Recent Advances and Challenges in Industrial Robotics: A Systematic Review of Technological Trends and Emerging Applications
Abstract
:1. Introduction
2. Methodology and Data Sources
3. Technological Trends in Industrial Robotics
3.1. Collaborative Robotics
3.2. Autonomous Decision Making
3.3. Perception and Sensing
3.4. Synthesis and Implications
4. Emerging Applications of Industrial Robotics
4.1. Logistics and Supply Chain
4.2. Healthcare and Medical Robotics
4.3. Agriculture and Sustainability
4.4. Interdisciplinary Convergence
5. Challenges in Industrial Robotics
6. Discussion
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AMRs | Autonomous Mobile Robots |
AGVs | Automated Guided Vehicles |
CAGR | Compound Annual Growth Rate |
Cobots | Collaborative Robots |
CNNs | Convolutional Neural Networks |
CROO | Crop Robotics Operations Orchestrator |
CPS | Cyber-Physical Systems |
HRI | Human–Robot Interaction |
IoT | Internet of Things |
ISO | International Organization for Standardization |
LiDAR | Laser Imaging Detection and Ranging |
MIS | Minimally Invasive Surgery |
ML | Machine Learning |
OPC UA | Open Platform Communications Unified Architecture |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RL | Reinforcement Learning |
RoI | Return on Investment |
ROS | Robotic Operating Systems |
SMEs | Small and Medium-Sized Enterprises |
TCO | Total Cost of Ownership |
WoS | Web of Science |
References
- Solanes, J.E.; Gracia, L.; Valls Miro, J. Advances in Human–Machine Interaction, Artificial Intelligence, and Robotics. Electronics 2024, 13, 3856. [Google Scholar] [CrossRef]
- Nagy, M.; Lăzăroiu, G.; Valaskova, K. Machine Intelligence and Autonomous Robotic Technologies in the Corporate Context of SMEs: Deep Learning and Virtual Simulation Algorithms, Cyber-Physical Production Networks, and Industry 4.0-Based Manufacturing Systems. Appl. Sci. 2023, 13, 1681. [Google Scholar] [CrossRef]
- Schmitz, A. Human–Robot Collaboration in Industrial Automation: Sensors and Algorithms. Sensors 2022, 22, 5848. [Google Scholar] [CrossRef] [PubMed]
- Campilho, R.D.S.G.; Silva, F.J.G. Industrial Process Improvement by Automation and Robotics. Machines 2023, 11, 1011. [Google Scholar] [CrossRef]
- Mendez, E.; Ochoa, O.; Olivera-Guzman, D.; Soto-Herrera, V.H.; Luna-Sánchez, J.A.; Lucas-Dophe, C.; Lugo-del-Real, E.; Ayala-Garcia, I.N.; Alvarado Perez, M.; González, A. Integration of Deep Learning and Collaborative Robot for Assembly Tasks. Appl. Sci. 2024, 14, 839. [Google Scholar] [CrossRef]
- Singh, R.; Mozaffari, S.; Akhshik, M.; Ahamed, M.J.; Rondeau-Gagné, S.; Alirezaee, S. Human–Robot Interaction Using Learning from Demonstrations and a Wearable Glove with Multiple Sensors. Sensors 2023, 23, 9780. [Google Scholar] [CrossRef]
- Barari, A.; Tsuzuki, M.S.G. Smart Manufacturing and Industry 4.0. Appl. Sci. 2023, 13, 1545. [Google Scholar] [CrossRef]
- Othman, U.; Yang, E. Human–Robot Collaborations in Smart Manufacturing Environments: Review and Outlook. Sensors 2023, 23, 5663. [Google Scholar] [CrossRef]
- Visconti, P.; Rausa, G.; Del-Valle-Soto, C.; Velázquez, R.; Cafagna, D.; De Fazio, R. Machine Learning and IoT-Based Solutions in Industrial Applications for Smart Manufacturing: A Critical Review. Future Internet 2024, 16, 394. [Google Scholar] [CrossRef]
- Baptista, J.; Castro, A.; Gomes, M.; Amaral, P.; Santos, V.; Silva, F.; Oliveira, M. Human–Robot Collaborative Manufacturing Cell with Learning-Based Interaction Abilities. Robotics 2024, 13, 107. [Google Scholar] [CrossRef]
- Grau, A.; Indri, M.; Lo Bello, L.; Sauter, T. Robots in Industry: The Past, Present, and Future of a Growing Collaboration with Humans. IEEE Ind. Electron. Mag. 2021, 15, 50–61. [Google Scholar] [CrossRef]
- Hu, S.; Shen, L.; Zhang, Y.; Chen, Y.; Tao, D. On Transforming Reinforcement Learning with Transformers: The Development Trajectory. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 8580–8599. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zhao, Q. Recent Advances in Robotics and Intelligent Robots Applications. Appl. Sci. 2024, 14, 4279. [Google Scholar] [CrossRef]
- Zhao, G.; Ye, C.; Zubairu, N.; Mathiyazhagan, K.; Zhou, X. Deployment of Industry 4.0 Technologies to Achieve a Circular Economy in Agri-Food Supply Chains: A Thorough Analysis of Enablers. J. Environ. Manag. 2025, 373, 123856. [Google Scholar] [CrossRef]
- International Federation of Robotics (IFR). World Robotics Report 2024; IFR: Frankfurt, Germany, 2024; Available online: https://ifr.org/img/worldrobotics/Press_Conference_2024.pdf (accessed on 5 February 2025).
- Li, G.; Branstetter, L.G. Does “Made in China 2025” Work for China? Evidence from Chinese Listed Firms. Res. Policy 2024, 53, 105009. [Google Scholar] [CrossRef]
- Yuan, W.; Lu, W. Research on the impact of industrial robot application on the status of countries in manufacturing global value chains. PLoS ONE 2023, 18, e0286842. [Google Scholar] [CrossRef]
- Guo, T.; Li, J.; Zhang, Y.; Cai, L.; Li, Q. Study on Trajectory Optimization for a Flexible Parallel Robot in Tomato Packaging. Agriculture 2024, 14, 2274. [Google Scholar] [CrossRef]
- Graf, H.; Mohamed, H. Robotization and Employment Dynamics in German Manufacturing Value Chains. Struct. Change Econ. Dyn. 2024, 68, 133–147. [Google Scholar] [CrossRef]
- Gao, B.; Fan, J.; Zheng, P. Empower Dexterous Robotic Hand for Human-Centric Smart Manufacturing: A Perception and Skill Learning Perspective. Robot. Comput.-Integr. Manuf. 2025, 93, 102909. [Google Scholar] [CrossRef]
- Chang, V.; Doan, L.M.T.; Xu, Q.A.; Hall, K.; Wang, Y.A.; Kamal, M.M. Digitalization in Omnichannel Healthcare Supply Chain Businesses: The Role of Smart Wearable Devices. J. Bus. Res. 2023, 156, 113369. [Google Scholar] [CrossRef]
- Innocenti, M. Biomimicry and AI-Enabled Automation in Agriculture. J. Agric. Environ. Ethics 2025, 38, 2. [Google Scholar] [CrossRef]
- Makaremi, N.; Yildirim, S.; Morgan, G.T.; Touchie, M.F.; Jakubiec, J.A.; Robinson, J.B. Impact of classroom environment on student wellbeing in higher education: Review and future directions. Build. Environ. 2024, 265, 111958. [Google Scholar] [CrossRef]
- Antonaci, F.G.; Olivetti, E.C.; Marcolin, F.; Castiblanco Jimenez, I.A.; Eynard, B.; Vezzetti, E.; Moos, S. Workplace Well-Being in Industry 5.0: A Worker-Centered Systematic Review. Sensors 2024, 24, 5473. [Google Scholar] [CrossRef] [PubMed]
- Gerasimov, I.; KC, B.; Mehrabian, A.; Acker, J.; McGuire, M.P. Comparison of datasets citation coverage in Google Scholar, Web of Science, Scopus, Crossref, and DataCite. Scientometrics 2024, 129, 3681–3704. [Google Scholar] [CrossRef]
- Hermoza Llanos, E.; Corves, B.; Huesing, M.; Saxena, A. Systematic mapping of synthesis methods for compliant grippers using PRISMA. Mech. Mach. Theory 2025, 206, 105900. [Google Scholar] [CrossRef]
- Araujo, H.; Mousavi, M.R.; Varshosaz, M. Testing, validation, and verification of robotic and autonomous systems: A systematic review. ACM Trans. Softw. Eng. Methodol. 2023, 32, 51. [Google Scholar] [CrossRef]
- Sharma, S.; Dubey, R.; Chaudhury, S. A bibliometric survey on impact of Blockchain in Robotics: Trends and Applications. Comput. Electr. Eng. 2024, 120, 109744. [Google Scholar] [CrossRef]
- Yi, W.; Zhao, Y.; Wang, W. Four decades of research on multiword expressions: A bibliometric analysis. Appl. Linguist. 2025, amae085. [Google Scholar] [CrossRef]
- Mazzei, D.; Ramjattan, R. Machine Learning for Industry 4.0: A Systematic Review Using Deep Learning-Based Topic Modelling. Sensors 2022, 22, 8641. [Google Scholar] [CrossRef]
- Guo, J.; Chang, S.; Guo, M. The impact of peer effect of industrial robot application on enterprise carbon emission reduction. Sci. Rep. 2024, 14, 12070. [Google Scholar] [CrossRef]
- Taesi, C.; Aggogeri, F.; Pellegrini, N. COBOT Applications—Recent Advances and Challenges. Robotics 2023, 12, 79. [Google Scholar] [CrossRef]
- Watson, E.; Viana, T.; Zhang, S. Machine learning driven developments in behavioral annotation: A recent historical review. Int. J. Soc. Robot. 2024, 16, 1605–1618. [Google Scholar] [CrossRef]
- Cannavacciuolo, L.; Ferraro, G.; Ponsiglione, C.; Primario, S.; Quinto, I. Technological innovation-enabling industry 4.0 paradigm: A systematic literature review. Technovation 2023, 124, 102733. [Google Scholar] [CrossRef]
- Ciucu-Durnoi, A.N.; Delcea, C.; Stănescu, A.; Teodorescu, C.A.; Vargas, V.M. Beyond Industry 4.0: Tracing the Path to Industry 5.0 through Bibliometric Analysis. Sustainability 2024, 16, 5251. [Google Scholar] [CrossRef]
- Forlini, M.; Neri, F.; Ciccarelli, M.; Palmieri, G.; Callegari, M. Experimental implementation of skeleton tracking for collision avoidance in collaborative robotics. Int. J. Adv. Manuf. Technol. 2024, 134, 57–73. [Google Scholar] [CrossRef]
- Vecellio Segate, R.; Daly, A. Encoding the Enforcement of Safety Standards into Smart Robots to Harness Their Computing Sophistication and Collaborative Potential: A Legal Risk Assessment for European Union Policymakers. Eur. J. Risk Regul. 2024, 15, 665–704. [Google Scholar] [CrossRef]
- Jo, M.; Chung, M.; Kim, K.; Kim, H.-Y. Improving Path Accuracy and Vibration Character of Industrial Robot Arms with Iterative Learning Control Method. Int. J. Precis. Eng. Manuf. 2024, 25, 1851–1863. [Google Scholar] [CrossRef]
- Patrício, L.; Varela, L.; Silveira, Z. Proposal for a Sustainable Model for Integrating Robotic Process Automation and Machine Learning in Failure Prediction and Operational Efficiency in Predictive Maintenance. Appl. Sci. 2025, 15, 854. [Google Scholar] [CrossRef]
- Acmali, S.S.; Ortakci, Y.; Seker, H. Green AI-Driven Concept for the Development of Cost-Effective and Energy-Efficient Deep Learning Method: Application in the Detection of Eimeria Parasites as a Case Study. Adv. Intell. Syst. 2024, 6, 2300644. [Google Scholar] [CrossRef]
- Patil, S.; Vasu, V.; Srinadh, K.V.S. Advances and perspectives in collaborative robotics: A review of key technologies and emerging trends. Discov. Mech. Eng. 2023, 2, 13. [Google Scholar] [CrossRef]
- Blankemeyer, S.; Wendorff, D.; Raatz, A. A Hand-Interaction Model for Augmented Reality Enhanced Human-Robot Collaboration. CIRP Ann. Manuf. Technol. 2024, 73, 17–20. [Google Scholar] [CrossRef]
- Uztürk, D.; Büyüközkan, G. Industry 4.0 Technologies in Smart Agriculture: A Review and a Technology Assessment Model Proposition. Technol. Forecast. Soc. Change 2024, 208, 123640. [Google Scholar] [CrossRef]
- Tsapova, O.; Zhailaubayeva, S.; Kendyukh, Y.; Smolyaninova, S.; Abdulova, O. Industry Specifics and Problems of Digitalization in the Agro-Industrial Complex of the Republic of Kazakhstan. J. Knowl. Econ. 2024. [CrossRef]
- Ivanov, V.; Andrusyshyn, V.; Pavlenko, I.; Pitel’, J.; Bulej, V. New Classification of Industrial Robotic Gripping Systems for Sustainable Production. Sci. Rep. 2024, 14, 295. [Google Scholar] [CrossRef]
- Blanco, K.; Navas, E.; Emmi, L.; Fernandez, R. Manufacturing of 3D Printed Soft Grippers: A Review. IEEE Access 2024, 12, 30434–30451. [Google Scholar] [CrossRef]
- Souri, A.; Norouzi, M.; Alsenani, Y. A New Cloud-Based Cyber-Attack Detection Architecture for Hyper-Automation Process in Industrial Internet of Things. Clust. Comput. 2024, 27, 3639–3655. [Google Scholar] [CrossRef]
- Mallik, A.K. The Future of the Technology-Based Manufacturing in the European Union. Results Eng. 2023, 19, 101356. [Google Scholar] [CrossRef]
- Elguea-Aguinaco, Í.; Serrano-Muñoz, A.; Chrysostomou, D.; Inziarte-Hidalgo, I.; Bøgh, S.; Arana-Arexolaleiba, N. A Review on Reinforcement Learning for Contact-Rich Robotic Manipulation Tasks. Robot. Comput.-Integr. Manuf. 2023, 81, 102517. [Google Scholar] [CrossRef]
- Gad, A.; Basmaji, T.; Yaghi, M.; Alheeh, H.; Alkhedher, M.; Ghazal, M. Multiple Object Tracking in Robotic Applications: Trends and Challenges. Appl. Sci. 2022, 12, 9408. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, Z.; You, Z.; Tang, X.; Zi, B.; Yang, G.; Gosselin, C.; Caro, S. State-of-the-Art on Theories and Applications of Cable-Driven Parallel Robots. Front. Mech. Eng. 2022, 17, 37. [Google Scholar] [CrossRef]
- Raval, M.B.; Joshi, H. Categorical Framework for Implementation of Industry 4.0 Techniques in Medium-Scale Bearing Manufacturing Industries. Mater. Today Proc. 2022, 65, 3531–3537. [Google Scholar] [CrossRef]
- Hubert, C.; Odic, N.; Noel, M.; Gharib, S.; Zargarbashi, S.H.H.; Séoud, L. MuViH: Multi-View Hand Gesture Dataset and Recognition Pipeline for Human–Robot Interaction in a Collaborative Robotic Finishing Platform. Robot. Comput.-Integr. Manuf. 2025, 94, 102957. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, C.; Peng, F.; Zhang, Y.; Liu, H.; Zhou, W.; Yan, R.; Tang, X. Adaptive Safety-Critical Control Using a Variable Task Energy Tank for Collaborative Robot Tasks Under Dynamic Environments. Robot. Comput.-Integr. Manuf. 2025, 94, 102964. [Google Scholar] [CrossRef]
- Silano, G.; Caballero, A.; Liuzza, D.; Iannelli, L.; Bogdan, S.; Saska, M. A Signal Temporal Logic Approach for Task-Based Coordination of Multi-Aerial Systems: A Wind Turbine Inspection Case Study. Robot. Auton. Syst. 2025, 186, 104905. [Google Scholar] [CrossRef]
- Li, Z.; Wei, H.; Zhang, H.; Liu, C. A Variable Admittance Control Strategy for Stable and Compliant Human-Robot Physical Interaction. IEEE Robot. Autom. Lett. 2025, 10, 1138–1145. [Google Scholar] [CrossRef]
- Cetin, S.G.; Goztepe, C.; Karabulut Kurt, G.; Yanikomeroglu, H. A Glimpse of Physical Layer Decision Mechanisms: Facts, Challenges, and Remedies. IEEE Open J. Commun. Soc. 2022, 3, 1280–1294. [Google Scholar] [CrossRef]
- Li, C.; Nan, R.; Wei, Y.; Li, L.; Liang, J.; Li, N. Application Research of Vision-Guided Grinding Robot for Wheel Hub Castings. Processes 2025, 13, 238. [Google Scholar] [CrossRef]
- Fan, J.; Yin, Y.; Wang, T.; Dong, W.; Zheng, P.; Wang, L. Vision-Language Model-Based Human-Robot Collaboration for Smart Manufacturing: A State-of-the-Art Survey. Front. Eng. Manag. 2025. [CrossRef]
- Belyakov, B.; Sizykh, D. Adaptive algorithm for selecting the optimal trading strategy based on reinforcement learning for managing a hedge fund. IEEE Access 2024, 12, 189047–189063. [Google Scholar] [CrossRef]
- Shi, Y.; Xiao, X.; Han, Q.-L.; Jin, J.; Wen, S.; Xiang, Y. InforTest: Informer-Based Testing for Applications in the Internet of Robotic Things. IEEE Trans. Ind. Inform. 2025, 21, 1499–1507. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Gedeon, T.; Valaskova, K.; Vrbka, J.; Šuleř, P.; Zvarikova, K.; Kramarova, K.; Rowland, Z.; Stehel, V.; Gajanova, L.; et al. Cognitive Digital Twin-Based Internet of Robotic Things, Multi-Sensory Extended Reality and Simulation Modeling Technologies, and Generative Artificial Intelligence and Cyber–Physical Manufacturing Systems in the Immersive Industrial Metaverse. Equilib. Q. J. Econ. Econ. Policy 2024, 19, 719–748. [Google Scholar] [CrossRef]
- Yoshimura, K.; Yamauchi, Y.; Takahashi, H. Managing the Variability of a Logistics Robotic System. J. Syst. Softw. 2025, 222, 112328. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Z.; Yang, M.; Peng, Y.; Du, Z.; Sun, F. Yarn-Grouping Weaving Soft Robotics with Directional Inflation, Bilateral Bending, and Self-Sensing for Healthcare. Cell Rep. Phys. Sci. 2024, 5, 102137. [Google Scholar] [CrossRef]
- Velastegui, R.; Poler, R.; Díaz-Madroñero, M. Revolutionising Industrial Operations: The Synergy of Multiagent Robotic Systems and Blockchain Technology in Operations Planning and Control. Expert Syst. Appl. 2025, 269, 126460. [Google Scholar] [CrossRef]
- Rebelo, P.M.; Lima, J.; Soares, S.P.; Moura Oliveira, P.; Sobreira, H.; Costa, P. A Performance Comparison between Different Industrial Real-Time Indoor Localization Systems for Mobile Platforms. Sensors 2024, 24, 2095. [Google Scholar] [CrossRef]
- Rana, A.; Petitti, A.; Ugenti, A.; Galati, R.; Reina, G.; Milella, A. Toward Digital Twin of Off-Road Vehicles Using Robot Simulation Frameworks. IEEE Access 2024, 12, 178047–178061. [Google Scholar] [CrossRef]
- Urrea, C.; Agramonte, R. Improving Exoskeleton Functionality: Design and Comparative Evaluation of Control Techniques for Pneumatic Artificial Muscle Actuators in Lower Limb Rehabilitation and Work Tasks. Processes 2023, 11, 3278. [Google Scholar] [CrossRef]
- Khanesar, M.A.; Yan, M.; Isa, M.; Piano, S.; Branson, D.T. Precision Denavit–Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches. Sensors 2023, 23, 5368. [Google Scholar] [CrossRef]
- Ye, F.; Jia, G.; Wang, Y.; Chen, X.; Xi, J. Kinematic and Joint Compliance Modeling Method to Improve Position Accuracy of a Robotic Vision System. Sensors 2024, 24, 2559. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, W.; Zhang, Y.; Han, L.; Li, J.; Lu, Y. Integration and Calibration of an In Situ Robotic Manufacturing System for High-Precision Machining of Large-Span Spacecraft Brackets with Associated Datum. Robot. Comput.-Integr. Manuf. 2025, 94, 102928. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, X.; Pan, H.; Lu, K.; Cheng, Y. POE-Based Kinematic Calibration for Serial Robots Using Left-Invariant Error Representation and Decomposed Iterative Method. Robot. Auton. Syst. 2025, 186, 104896. [Google Scholar] [CrossRef]
- Wei, H.; Jiao, J.; Hu, X.; Yu, J.; Xie, X.; Wu, J.; Zhu, Y.; Liu, Y.; Wang, L.; Liu, M. FusionPortableV2: A Unified Multi-Sensor Dataset for Generalized SLAM Across Diverse Platforms and Scalable Environments. Int. J. Robot. Res. 2024. [CrossRef]
- Hou, J.; Xing, S.; Ma, Y.; Jing, F.; Tan, M. Maximum Allowable TCF Calibration Error for Robotic Pose Servoing. IEEE Robot. Autom. Lett. 2025, 10, 1744–1751. [Google Scholar] [CrossRef]
- Meng, F.; Wei, J.; Feng, Q.; Dong, Z.; Kang, R.; Guo, D.; Yang, J. A Robot Error Prediction and Compensation Method Using Joint Weights Optimization Within Configuration Space. Appl. Sci. 2024, 14, 11682. [Google Scholar] [CrossRef]
- Li, B.; Wang, P.; Li, Y.; Tian, W.; Liao, W. Neural-Network-Based Trajectory Error Compensation for Industrial Robots with Milling Force Disturbance. Int. J. Comput. Integr. Manuf. 2024. [CrossRef]
- Cui, S.; Wang, Y.; Li, J.; Zhang, X.; Liu, Z.; Chen, H.; Zhou, F. GelStereo BioTip: Self-Calibrating Bionic Fingertip Visuotactile Sensor for Robotic Manipulation. IEEE/ASME Trans. Mechatron. 2024, 29, 2451–2462. [Google Scholar] [CrossRef]
- Nahrendra, I.M.A.; Oh, M.; Yu, B.; Myung, H. TRG-Planner: Traversal Risk Graph-Based Path Planning in Unstructured Environments for Safe and Efficient Navigation. IEEE Robot. Autom. Lett. 2025, 10, 1736–1743. [Google Scholar] [CrossRef]
- Wu, L.; Wang, C.; Liu, J.; Zou, B.; Chakrabarty, S.; Bao, T.; Xie, S.Q. Novel Design on Knee Exoskeleton with Compliant Actuator for Post-Stroke Rehabilitation. Sensors 2025, 25, 153. [Google Scholar] [CrossRef]
- Ramadan, M.; Youssef, A.; Ayyad, A.; AbuAssi, L.; Hay, O.A.; Salah, M.; Moyo, B.; Zweiri, Y.; Abdulrahman, Y. Vision-Guided Robotic System for Aero-Engine Inspection and Dynamic Balancing. Sci. Rep. 2024, 14, 30742. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, J.; Won, J.; Lee, W.; Seo, T. LBH Gripper: Linkage-Belt Based Hybrid Adaptive Gripper Design for Dish Collecting Robots. Robot. Auton. Syst. 2025, 185, 104886. [Google Scholar] [CrossRef]
- Mehak, S.; Ramos, I.F.; Sagar, K.; Ramasubramanian, A.; Kelleher, J.D.; Guilfoyle, M.; Gianini, G.; Damiani, E.; Leva, M.C. A Roadmap for Improving Data Quality through Standards for Collaborative Intelligence in Human-Robot Applications. Front. Robot. AI 2024, 11, 1434351. [Google Scholar] [CrossRef]
- Salvato, E.; Blanchini, F.; Fenu, G.; Giordano, G.; Pellegrino, F.A. Model-Free Kinematic Control for Robotic Systems. Automatica 2025, 173, 112030. [Google Scholar] [CrossRef]
- Turcato, C.R.P.; Pedroso, B.; Arnold, M.; Picinin, C.T. Adapting to Industry 4.0 in France: Essential Competencies for a Future-Ready Workforce. Adm. Sci. 2024, 14, 322. [Google Scholar] [CrossRef]
- Wu, F.; Zhu, R.; Meng, F.; Qiu, J.; Yang, X.; Li, J.; Zou, X. An Enhanced Cycle Generative Adversarial Network Approach for Nighttime Pineapple Detection of Automated Harvesting Robots. Agronomy 2024, 14, 3002. [Google Scholar] [CrossRef]
- Li, D.; Zhang, H.; Liu, N.; Wang, G. Multiscale Residual and Attention Guidance for Low-Light Image Enhancement in Visual SLAM. IEEE Internet Things J. 2024, 11, 38370–38379. [Google Scholar] [CrossRef]
- Arroyabe, M.F.; Arranz, C.F.A.; Fernandez de Arroyabe, I.; Fernandez de Arroyabe, J.C. The Effect of IT Security Issues on the Implementation of Industry 4.0 in SMEs: Barriers and Challenges. Technol. Forecast. Soc. Change 2024, 199, 123051. [Google Scholar] [CrossRef]
- Khan, M.I.; Yasmeen, T.; Khan, M.; Ul Hadi, N.; Asif, M.; Farooq, M.; Al-Ghamdi, S.G. Integrating Industry 4.0 for Enhanced Sustainability: Pathways and Prospects. Sustain. Prod. Consum. 2025, 54, 149–189. [Google Scholar] [CrossRef]
- Vorndamme, J.; Melone, A.; Kirschner, R.; Figueredo, L.; Haddadin, S. Safe Robot Reflexes: A Taxonomy-Based Decision and Modulation Framework. IEEE Trans. Robot. 2025, 41, 982–1001. [Google Scholar] [CrossRef]
- Ali, S.; Deiab, I.; Pervaiz, S. State-of-the-Art Review on Fused Deposition Modeling (FDM) for 3D Printing of Polymer Blends and Composites: Innovations, Challenges, and Applications. Int. J. Adv. Manuf. Technol. 2024, 135, 5085–5113. [Google Scholar] [CrossRef]
- Nuccio, M.; Guerzoni, M.; Cappelli, R.; Geuna, A. The diffusion of industrial robots in Europe: Regional or country effect? Sci. Public Policy 2025, 52, 65–80. [Google Scholar] [CrossRef]
- Sun, M.; Ding, J.; Zhao, Z.; Chen, J.; Huang, G.Q.; Wang, L. Out-of-order execution enabled deep reinforcement learning for dynamic additive manufacturing scheduling. Robot. Comput. -Integr. Manuf. 2025, 91, 102841. [Google Scholar] [CrossRef]
- Dai, Y.; Kim, D.; Lee, K. An advanced approach to object detection and tracking in robotics and autonomous vehicles using YOLOv8 and LiDAR data fusion. Electronics 2024, 13, 2250. [Google Scholar] [CrossRef]
- Ciccarelli, M.; Forlini, M.; Papetti, A.; Palmieri, G.; Germani, M. Advancing human–robot collaboration in handcrafted manufacturing: Cobot-assisted polishing design boosted by virtual reality and human-in-the-loop. Int. J. Adv. Manuf. Technol. 2024, 132, 4489–4504. [Google Scholar] [CrossRef]
- Halwani, M.; Ayyad, A.; AbuAssi, L.; Abdulrahman, Y.; Almaskari, F.; Hassanin, H.; Abusafieh, A.; Zweiri, Y. A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing. Precis. Eng. 2024, 88, 367–381. [Google Scholar] [CrossRef]
- Rakholia, R.; Suárez-Cetrulo, A.L.; Singh, M.; Simón Carbajo, R. Advancing manufacturing through artificial intelligence: Current landscape, perspectives, best practices, challenges, and future direction. IEEE Access 2024, 12, 131621–131637. [Google Scholar] [CrossRef]
- Fresnillo, P.M.; Vasudevan, S.; Perez Garcia, J.A.; Martinez Lastra, J.L. An open and reconfigurable user interface to manage complex ROS-based robotic systems. IEEE Access 2024, 12, 114601–114617. [Google Scholar] [CrossRef]
- Makulavičius, M.; Petkevičius, S.; Rožėnė, J.; Dzedzickis, A.; Bučinskas, V. Industrial Robots in Mechanical Machining: Perspectives and Limitations. Robotics 2023, 12, 160. [Google Scholar] [CrossRef]
- Cotta, W.A.A.; Lopes, S.I.; Vassallo, R.F. Towards the Cognitive Factory in Industry 5.0: From Concept to Implementation. Smart Cities 2023, 6, 1901–1921. [Google Scholar] [CrossRef]
- Amadio, F.; Delgado-Guerrero, J.A.; Colomé, A.; Torras, C. Controlled Gaussian process dynamical models with application to robotic cloth manipulation. Int. J. Dyn. Control 2023, 11, 3209–3219. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, N.; Wu, Y.; Ramakrishna, S.; Hongyu, Z. Wearable strain sensors: State-of-the-art and future applications. Mater. Adv. 2023, 4, 1444–1459. [Google Scholar] [CrossRef]
- Lorenzini, M.; Lagomarsino, M.; Fortini, L.; Gholami, S.; Ajoudani, A. Ergonomic human-robot collaboration in industry: A review. Front. Robot. AI 2023, 9, 813907. [Google Scholar] [CrossRef]
- Tourani, A.; Bavle, H.; Sanchez-Lopez, J.L.; Voos, H. Visual SLAM: What Are the Current Trends and What to Expect? Sensors 2022, 22, 9297. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.A. Sustainable Design and Management of Industrial Systems—A Human Factors Perspective. Appl. Syst. Innov. 2022, 5, 95. [Google Scholar] [CrossRef]
- Arnarson, H.; Mahdi, H.; Solvang, B.; Bremdal, B.A. Towards automatic configuration and programming of a manufacturing cell. J. Manuf. Syst. 2022, 64, 225–235. [Google Scholar] [CrossRef]
- Xue, B.; Xu, H.; Huang, X.; Zhu, K.; Xu, Z.; Pei, H. Similarity-based prediction method for machinery remaining useful life: A review. Int. J. Adv. Manuf. Technol. 2022, 121, 1501–1531. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Zhang, Y.-T. Collision avoidance and path planning for industrial manipulator using slice-based heuristic fast marching tree. Robot. Comput.-Integr. Manuf. 2022, 75, 102289. [Google Scholar] [CrossRef]
- Ha, S.; Park, J.-S.; Jeong, S.W. Let me shop alone: Consumers’ psychological reactance toward retail robotics. Technol. Forecast. Soc. Change 2025, 212, 123962. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, B.; Li, Y.; Wang, Z.; Diao, Z.; Zhu, Q.; Liang, Z. Environmental mapping and path planning for robots in orchard based on traversability analysis, improved LeGO-LOAM and RRT* algorithms. Comput. Electron. Agric. 2025, 230, 109889. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Ren, X. A constrained workspace entrance crossing motion generation scheme synthesized by recurrent neural networks for redundant robot manipulators. IEEE/ASME Trans. Mechatron. 2024. [Google Scholar] [CrossRef]
- Urrea, C.; Kern, J.; Torres, V. Design, Simulation, and Comparison of Advanced Control Strategies for a 3-Degree-of-Freedom Robot. Appl. Sci. 2024, 14, 11010. [Google Scholar] [CrossRef]
- D’Angelo, S.; Selvaggio, M.; Lippiello, V.; Ruggiero, F. Semi-autonomous unmanned aerial manipulator teleoperation for push-and-slide inspection using parallel force/vision control. Robot. Auton. Syst. 2025, 186, 104912. [Google Scholar] [CrossRef]
- Ma, W.; Duan, A.; Lee, H.-Y.; Zheng, P.; Navarro-Alarcon, D. Human-aware reactive task planning of sequential robotic manipulation tasks. IEEE Trans. Ind. Inform. 2024. [CrossRef]
- Schorr, L.; Cobilean, V.; Mavikumbure, H.S.; Manic, M.; Hadimani, R.L. Industrial workspace detection of a robotic arm using combined 2D and 3D vision processing. Int. J. Adv. Manuf. Technol. 2025, 136, 1317–1326. [Google Scholar] [CrossRef]
- Berx, N.; Decré, W.; De Schutter, J.; Pintelon, L. A harmonious synergy between robotic performance and well-being in human-robot collaboration: A vision and key recommendations. Annu. Rev. Control 2025, 59, 100984. [Google Scholar] [CrossRef]
- Bilal, H.; Obaidat, M.S.; Aslam, M.S.; Zhang, J.; Yin, B.; Mahmood, K. Online fault diagnosis of industrial robot using IoRT and hybrid deep learning techniques: An experimental approach. IEEE Internet Things J. 2024, 11, 31422–31437. [Google Scholar] [CrossRef]
- Li, S.; Xie, H.-L.; Zheng, P.; Wang, L. Industrial Metaverse: A proactive human-robot collaboration perspective. J. Manuf. Syst. 2024, 76, 314–319. [Google Scholar] [CrossRef]
- Slavković, N.; Živanović, S.; Dimić, Z.; Kokotović, B. An advanced machining robot flexible programming methodology supported by verification in a virtual environment. Int. J. Comput. Integr. Manuf. 2024. [CrossRef]
- Villani, V.; Picone, M.; Mamei, M.; Sabattini, L. A digital twin driven human-centric ecosystem for Industry 5.0. IEEE Trans. Autom. Sci. Eng. 2024. [CrossRef]
- Bonci, A.; Gaudeni, F.; Giannini, M.C.; Longhi, S. Robot Operating System 2 (ROS2)-Based Frameworks for Increasing Robot Autonomy: A Survey. Appl. Sci. 2023, 13, 12796. [Google Scholar] [CrossRef]
- Mahdi, M.M.; Bajestani, M.S.; Noh, S.D.; Kim, D.B. Digital twin-based architecture for wire arc additive manufacturing using OPC UA. Robot. Comput.-Integr. Manuf. 2025, 94, 102944. [Google Scholar] [CrossRef]
- Dornelles, J.A.; Ayala, N.F.; Frank, A.G. Collaborative or substitutive robots? Effects on workers’ skills in manufacturing activities. Int. J. Prod. Res. 2023, 61, 7922–7955. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Liu, R.; Li, Z. Overview of blockchain-based terminal-edge-cloud collaborative computing paradigm. Comput. Electr. Eng. 2024, 120, 109737. [Google Scholar] [CrossRef]
- Xia, C.; Wang, R.; Jin, X.; Xu, C.; Li, D.; Zeng, P. Deterministic network–computation–manufacturing interaction mechanism for AI-driven cyber–physical production systems. IEEE Internet Things J. 2024, 11, 18852–18868. [Google Scholar] [CrossRef]
Year | Market Value (Billions of USD) |
---|---|
2023 | 54.2 |
2024 | 60.4 |
2025 | 67.3 |
2026 | 75.0 |
2027 | 83.6 |
2028 | 93.1 |
2029 | 103.7 |
2030 | 115.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urrea, C.; Kern, J. Recent Advances and Challenges in Industrial Robotics: A Systematic Review of Technological Trends and Emerging Applications. Processes 2025, 13, 832. https://doi.org/10.3390/pr13030832
Urrea C, Kern J. Recent Advances and Challenges in Industrial Robotics: A Systematic Review of Technological Trends and Emerging Applications. Processes. 2025; 13(3):832. https://doi.org/10.3390/pr13030832
Chicago/Turabian StyleUrrea, Claudio, and John Kern. 2025. "Recent Advances and Challenges in Industrial Robotics: A Systematic Review of Technological Trends and Emerging Applications" Processes 13, no. 3: 832. https://doi.org/10.3390/pr13030832
APA StyleUrrea, C., & Kern, J. (2025). Recent Advances and Challenges in Industrial Robotics: A Systematic Review of Technological Trends and Emerging Applications. Processes, 13(3), 832. https://doi.org/10.3390/pr13030832