Trends in Enzyme Production from Citrus By-Products
Abstract
:1. Introduction
2. Global Overview of Citrus By-Product
2.1. Citric Fruits
2.2. Chemical Composition of Citrus Wastes
3. Enzyme-Based Biorefinery of Citrus By-Products: Universal Overview
3.1. Lignocellulolytic Enzymes
3.1.1. Cellulases
3.1.2. Xylanases
3.1.3. Ligninases
3.1.4. Pectinases
3.2. Lipases and Proteases
4. Major Parameters Affecting the Enzyme Production Utilizing Citrus By-Product
4.1. Temperature
4.2. Moisture
4.3. pH
4.4. Pretreatment of Biomass
4.5. Light
4.6. Production Time
4.7. Carbon-to-Nitrogen (C/N) Ratio
4.8. Multiproduction of Enzymes from Citrus By-Products
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dubey, P.; Tripathi, G.; Mir, S.S.; Yousuf, O. Current scenario and global perspectives of citrus fruit waste as a valuable resource for the development of food packaging film. Trends Food Sci. Technaol. 2023, 141, 104190. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Markets and Trade. 2024. Available online: https://www.fao.org/markets-and-trade/commodities-overview/food-and-agriculture-market-analysis-(FAMA)/citrus/en (accessed on 23 September 2024).
- Suri, S.; Singh, A.; Nema, P.K. Recent advances in valorization of citrus fruits processing waste: A way forward towards environmental sustainability. Food Sci. Biotechnol. 2021, 30, 1601–1626. [Google Scholar] [CrossRef] [PubMed]
- USDA FAS. United States Department of Agriculture Foreign Agricultural Service. 2024. Available online: https://fas.usda.gov/data/citrus-world-markets-and-trade-07252024 (accessed on 23 September 2024).
- FAO. Citrus Fruit Fresh and Processed Statistical Bulletin 2020; Food and Agriculture Organizations of the United Nations: Rome, Italy, 2021; Available online: http://www.fao.org/3/cb6492en/cb6492en.pdf (accessed on 23 September 2024).
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of citrus processing waste: A review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Biswas, S.; Goyal, A. Enzymes of Industrial Significance and Their Applications. In Industrial Microbiology and Biotechnology; Verma, P., Ed.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Industrial Enzymes Market Size, Share & Trends Analysis Report by Product (Carbohydrase, Proteases), by Source (Plants, Animals, Microorganisms), by Application (Food & Beverages, Detergents, Animal Feed), by Region, and Segment Forecasts, 2024–2030. Available online: https://www.grandviewresearch.com/industry-analysis/industrial-enzymes-market (accessed on 9 October 2024).
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef]
- Ciriminna, R.; Scurria, A.; Danzì, C.; Timpanaro, G.; Di Stefano, V.; Avellone, G.; Pagliaro, M. Fragrant bioethanol: A valued bioproduct from orange juice and essential oil extraction. Sustain. Chem. Pharm. 2018, 9, 42–45. [Google Scholar] [CrossRef]
- Russo, C.; Maugeri, A.; Lombardo, G.E.; Musumeci, L.; Barreca, D.; Rapisarda, A.; Cirmi, S.; Navarra, M. The second life of citrus fruit waste: A valuable source of bioactive compounds. Molecules 2021, 26, 5991. [Google Scholar] [CrossRef]
- Mourad, M. Recycling, recovering and preventing “food waste”: Competing solutions for food systems sustainability in the United States and France. J. Clean. Prod. 2016, 126, 461–477. [Google Scholar] [CrossRef]
- Iftikhar, M.; Wahab, S.; Haq, N.U.; Malik, S.N.; Amber, S.; Taran, N.U.; Rehman, S.U. Utilization of citrus plant waste (peel) for the development of food product. Pure Appl. Biol. 2019, 8, 1991–1998. [Google Scholar] [CrossRef]
- Satari, B.; Palhed, J.; Karimi, K.; Lundin, M.; Taherzadeh, M.J.; Zamani, A. Process Optimization for Citrus Waste Biorefinery via Simultaneous Pectin Extraction and Pretreatment. BioResources 2017, 12, 1706–1722. [Google Scholar] [CrossRef]
- Kovačević, D.B.; Kljusurić, J.G.; Putnik, P.; Vukušić, T.; Herceg, Z.; Dragović-Uzelac, V. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chem. 2016, 212, 323–331. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Omarini, A.B.; González-Aguirre, J.A.; Baglioni, M.; Zygadlo, J.A.; Breccia, J.; D’Souza, R.; Lemesoff, L.; Bodeain, M.; Cardona-Alzate, C.A.; et al. Valorization Routes of Citrus Waste in the Orange Value Chain through the Biorefinery Concept: The Argentina Case Study. Chem. Eng. Process.-Process Intensif. 2023, 189, 109407. [Google Scholar] [CrossRef]
- Dubey, P.; Yousuf, O. An overview of fruit by-products valorization: A step towards sustainable utilization. Ind. J. Pure Appl. Biosci. 2021, 9, 46–55. [Google Scholar] [CrossRef]
- Chen, X.; Ding, Y.; Forrest, B.; Oh, J.; Boussert, S.M.; Hamann, M.T. Lemon yellow #15 a new highly stable, water soluble food colorant from the peel of Citrus limon. Food Chem. 2019, 270, 251–256. [Google Scholar]
- Marín, F.R.; Soler-Rivas, C.; Benavente-García, O.; Castillo, J.; Pérez-Alvarez, J.A. Byproducts from Different Citrus Processes as a Source of Customized Functional Fibres. Food Chem. 2007, 100, 736–741. [Google Scholar] [CrossRef]
- Pourbafrani, M.; Forgács, G.; Horváth, I.S.; Niklasson, C.; Taherzadeh, M.J. Production of Biofuels, Limonene and Pectin from Citrus Wastes. Bioresour. Technol. 2010, 101, 4246–4250. [Google Scholar] [CrossRef]
- Oberoi, H.S.; Vadlani, P.V.; Nanjundaswamy, A.; Bansal, S.; Singh, S.; Kaur, S.; Babbar, N. Enhanced Ethanol Production from Kinnow Mandarin (Citrus reticulata) Waste via a Statistically Optimized Simultaneous Saccharification and Fermentation Process. Bioresour. Technol. 2011, 102, 1593–1601. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, Y.M.; Jae, J.; Watanabe, C.; Kim, S.; Jung, S.C.; Kim, S.C.; Park, Y.K. Pyrolysis and Catalytic Upgrading of Citrus unshiu Peel. Bioresour. Technol. 2015, 194, 312–319. [Google Scholar] [CrossRef]
- Orozco, R.S.; Hernández, P.B.; Morales, G.R.; Núñez, F.U.; Villafuerte, J.O.; Lugo, V.L.; Ramírez, N.F.; Díaz, C.E.B.; Vázquez, P.C. Characterization of Lignocellulosic Fruit Waste as an Alternative Feedstock for Bioethanol Production. BioResources 2014, 9, 1873–1885. [Google Scholar]
- Alvarez, J.; Hooshdaran, B.; Cortazar, M.; Amutio, M.; Lopez, G.; Freire, F.B.; Haghshenasfard, M.; Hossein, S.; Olazar, M. Valorization of Citrus Wastes by Fast Pyrolysis in a Conical Spouted Bed Reactor. Fuel 2018, 224, 111–120. [Google Scholar] [CrossRef]
- Mohsin, A.; Zhang, K.; Hu, J.; Salim-Ur-Rehman; Tariq, M.; Zaman, W.Q.; Khan, I.M.; Zhuang, Y.; Guo, M. Optimized Biosynthesis of Xanthan via Effective Valorization of Orange Peels Using Response Surface Methodology: A Kinetic Model Approach. Carbohydr. Polym. 2018, 181, 793–800. [Google Scholar] [CrossRef]
- Ahmed, I.; Zia, M.A.; Hussain, M.A.; Akram, Z.; Naveed, M.T.; Nowrouzi, A. Bioprocessing of Citrus Waste Peel for Induced Pectinase Production by Aspergillus niger; Its Purification and Characterization. J. Radiat. Res. Appl. Sci. 2016, 9, 148–154. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Solarte-Toro, J.C.; Orrego-Alzate, C.E.; Acosta-Medina, C.D.; Cardona-Alzate, C.A. Integral Use of Orange Peel Waste through the Biorefinery Concept: An Experimental, Technical, Energy, and Economic Assessment. Biomass Convers. Biorefin. 2020, 11, 645–659. [Google Scholar] [CrossRef]
- Lima, C.A.; Bento, H.B.; Picheli, F.P.; Paz-Cedeno, F.R.; Mussagy, C.U.; Masarin, F.; Acosta, M.A.T.; Santos-Ebinuma, V.C. Process development and techno-economic analysis of co-production of colorants and enzymes valuing agro-industrial citrus waste. Sustain. Chem. Phar. 2023, 35, 101204. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Rosa, A.; Era, B.; Masala, C.; Nieddu, M.; Scano, P.; Fais, A.; Porcedda, S.; Piras, A. Supercritical CO extraction of waste citrus seeds: Chemical composition, nutritional and biological properties of edible fixed oils. Europ. J. Lip. Sci. Technol. 2019, 121, 1800502. [Google Scholar] [CrossRef]
- Gooruee, R.; Hojjati, M.; Behbahani, B.A.; Shahbazi, S.; Askari, H. Extracellular enzyme production by different species of Trichoderma fungus for lemon peel waste bioconversion. Biomass Convers. Bioref. 2024, 14, 2777–2786. [Google Scholar] [CrossRef]
- Amadi, O.C.; Awodiran, I.P.; Moneke, A.N.; Nwagu, T.N.; Egong, J.E.; Chukwu, G.C. Concurrent production of cellulase, xylanase, pectinase and immobilization by combined Cross-linked enzyme aggregate strategy—Advancing tri-enzyme biocatalysis. Bioresour. Technol. Rep. 2022, 18, 101019. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A.K.; Bilal, M.; Chandra, R. Sustainable production of thermostable laccase from agro-residues waste by Bacillus aquimaris AKRC02. Catal. Lett. 2022, 152, 1784–1800. [Google Scholar] [CrossRef]
- Camargo, D.A.; Pereira, M.S.; dos Santos, A.G.; Fleuri, L.F. Isolated and fermented orange and grape wastes: Bromatological characterization and phytase, lipase and protease source. Innov. Food Sci. Emerg. Technol. 2022, 77, 102978. [Google Scholar] [CrossRef]
- Singh, B.; Garg, N.; Mathur, P.; Soni, S.K.; Vaish, S.; Kumar, S. Microbial production of multienzyme preparation from mosambi peel using Trichoderma asperellum. Arch. Microbiol. 2022, 204, 313. [Google Scholar] [CrossRef]
- Ahmed, T.; Rana, M.R.; Zzaman, W.; Ara, R.; Aziz, M.G. Optimization of substrate composition for pectinase production from Satkara (Citrus macroptera) peel using Aspergillus niger—ATCC 1640 in solid—State fermentation. Heliyon 2021, 7, e08133. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Serrano, A.; García-Reyes, R.B.; García-González, A. Optimization of hydrolases production by Penicillium crustosum in submerged fermentation using agro-waste residues as cosubstrate. Biocatal. Agric. Biotechnol. 2024, 57, 103116. [Google Scholar] [CrossRef]
- Belorkar, S.A.; Kausar, H. Valorization parameters to determine the fermentative applicability of selected fruit peels for xylanase production. Waste Biomass Valorization 2023, 14, 185–196. [Google Scholar] [CrossRef]
- Thite, V.S.; Nerurkar, A.S.; Baxi, N.N. Optimization of concurrent production of xylanolytic and pectinolytic enzymes by Bacillus safensis M35 and Bacillus altitudinis J208 using agro-industrial biomass through Response Surface Method. Sci. Rep. 2020, 10, 3824. [Google Scholar] [CrossRef] [PubMed]
- Contato, A.G.; Inácio, F.D.; Brugnari, T.; de Araújo, C.A.V.; Maciel, G.M.; Haminiuk, C.W.I.; Peralta, R.M.; de Souza, C.G.M. Solid-state fermentation with orange waste: Optimization of laccase production from Pleurotus pulmonarius CCB-20 and decolorization of synthetic dyes. Acta Sci. Biol. Sci. 2020, 42, 1–9. [Google Scholar] [CrossRef]
- Ortolan, G.G.; Contato, A.G.; Aranha, G.M.; Salgado, J.C.S.; Alnoch, R.C.; Polizeli, M.L.T.M. Enhancing Laccase Production by Trametes hirsuta GMA-01 Using Response Surface Methodology and Orange Waste: A Novel Breakthrough in Sugarcane Bagasse Saccharification and Synthetic Dye Decolorization. Reactions 2024, 5, 635–650. [Google Scholar] [CrossRef]
- Athanázio-Heliodoro, J.C.; Okino-Delgado, C.H.; Fernandes, C.J.D.C.; Zanutto, M.R.; Prado, D.Z.D.; da Silva, R.A.; Facanali, R.; Zambuzzi, W.F.; Marques, M.O.M.; Fleuri, L.F. Improvement of lipase obtaining system by orange waste-based solid-state fermentation: Production, characterization and application. Prep. Biochem. Biotechnol. 2018, 48, 565–573. [Google Scholar] [CrossRef]
- Okino-Delgado, C.H.; Pereira, M.S.; da Silva, J.V.I.; Kharfan, D.; do Prado, D.Z.; Fleuri, L.F. Lipases obtained from orange wastes: Commercialization potential and biochemical properties of different varieties and fractions. Biotechnol. Prog. 2019, 35, e2734. [Google Scholar] [CrossRef]
- Johnvesly, B.; Manjunath, B.R.; Naik, G.R. Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99. Bioresour. Technol. 2002, 82, 61–64. [Google Scholar] [CrossRef]
- Kavitha, R. Production of amylase and protease from fruit peels using Bacillus subtilis by solid-state fermentation. Int. J. Sci. Res. Rev. 2018, 7, 652–663. [Google Scholar]
- Chimbekujwo, K.I.; Ja’afaru, M.I.; Adeyemo, O.M. Purification, characterization and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Sci. Afr. 2020, 8, e00398. [Google Scholar] [CrossRef]
- Contato, A.G.; Borelli, T.C.; de Carvalho, A.K.F.; Bento, H.B.S.; Buckeridge, M.S.; Rogers, J.; Hartson, S.; Prade, R.A.; Polizeli, M.L.T.M. Comparative Analysis of CAZymes from Trichoderma longibrachiatum LMBC 172 Cultured with Three Different Carbon Sources: Sugarcane Bagasse, Tamarind Seeds, and Hemicellulose Simulation. Clean Technol. 2024, 6, 994–1010. [Google Scholar] [CrossRef]
- Benny, N.; Shams, R.; Dash, K.K.; Pandey, V.K.; Bashir, O. Recent trends in utilization of citrus fruits in production of eco-enzyme. J. Agric. Food Res. 2023, 13, 100657. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Girardi, E.A.; Sola, J.G.P.; Scapin, M.D.S.; Moreira, A.S.; Bassanezi, R.B.; Ayres, A.J.; Peña, L. The perfect match: Adjusting high tree density to rootstock vigor for improving cropping and land use efficiency of sweet orange. Agronomy 2021, 11, 2569. [Google Scholar] [CrossRef]
- Patsalou, M.; Chrysargyris, A.; Tzortzakis, N.; Koutinas, M. A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies. Waste Manag. 2020, 113, 469–477. [Google Scholar] [CrossRef]
- Panwar, D.; Panesar, P.S.; Chopra, H.K. Recent trends on the valorization strategies for the management of citrus by-products. Food Rev. Int. 2021, 37, 91–120. [Google Scholar] [CrossRef]
- Scarcella, A.S.A.; Pasin, T.M.; de Lucas, R.C.; Ferreira-Nozawa, M.S.; de Oliveira, T.B.; Contato, A.G.; Grandis, A.; Buckeridge, M.S.; Polizeli, M.L.T.M. Holocellulase production by filamentous fungi: Potential in the hydrolysis of energy cane and other sugarcane varieties. Biomass Convers. Bioref. 2023, 13, 1163–1174. [Google Scholar] [CrossRef]
- Srivastava, N.; Mohammad, A.; Pal, D.B.; Srivastava, M.; Alshahrani, M.Y.; Ahmad, I.; Singh, R.; Mishra, P.K.; Yoon, T.; Gupta, V.K. Enhancement of fungal cellulase production using pretreated orange peel waste and its application in improved bioconversion of rice husk under the influence of nickel cobaltite nanoparticles. Biomass Convers. Bioref. 2024, 14, 6687–6696. [Google Scholar] [CrossRef]
- Areeshi, M.Y. Microbial cellulase production using fruit wastes and its applications in biofuels production. Int. J. Food Microbiol. 2022, 378, 109814. [Google Scholar] [CrossRef]
- Al Mousa, A.A.; Hassane, A.M.; Gomaa, A.E.R.F.; Aljuriss, J.A.; Dahmash, N.D.; Abo-Dahab, N.F. Response-surface statistical optimization of submerged fermentation for pectinase and cellulase production by Mucor circinelloides and M. hiemalis. Fermentation 2022, 8, 205. [Google Scholar] [CrossRef]
- Mathias, D.J.; Kumar, S.; Rangarajan, V. An investigation on citrus peel as the lignocellulosic feedstock for optimal reducing sugar synthesis with an additional scope for the production of hydrolytic enzymes from the aqueous extract waste. Biocatal. Agric. Biotechnol. 2019, 20, 101259. [Google Scholar] [CrossRef]
- da Silva, A.F.V.; Santos, L.A.D.; de Melo, A.H.F.; Jucá, J.F.T.; Santos, A.F.M.S.; Porto, T.S. Use of Cellulase Obtained from Solid-State Fermentation of Orange and Passion Fruit Peels as an Enzymatic Pre-treatment Step for Anaerobic Digestion. BioEnergy Res. 2024, 17, 1288–1301. [Google Scholar] [CrossRef]
- Bhati, N.; Shreya; Sharma, A.K. Cost-effective cellulase production, improvement strategies, and future challenges. J. Food Process Eng. 2021, 44, e13623. [Google Scholar]
- Taghizadeh-Alisaraei, A.; Hosseini, S.H.; Ghobadian, B.; Motevali, A. Biofuel production from citrus wastes: A feasibility study in Iran. Renew. Sustain. Energy Rev. 2017, 69, 1100–1112. [Google Scholar] [CrossRef]
- Chaudhary, R.; Kuthiala, T.; Singh, G.; Rarotra, S.; Kaur, A.; Arya, S.K.; Kumar, P. Current status of xylanase for biofuel production: A review on classification and characterization. Biomass Convers. Bioref. 2021, 13, 8773–8791. [Google Scholar] [CrossRef]
- Zerva, I.; Remmas, N.; Ntougias, S. Diversity and biotechnological potential of xylan-degrading microorganisms from orange juice processing waste. Water 2019, 11, 274. [Google Scholar] [CrossRef]
- Silva, D.F.; Hergesel, L.M.; Campioni, T.S.; Carvalho, A.F.A.; Oliva-Neto, P. Evaluation of different biological and chemical treatments in agroindustrial residues for the production of fungal glucanases and xylanases. Process Biochem. 2018, 67, 29–37. [Google Scholar] [CrossRef]
- Barbieri, G.S.; Bento, H.B.; de Oliveira, F.; Picheli, F.P.; Dias, L.M.; Masarin, F.; Santos-Ebinuma, V.C. Xylanase production by Talaromyces amestolkiae valuing agroindustrial byproducts. BioTech 2022, 11, 15. [Google Scholar] [CrossRef]
- Saha, S.P.; Ghosh, S. Optimization of xylanase production by Penicillium citrinum xym2 and application in saccharification of agro-residues. Biocatal. Agric. Biotechnol. 2014, 3, 188–196. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 2018, 129, 153–167. [Google Scholar] [CrossRef]
- Sybuia, P.A.; Contato, A.G.; de Araújo, C.A.V.; Zanzarin, D.M.; Maciel, G.M.; Pilau, E.J.; Peralta, R.M.; de Souza, C.G.M. Application of the white-rot fungus Trametes sp.(C3) laccase in the removal of acetaminophen from aqueous solutions. J. Water Process Eng. 2024, 57, 104677. [Google Scholar] [CrossRef]
- Akpinar, M.; Urek, R.O. Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization. 3 Biotech 2017, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Chairin, T.; Nitheranont, T.; Watanabe, A.; Asada, Y.; Khanongnuch, C.; Lumyong, S. Purification and characterization of the extracellular laccase produced by Trametes polyzona WR710–1 under solid-state fermentation. J. Basic Microbiol. 2014, 54, 35–43. [Google Scholar] [CrossRef]
- Inácio, F.D.; Ferreira, R.O.; De Araujo, C.A.V.; Peralta, R.M.; de Souza, C.G.M. Production of Enzymes and Biotransformation of Orange Waste by Oyster Mushroom, Pleurotus pulmonarius (Fr.) Quél. Adv. Microbiol. 2015, 5, 1–8. [Google Scholar] [CrossRef]
- Rosales, E.; Couto, S.R.; Sanromán, M.A. Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzym. Microb. Technol. 2007, 40, 1286–1290. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, D.; Lv, C.; Zhang, Y.; Gelbic, I.; Ye, X. Archives of microbiology: Screening of pectinase-producing bacteria from citrus peel and characterization of a recombinant pectate lyase with applied potential. Arch. Microbiol. 2020, 202, 1005–1013. [Google Scholar] [CrossRef]
- Esawy, M.A.; Gamal, A.A.; Kamel, Z. Optimization of Aspergillus niger NRC1ami pectinase using citrus peel pectin, purification, and thermodynamic characterization of the free and modified enzyme. Waste Biomass Valorization 2022, 13, 4823–4837. [Google Scholar] [CrossRef]
- Guimarães, N.C.A.; Glienke, N.N.; Contato, A.G.; Galeano, R.M.S.; Marchetti, C.R.; Rosa, M.P.G.; Teles, J.S.S.; Simas, A.L.O.; Zanoelo, F.F.; Masui, D.C.; et al. Production and Biochemical Characterization of Aspergillus japonicus Pectinase Using a Low-Cost Alternative Carbon Source for Application in the Clarification of Fruit Juices. Waste Biomass Valorization 2024, 15, 177–186. [Google Scholar] [CrossRef]
- Haile, S.; Masi, C.; Tafesse, M. Isolation and characterization of pectinase-producing bacteria (Serratia marcescens) from avocado peel waste for juice clarification. BMC Microbiol. 2022, 22, 145. [Google Scholar] [CrossRef]
- Mahto, R.B.; Yadav, M.; Muthuraj, M.; Sharma, A.K.; Bhunia, B. Biochemical properties and application of a novel pectinase from a mutant strain of Bacillus subtilis. Biomass Convers. Bioref. 2023, 13, 10463–10474. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Bhattacharyya, R.; Bhattacharya, S.; Alnafisi, B.K. Valorisation of Citrus limetta peel for Aspergillus terreus FP6 mediated pectinase fermentation and application in grape juice clarification. J. King Saud. Univ. -Sci. 2024, 36, e103454. [Google Scholar] [CrossRef]
- Qadir, F.; Ejaz, U.; Sohail, M. Co-culturing corncob-immobilized yeasts on orange peels for the production of pectinase. Biotechnol. Lett. 2020, 42, 1743–1753. [Google Scholar] [CrossRef]
- Majumder, K.; Paul, B.; Sundas, R. An analysis of exo-polygalacturonase bioprocess in submerged and solid-state fermentation by Pleurotus ostreatus using pomelo peel powder as carbon source. J. Genet. Eng. Biotechnol. 2020, 18, 47. [Google Scholar] [CrossRef]
- Prajapati, J.; Dudhagara, P.; Patel, K. Production of thermal and acid-stable pectinase from Bacillus subtilis strain BK-3: Optimization, characterization, and application for fruit juice clarification. Biocatal. Agric. Biotechnol. 2021, 35, e102063. [Google Scholar] [CrossRef]
- John, J.; Kaimal, K.S.; Smith, M.L.; Rahman, P.K.; Chellam, P.V. Advances in upstream and downstream strategies of pectinase bioprocessing: A review. Int. J. Biol. Macromol. 2020, 162, 1086–1099. [Google Scholar] [CrossRef]
- Najar, I.N.; Sharma, P.; Das, R.; Tamang, S.; Mondal, K.; Thakur, N.; Kumar, V. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. J. Environ. Manag. 2024, 360, e121136. [Google Scholar] [CrossRef]
- Okino-Delgado, C.H.; Fleuri, L.F. Obtaining lipases from byproducts of orange juice processing. Food Chem. 2014, 163, 103–107. [Google Scholar] [CrossRef]
- Maciel, M.; Ottoni, C.; Santos, C.; Lima, N.; Moreira, K.; Souza-Motta, C. Production of Polygalacturonases by Aspergillus section Nigri Strains in a Fixed Bed Reactor. Molecules 2013, 18, 1660–1671. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Najafpour, G.D.; Mohammadi, M. Bioconversion of Agroindustrial Wastes to Pectinases Enzyme via Solid State Fermentation in Trays and Rotating Drum Bioreactors. Biocatal. Agric. Biotechnol. 2019, 21, 101280. [Google Scholar] [CrossRef]
- Poletto, P.; Polidoro, T.A.; Zeni, M.; da Silveira, M.M. Evaluation of the Operating Conditions for the Solid-State Production of Pectinases by Aspergillus niger in a Bench-Scale, Intermittently Agitated Rotating Drum Bioreactor. LWT—Food Sci. Technol. 2017, 79, 92–101. [Google Scholar] [CrossRef]
- Zhang, Z.; Xing, J.; Li, X.; Lu, X.; Liu, G.; Qu, Y.; Zhao, J. Review of research progress on the production of cellulase from filamentous fungi. Int. J. Biol. Macromol. 2024, 277, 134539. [Google Scholar] [CrossRef] [PubMed]
- Gervasi, T.; Mandalari, G. Valorization of Agro-Industrial Orange Peel By-Products through Fermentation Strategies. Fermentation 2024, 10, 224. [Google Scholar] [CrossRef]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Optimization of the fermentation parameters to maximize the production of cellulases and xylanases using DDGS as the main feedstock in stirred tank bioreactors. Biocatal. Agric. Biotechnol. 2022, 45, e102514. [Google Scholar] [CrossRef]
- Li, P.; Xia, J.; Shan, Y.; Nie, Z. Comparative Study of Multi-Enzyme Production from Typical Agro-Industrial Residues and Ultrasound-Assisted Extraction of Crude Enzyme in Fermentation with Aspergillus japonicus PJ01. Bioprocess Biosyst. Eng. 2015, 38, 2013–2022. [Google Scholar] [CrossRef]
- Demir, H.; Göğüs, N.; Tari, C.; Heerd, D.; Lahore, M.F. Optimization of the Process Parameters for the Utilization of Orange Peel to Produce Polygalacturonase by Solid-State Fermentation from an Aspergillus sojae Mutant Strain. Turk. J. Biol. 2012, 36, 394–404. [Google Scholar] [CrossRef]
- Biz, A.; Finkler, A.T.J.; Pitol, L.O.; Medina, B.S.; Krieger, N.; Mitchell, D.A. Production of Pectinases by Solid-State Fermentation of a Mixture of Citrus Waste and Sugarcane Bagasse in a Pilot-Scale Packed-Bed Bioreactor. Biochem. Eng. J. 2016, 111, 54–62. [Google Scholar] [CrossRef]
Citrus by-Product | Lignin | Cellulose | Hemicellulose | Pectin | Sugars | Lipids | Protein | Ash | References |
---|---|---|---|---|---|---|---|---|---|
C. sinensis peels | 7.52 | 37.10 | - | 23.02 | 9.60 | 4.00 | 9.10 | 2.60 | [19] |
C. limon pulp | 7.55 | 36.22 | - | 22.53 | 9.01 | 4.00 | 8.72 | 2.54 | [19] |
C. sinensis and C. paradisi peels, seeds and leaf | 1.95–2.19 | 8.82–22.00 | - | 15.30–25.00 | 22.9–33.1 | 3.78 | 6.07 | 3.73–4.8 | [14,20] |
C. reticulata peels and pulp | 0.56 | 10.10 | - | 22.60 | 31.58 | - | 5.78 | 3.23 | [21] |
C. unshiu peels | 4.30 | 25.10 | - | 34.00 | - | - | - | 3.30 | [22] |
Orange peels and pulp | 2.17–14.38 | 11.93–34.53 | 11.38–16.60 | 11.18–35.30 | 31.62 | 3.63–5.18- | 5.97–7.80 | 2.30–16.6 | [23,24,25,26,27] |
Orange by-product | 21.58 | 11.94 | 6.50 | 4.99 | 25.04 | 2.08 | 6.56 | 6.58 | [28] |
Microorganism | Substrate | Production | Activity | Reference |
---|---|---|---|---|
Cellulases | ||||
Trichoderma afroharzianum | Lemon peel | Submerged fermentation (SmF) | 10.96 ± 0.51 U/mL | [31] |
Trichoderma asperellum | Mosambi peel | Solid-state fermentation (SSF) | 4f97.3 ± 2.06 U/mL | [35] |
Aspergillus niger | Satkara peel | Solid-state fermentation (SSF) | 0.65 ± 0.14 U/mL | [36] |
Penicillium crustosum | Lemon peel | Submerged fermentation (SmF) | 56.23 ± 0.10 U/mL | [37] |
Bacillus sp. | Citrus peel | Solid-state fermentation (SSF) | 2.56 ± 0.082 U/gds | [32] |
Xylanases | ||||
Penicillium crustosum | Lemon peel | Submerged fermentation (SmF) | 47.26 ± 1.36 U/mL | [37] |
Aspergillus flavus | Orange peel | Solid-state fermentation (SSF) | 71.0 ± 0.09 U/mL | [38] |
Bacillus sp. | Citrus peel | Solid-state fermentation (SSF) | 2.25 ± 0.101 U/gds | [32] |
Bacillus safensis | Citrus peel | Submerged fermentation (SmF) | 68.0 ± 13.4 U/g | [39] |
Bacillus altitudinis | Citrus peel | Submerged fermentation (SmF) | 99.2 ± 11.7 U/g | [39] |
Ligninases | ||||
Pleurotus pulmonarius | Orange waste | Solid-state fermentation (SSF) | 25.45 U/L (laccase) | [40] |
Trametes hirsuta | Orange waste | Solid-state fermentation (SSF) | 11.63 U/L (laccase) | [41] |
Bacillus aquimaris | Orange peel | Submerged fermentation (SmF) | 0.96 U/mL (laccase) | [33] |
Pectinases | ||||
Penicillium crustosum | Lemon peel | Submerged fermentation (SmF) | 971.50 ± 12.19 U/mL | [37] |
Trichoderma asperellum | Mosambi peel | Solid-state fermentation (SSF) | 595.7 ± 2.47 U/mL | [35] |
Bacillus sp. | Citrus peel | Solid-state fermentation (SSF) | 2.910 ± 0.097 U/gds | [32] |
Bacillus safensis | Citrus peel | Submerged fermentation (SmF) | 327,139.7 ± 34,219.0 U/g | [39] |
Bacillus altitudinis | Citrus peel | Submerged fermentation (SmF) | 895,432.2 ± 24,861.0 U/g | [39] |
Lipases | ||||
Aspergillus brasiliensis | Orange peel | Solid-state fermentation (SSF) | 99.58 U g−1 | [42] |
Aspergillus niger CBMAI 2084 | Orange and grape waste | Solid-state fermentation (SSF) | 248.3–293.9 U g−1 | [34] |
Orange bagasse and peel | Solid-state fermentation (SSF) | 12.0–65.6 U g−1 | [43] | |
Aspergillus niger CBMAI 2084 | Orange and grape waste | Solid-state fermentation (SSF) | 53.5 U g−1 | [34] |
Proteases | ||||
Bacillus sp. JB-99 | Orange peel | Solid-state fermentation (SSF) | 10.5 U mL−1 | [44] |
Aspergillus niger CBMAI 2084 | Orange and grape waste | Solid-state fermentation (SSF) | 111.4–174.9 U mg−1 | [34] |
Bacillus subtilis | Fruit peels (banana, pomegranate, and grapes) | Solid-state fermentation (SSF) | 210 μg mL−1 | [45] |
Aspergillus brasiliensis BCW2 | Orange peel | Solid-state fermentation (SSF) | 1604 U mL−1 | [46] |
Aspergillus niger CBMAI 2084 | Orange and grape waste | Solid-state fermentation (SSF) | 174.9 U mg−1 | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, C.A.; Contato, A.G.; de Oliveira, F.; da Silva, S.S.; Hidalgo, V.B.; Irfan, M.; Gambarato, B.C.; Carvalho, A.K.F.; Bento, H.B.S. Trends in Enzyme Production from Citrus By-Products. Processes 2025, 13, 766. https://doi.org/10.3390/pr13030766
Lima CA, Contato AG, de Oliveira F, da Silva SS, Hidalgo VB, Irfan M, Gambarato BC, Carvalho AKF, Bento HBS. Trends in Enzyme Production from Citrus By-Products. Processes. 2025; 13(3):766. https://doi.org/10.3390/pr13030766
Chicago/Turabian StyleLima, Caio A., Alex G. Contato, Fernanda de Oliveira, Silvio S. da Silva, Vitor B. Hidalgo, Muhammad Irfan, Bruno C. Gambarato, Ana K. F. Carvalho, and Heitor B. S. Bento. 2025. "Trends in Enzyme Production from Citrus By-Products" Processes 13, no. 3: 766. https://doi.org/10.3390/pr13030766
APA StyleLima, C. A., Contato, A. G., de Oliveira, F., da Silva, S. S., Hidalgo, V. B., Irfan, M., Gambarato, B. C., Carvalho, A. K. F., & Bento, H. B. S. (2025). Trends in Enzyme Production from Citrus By-Products. Processes, 13(3), 766. https://doi.org/10.3390/pr13030766