024, 7, 831–853. [Google Scholar] [CrossRef]
- Trvst. World, 2022. Environmental Impact of Cotton from Growing, Farming & Consuming 2022. Available online: https://www.trvst.world/sustainable-living/fashion/environmental-impact-of-cotton/ (accessed on 20 January 2025).
- Habib, A.; Al Mamun, M.A.; Babaarslan, O. Development of sustainable dual core-spun yarns using several filaments and recycled cotton sourced from pre-consumer fabric waste. Heliyon 2024, 10, e29392. [Google Scholar] [CrossRef] [PubMed]
Materials | Fiber Neps Size (µm) | Fiber Neps/g | Seed-Coat Neps Size (µm) | Seed-Coat Neps/g | Short-Fiber Contents (w) % (<12.7 mm) | Upper Quartile Length (n), mm | Short-Fiber Contents (w) % (<12.7 mm) | Fineness (mtex) |
---|---|---|---|---|---|---|---|---|
Cotton (virgin) fiber | 680 | 189 | 1089 | 7 | 6.50 | 27.00 | 6.20 | 156 |
Blowroom waste (dropping-2) | 736 | 1126 | 1118 | 111 | 88.10 | 11.40 | 74.60 | 152 |
Carding waste (dropping-1) | 724 | 391 | 1184 | 119 | 34.30 | 26.00 | 12.90 | 154 |
Carding waste (flat strip waste) | 672 | 719 | 1031 | 239 | 52.80 | 25.60 | 22.90 | 152 |
Comber waste (Noil) | 629 | 527 | 892 | 115 | 81.50 | 11.70 | 65.40 | 153 |
Ring frame waste (Pneumafil) | 616 | 188 | 685 | 3 | 40.90 | 27.30 | 18.80 | 151 |
Fibers | SCI | Micronaire (µg/inch) | Maturity | Length (mm) | UI (%) | SFI | Strength cN/tex | Elongation (%) | Moisture (%) | Trash Content% |
---|---|---|---|---|---|---|---|---|---|---|
100% cotton (virgin) | 138 | 4.54 | 0.91 | 28.97 | 85.72 | 7.05 | 30.49 | 6.85 | 7.58 | 139.20 |
Dropping-2 | 22 | 4.02 | 0.86 | 18.15 | 57.10 | 90.00 | 23.70 | 5.90 | 6.30 | 518.00 |
Dropping-1 | 69 | 4.86 | 0.91 | 26.18 | 79.20 | 26.40 | 24.70 | 6.01 | 5.90 | 389.00 |
Flat strip waste | 76 | 4.65 | 0.89 | 24.79 | 76.40 | 40.90 | 27.90 | 5.70 | 5.60 | 214.00 |
Machine Name | Brand Name | Speed |
---|---|---|
Blowroom | Rieter-MBO R34 | 1000 kg/h Chute feed to card |
Carding | Rieter C60 | 145 m/min |
1st draw frame | Rieter-SB D-22 | 6 doubling (650 m/min) |
2nd draw frame | Rieter-RSB D-24 | 6 doubling (650 m/min) |
Roving frame | Electrojet-Rovematic AF | Flyer speed of 1000 rpm |
Ring frame | Jingwei-F1520m | Spindle speed of 10,000 rpm |
Variable (Dependent) | F | Sig. |
---|---|---|
Strength (cN/tex) | 42.53 | 0.001 |
Unevenness (CVm%) | 102.32 | 0.002 |
Elongation | 31.57 | 0.000 |
Hairiness (H) | 50.32 | 0.003 |
Hairiness variation (sH) | 22.01 | 0.002 |
Neps (+200)/km | 11.20 | 0.033 |
Thick place (+50)/km | 10.21 | 0.041 |
Thin place (−50)/km | 18.32 | 0.040 |
IPI | 16.32 | 0.039 |
YQI | 15.34 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzi, A.; Habib, A.; Babaarslan, O.; Abushaega, M.M.; Masum, M.; al Mamun, M.A. Production of Sustainable Yarn Incorporating Process Waste to Promote Sustainability. Processes 2025, 13, 764. https://doi.org/10.3390/pr13030764
Hamzi A, Habib A, Babaarslan O, Abushaega MM, Masum M, al Mamun MA. Production of Sustainable Yarn Incorporating Process Waste to Promote Sustainability. Processes. 2025; 13(3):764. https://doi.org/10.3390/pr13030764
Chicago/Turabian StyleHamzi, Ahmed, Ahsan Habib, Osman Babaarslan, Mastoor M. Abushaega, Md Masum, and Md. Abdullah al Mamun. 2025. "Production of Sustainable Yarn Incorporating Process Waste to Promote Sustainability" Processes 13, no. 3: 764. https://doi.org/10.3390/pr13030764
APA StyleHamzi, A., Habib, A., Babaarslan, O., Abushaega, M. M., Masum, M., & al Mamun, M. A. (2025). Production of Sustainable Yarn Incorporating Process Waste to Promote Sustainability. Processes, 13(3), 764. https://doi.org/10.3390/pr13030764