Optimization and Kinetic Modelling of Hydroxycinnamic Acid Extraction from Anethum graveolens Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Reagents
2.3. Initial Content of Phenolic Compounds in Dill Leaves (q0)
2.4. HPLC-DAD Analysis of Extracts
2.5. Determination of TPC and TFC in Extracts
2.6. Determination of the Antioxidant Activity of the Extracts
2.7. Optimization of the Extraction Procedure Using Experimental Design and Statistical Analysis
2.8. The Kinetics of Extraction
2.9. Kinetic Models
2.10. Validity Kinetic Models
2.11. Thermodynamic Study
3. Results and Discussion
3.1. Optimization of the Hydroxycinnamic Acid Extraction Process
3.2. Phenolic Content and Antioxidant Activity of Prepared Extracts
3.3. Kinetics of Hydroxycinnamic Acid Extraction
3.3.1. Hydroxycinnamic Acid Variation with Extraction Time
3.3.2. Kinetic Modeling of Hydroxycinnamic Acid Extraction
3.3.3. Comparison of the Kinetic Models
3.4. Thermodynamic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vallverdú-Queralt, A.; Regueiro, J.; Alvarenga, J.F.R.; Martínez-Huélamo, M.; Leal, L.N.; Lamuela-Raventós, R.M. Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: Caraway, turmeric, dill, marjoram and nutmeg. Food Sci. Technol. 2015, 35, 189–195. [Google Scholar] [CrossRef]
- Kulig, D.; Matysiak, M.; Baldovska, S.; Štefanikova, J.; Maruniakova, N.; Mnahončakova, E.; Arvay, J.; Galbavy, D.; Kolesarova, A. Scrining of polyphenolic compounds from traditional medicinal herbs. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 487–491. [Google Scholar] [CrossRef]
- Akhtar, N.; Ihsan, H.; Bushra, M. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab. J. Chem. 2018, 11, 1223–1235. [Google Scholar] [CrossRef]
- Isbilir, S.S.; Ayten Sagiroglu, A. Antioxidant Potential of Different Dill (Anethum graveolens L.) Leaf Extracts. Int. J. Food Prop. 2011, 14, 894–902. [Google Scholar] [CrossRef]
- Swieca, M.; Gawlik-Dziki, U. Influence of thermal processing on phenolics compounds level and antiradical activity of dill (Anethum graveolens L.). Herba Pol. 2008, 54, 59–69. [Google Scholar]
- Teixeira, J.; Gaspar, S.; Garrido, E.G.; Garrido, J.; Borges, F. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview. BioMed Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef]
- Laina, K.T.; Drosou, C.; Stergiopoulos, C.; Eleni, P.M.; Krokida, M. Optimization of Combined Ultrasound and Microwave-Assisted Extraction for Enhanced Bioactive Compounds Recovery from Four Medicinal Plants: Oregano, Rosemary, Hypericum, and Chamomile. Molecules 2024, 29, 5773. [Google Scholar] [CrossRef]
- Hobbi, P.; Okoro, O.V.; Delporte, C.; Alimoradi, H.; Podstawczyk, D.; Nie, L.; Bernaerts, K.V.; Shavandi, A. Kinetic modelling of the solid–liquid extraction process of polyphenolic compounds from apple pomace: Influence of solvent composition and temperature. Bioresour. Bioprocess. 2021, 8, 114. [Google Scholar] [CrossRef]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Menkiti, M.C.; Agu, C.M.; Udeigwe, T.K. Extraction of oil from Terminalia catappa L.: Process parameter impacts, kinetics, and thermodynamics. Ind. Crops Prod. 2015, 77, 713–723. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorometry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brighente, I.M.C.; Dias, M.; Verdi, L.G.; Pizzolatti, M.G. Antioxidant activity and total phenolic content of some Brazilian species. Pharm. Biol. 2007, 45, 156–161. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Cunha-Silva, Y.; Dias, D.; Pereira, L.F.R.; Pereira, C.V.L.; Lima, E.S.; Yamaguchi, K.K.d.L.; Veiga-Junior, V.F.d. Enhancing the Extraction of Phenolic Antioxidants from Amazonian Assai (Euterpe oleracea Martius) Fruit Waste through Response Surface Methodology Optimization. Biomass 2024, 4, 402–413. [Google Scholar] [CrossRef]
- Suresh, M.; Mohammed Saleh, A.A. In Vitro Antioxidant and Bactericidal Efficacy of 15 Common Spices: Novel Therapeutics for Urinary Tract Infections? Medicina 2019, 55, 289. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Bektas Oğlu, B.; Bener, M. Cupric ion reducing antioxidant capacity assay for food antioxidants: Vitamins, polyphenolics, and flavonoids in food extracts. Methods Mol. Biol. 2008, 477, 163–193. [Google Scholar] [CrossRef]
- Galgano, F.; Tolve, R.; Scarpa, T.; Caruso, M.C.; Lucini, L.; Senizza, B.; Condelli, N. Extraction Kinetics of Total Polyphenols, Flavonoids, and Condensed Tannins of Lentil Seed Coat: Comparison of Solvent and Extraction Methods. Foods 2021, 10, 1810. [Google Scholar] [CrossRef]
- Veličković, D.T.; Milenović, D.M.; Ristić, M.S.; Veljković, V.B. Kinetics of ultrasonic extraction of extractive substances from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage. Ultrason. Sonochem. 2006, 13, 150–156. [Google Scholar] [CrossRef]
- Milić, P.S.; Rajković, K.M.; Bekrić, D.M.; Stamenković, O.S.; Veljković, V.B. The kinetic and thermodynamic analysis of ultrasound-extraction of minerals from aerial parts of white lady’s bedstraw (Galium mollugo L.). Chem. Eng. Res. Des. 2014, 92, 1399–1409. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Bioactive compounds, antioxidant activity and nutritional quality of different culinary aromatic herbs. Not. Bot. Horti. Agrobot. 2017, 45, 179–184. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, J.; Zhang, N.; He, H.Y.; An, J.M.; Dou, Y.N. Optimization of the Extraction Technology and Assessment of Antioxidant Activity of Chlorogenic Acid-Rich Extracts From Eucommia ulmoides Leaves. Nat. Prod. Commun. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Zeng, G.; Ran, Y.; Huang, X.; Li, Y.; Zhang, M.; Ding, H.; Ma, Y.; Ma, H.; Jin, L.; Sun, D. Optimization of Ultrasonic-Assisted Extraction of Chlorogenic Acid from Tobacco Waste. Int. J. Environ. Res. Public Health 2022, 19, 1555. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.; Dahmoune, F.; Moussi, K.; Remini, H.; Dairi, S.; Aoun, O.; Khodir, M. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chem. 2015, 187, 507–516. [Google Scholar] [CrossRef]
- Michiels, J.A.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chem. 2012, 130, 986–993. [Google Scholar] [CrossRef]
- Dent, M.; Dragović-Uzelac, V.; Penić, M.; Brnčić, M.; Bosiljkov, T.; Levaj, B. The Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts. Food Technol. Biotechnol. 2013, 51, 84–91. [Google Scholar]
- Patil, S.S.; Deshannavar, U.B.; Ramasamy, M.; Emani, S.; Khalilpoor, N.; Issakhov, A. Study of Extraction Kinetics of Total Polyphenols from Curry Leaves. Int. J. Chem. Eng. 2021, 2021, 9988684. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J. Effects of Temperature and Time on Polyphenolic Content and Antioxidant Activity in the Pressurized Hot Water Extraction of Deodorized Thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta. 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Uma, D.B.; Ho, C.W.; Wan Aida, W.M. Optimization of Extraction Parameters of Total Phenolic Compounds from Henna (Lawsonia inermis) Leaves. Sains Malays. 2010, 39, 119–128. [Google Scholar]
- Costa, P.; Gonçalves, S.; Valentão, P.; Andrade, P.; Coelho, N.; Romano, A. Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chem. 2012, 135, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.A.; Ðorđević, V.B.; Zdunić, G.M.; Pljrvljakušić, D.S.; Šavkin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat-and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Aklilu, E.G.; Adem, A.; Kasirajan, R.; Ahmed, Y. Artificial neural network and response surface methodology for modeling and optimization of activation of lactoperoxidase system. S. Afr. J. Chem. Eng. 2021, 37, 12–22. [Google Scholar] [CrossRef]
- Balyan, S.; Sarkar, B. Aqueous extraction kinetics of phenolic compounds from jamun (Syzygium cumini L.) seeds. Int. J. Food Prop. 2017, 20, 372–389. [Google Scholar] [CrossRef]
- Mitić, M.; Janković, S.; Mašković, P.; Arsić, B.; Mitić, J.; Ickovski, J. Kinetic models of the extraction of vanillic acid from pumpkin seeds. Open Chem. 2020, 18, 22–30. [Google Scholar] [CrossRef]
- Anbalagana, K.; Kumara, M.M.; Ilangob, K.; Mohankumarb, R.R.; Priya, R.L. Prelusive scale extraction of mangiferin from Mangifera indica leaves: Assessing solvent competency, process optimization, kinetic study and diffusion modelling. Ind. Crops Prod. 2019, 140, 111703. [Google Scholar] [CrossRef]
- Kitanović, S.; Milenović, D.; Veljković, V.B. Empirical kinetic models for the resinoid extraction from aerial parts of St. Jon’s wort (Hypericum perforatum L.). Biochem. Eng. J. 2008, 41, 1–11. [Google Scholar] [CrossRef]
- Vidović, M.; Morina, F.; Milić, S.; Veljović-Jovanović, S. An improved HPLC-DAD method for simultaneously measuring phenolics in the leaves of Tilia platyphyllos and Ailanthus altissima. Bot. Serb. 2015, 39, 177–186. [Google Scholar]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D. Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng. 2007, 81, 236–242. [Google Scholar] [CrossRef]
- Mitić, M.; Janković, S.; Mrmošanin, J.; Stojković, M.; Kostić, D.; Micić, R. Optimization, kinetics and thermodynamika of the solid-liquid extraction process of flavonoids from rosemary (Rosemarinus officinalis). Stud. UBB Chem. 2020, 65, 111–124. [Google Scholar] [CrossRef]
- Balyan, U.; Sarkar, B. Analysis of flux decline using sequential fouling mechanisms during concentration of Syzygium cumini (L.) leaf extract. Chem. Eng. Res. Des. 2018, 130, 167–183. [Google Scholar] [CrossRef]
- Krishnan, R.Y.; Rajan, K.S. Influence of microwave irradiation on kinetics and thermodynamics of extraction of flavonoids from Phyllanthus emblica. Braz. J. Chem. Eng. 2017, 34, 885–899. [Google Scholar] [CrossRef]
- Paunović, D.; Mitić, S.; Stojanović, G.; Mitić, N.; Stojanović, B.; Stojković, M. Kinetics of the solid-liquid extraction process of phenolic antioxidants and antioxidant capacity from hop (Humulus lupulus L.). Sep. Sci. Technol. 2015, 50, 1658–1664. [Google Scholar] [CrossRef]
- Kostić, M.D.; Joković, N.M.; Stamenković, O.S.; Rajković, K.M.; Milić, P.S.; Veljković, V.B. The kinetics and thermodynamics of hempseed oil extraction by n-hexane. Ind. Crops Prod. 2014, 52, 679–686. [Google Scholar] [CrossRef]
Compound | Calibration Curve | (R2) | Range (µg/mL) | LOD 1 (µg/mL) | LOQ 2 (µg/mL) |
---|---|---|---|---|---|
ChA | 0.9994 | 50–900 | 1.23 | 3.73 | |
FA | 0.9996 | 100–1000 | 3.41 | 10.33 | |
SA | 0.9992 | 20–500 | 0.33 | 1.10 |
No | Design Matrix | ChA | FA | SA | |||||
---|---|---|---|---|---|---|---|---|---|
x1 (%) | x2 (min) | x3 (°C) | qex 1 (µg/g) | qpre 2 (µg/g) | qex 1 (µg/g) | qpre 2 (µg/g) | qex 1 (µg/g) | qpre 2 (µg/g) | |
1 | 50 (−1) | 20 (−1) | 30 (−1) | 72.34 ± 0.54 a | 72.09 | 2.89 ± 0.06 | 2.94 | 1.06 ± 0.05 | 1.05 |
2 | 100 (+1) | 20 (−1) | 30 (−1) | 65.66 ± 0.33 | 65.91 | 2.63 ± 0.07 | 2.58 | 0.87 ± 0.06 | 0.88 |
3 | 50 (−1) | 80 (+1) | 30 (−1) | 92.08 ± 0.48 | 92.33 | 4.62 ± 0.10 | 4.61 | 1.85 ± 0.10 | 1.84 |
4 | 100 (+1) | 80 (+1) | 30 (−1) | 84.95 ± 0.55 | 84.70 | 4.25 ± 0.18 | 4.26 | 1.68 ± 0.08 | 1.68 |
5 | 50 (−1) | 20 (−1) | 50 (+1) | 77.44 ± 0.39 | 77.69 | 3.56 ± 0.12 | 3.59 | 1.12 ± 0.08 | 1.15 |
6 | 100 (+1) | 20 (−1) | 50 (+1) | 71.76 ± 0.50 | 71.51 | 3.26 ± 0.20 | 3.23 | 1.03 ± 0.07 | 0.99 |
7 | 50 (−1) | 80 (+1) | 50 (+1) | 103.75 ± 0.66 | 103.50 | 6.05 ± 0.28 | 5.98 | 2.19 ± 0.12 | 2.17 |
8 | 100 (+1) | 80 (+1) | 50 (+1) | 95.61 ± 0.54 | 95.86 | 5.55 ± 0.20 | 5.62 | 1.99 ± 0.15 | 2.01 |
Non-Linear | Linear | |
---|---|---|
Kinetic Model | ||
Unsteady-state diffusion model | ||
Parabolic diffusion model | ||
Power law model | ||
Ponomaryov’s equation | ||
Elovich’s equation | ||
Thermodynamic parameters and units | ||
Activation energy (kJ/mol) | ||
(kJ/mol) | ||
(J/mol K) | ||
(kJ/mol) | ||
Temperature extraction coefficient γ |
HA | SOV | x1 | x2 | x3 | x1x2 | x1x3 | x2x3 | x1x2x3 | Error | Total |
---|---|---|---|---|---|---|---|---|---|---|
ChA | SS 1 | 95.4271 | 994.3557 | 140.5326 | 1.0585 | 0.00001 | 15.4846 | 0.5050 | 1.5537 | 1248.918 |
Df 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 15 | |
MS 3 | 95.4271 | 994.3557 | 140.5326 | 1.0585 | 0.00001 | 15.4846 | 0.5050 | 0.19422 | 83.2612 | |
F-Value | 491.33 | 5119.74 | 723.57 | 5.4500 | 0.4000 | 79.727 | 2.6001 | |||
p-Value | <0.00001 4 | <0.00001 | <0.00001 | 0.047823 | 0.544737 a | 0.00002 | 0.145522 | |||
FA | SS | 0.2556 | 8.2621 | 2.0301 | 0.0120 | 0.0036 | 0.2556 | 0.0010 | 0.0194 | 10.8394 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 15 | |
MS | 0.2556 | 8.2621 | 2.0301 | 0.0120 | 0.0036 | 0.2556 | 0.0010 | 0.00242 | 0.7226 | |
F-Value | 105.61 | 3414.0 | 838.88 | 4.9586 | 1.4876 | 105.61 | 0.4132 | |||
p-Value | <0.00001 | <0.00001 | <0.00001 | 0.056579 | 0.257324 | <0.00001 | 0.538333 | |||
SA | SS | 0.0528 | 1.6471 | 0.0946 | 0.0010 | 0.0006 | 0.02311 | 0.0021 | 0.00416 | 1.8255 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 15 | |
MS | 0.0528 | 1.6471 | 0.0946 | 0.0010 | 0.0006 | 0.02311 | 0.0021 | 0.00052 | 0.12169 | |
F-Value | 101.53 | 3167.5 | 181.92 | 1.9230 | 1.1538 | 44.442 | 4.0384 | |||
p-Value | <0.00001 | <0.00001 | <0.00001 | 0.202942 | 0.314082 | 0.000158 | 0.07933 |
Ethanol % | TPC mg GAEs/g | TFC mg CEs/g | DPPH μmol TEs/g | ABTS μmol TEs/g | FRP μmol TEs/g | CUPRAC μmol TEs/g |
---|---|---|---|---|---|---|
50 | 2.859 ± 0.105 | 0.728 ± 0.011 | 14.92 ± 0.22 | 18.22 ± 0.38 | 26.55 ± 0.68 | 38.77 ± 1.05 |
100 | 2.532 ± 0.098 | 0.655 ± 0.032 | 13.11 ± 0.30 | 15.48 ± 0.33 | 24.43 ± 0.52 | 35.66 ± 0.88 |
Parameters | Clorogenic Acid | Ferulic Acid | Sinapic Acid | ||||||
---|---|---|---|---|---|---|---|---|---|
30 °C | 40 °C | 50 °C | 30 °C | 40 °C | 50 °C | 30 °C | 40 °C | 50 °C | |
Model 1 | |||||||||
b | 0.805 | 0.812 | 0.816 | 0.713 | 0.736 | 0.761 | 0.703 | 0.709 | 0.720 |
k (1/min) | 1.86 × 10−3 | 1.88 × 10−3 | 2.15 × 10−3 | 2.91 × 10−3 | 3.10 × 10−3 | 3.41 × 10−3 | 3.42 × 10−3 | 3.77 × 10−3 | 4.12 × 10−3 |
RMS (%) | 0.21 | 0.15 | 0.18 | 0.55 | 0.65 | 0.62 | 1.98 | 1.85 | 1.73 |
R2 (%) | 99.81 | 99.84 | 99.89 | 99.44 | 99.27 | 99.51 | 99.02 | 99.32 | 99.50 |
Molel 2 | |||||||||
A0 | 0.439 | 0.433 | 0.426 | 0.234 | 0.241 | 0.245 | 0.197 | 0.179 | 0.162 |
A1 | 2.87 × 10−2 | 3.38 × 10−2 | 4.05 × 10−2 | 3.78 × 10−2 | 4.50 × 10−2 | 5.63 × 10−2 | 4.56 × 10−2 | 5.30 × 10−2 | 6.23 × 10−2 |
RMS (%) | 2.00 | 2.05 | 1.81 | 2.89 | 2.35 | 3.73 | 4.62 | 3.30 | 3.63 |
R2 (%) | 95.20 | 96.00 | 97.71 | 97.63 | 98.43 | 98.13 | 94.73 | 97.83 | 97.83 |
Model 3 | |||||||||
n | 0.128 | 0.142 | 0.164 | 0.236 | 0.267 | 0.268 | 0.268 | 0.296 | 0.323 |
B | 0.389 | 0.386 | 0.380 | 0.201 | 0.200 | 0.228 | 0.184 | 0.176 | 0.172 |
RMS (%) | 2.21 | 1.17 | 2.60 | 3.88 | 3.84 | 4.34 | 5.82 | 4.10 | 4.88 |
R2 (%) | 94.15 | 96.32 | 95.22 | 93.55 | 96.51 | 95.96 | 91.72 | 97.48 | 95.94 |
Equation (1) | |||||||||
b′ | 0.514 | 0.524 | 0.536 | 0.336 | 0.360 | 0.397 | 0.318 | 0.322 | 0.330 |
k′ (1/min) | 2.44 × 10−3 | 2.81 × 10−3 | 3.36 × 10−3 | 3.12 × 10−3 | 3.79 × 10−3 | 4.65 × 10−3 | 3.81 × 10−3 | 4.39 × 10−3 | 5.16 × 10−3 |
RMS (%) | 0.24 | 0.26 | 0.12 | 0.44 | 0.43 | 0.51 | 2.78 | 1.03 | 0.80 |
R2 (%) | 99.66 | 99.60 | 99.95 | 99.69 | 99.74 | 99.88 | 98.21 | 99.78 | 99.82 |
Equation (2) | |||||||||
E0 | 0.346 | 0.320 | 0.380 | 0.104 | 0.085 | 0.052 | 0.045 | 0.003 | 0.050 |
E1 | 0.076 | 0.081 | 0.086 | 0.103 | 0.123 | 0.153 | 0.122 | 0.143 | 0.169 |
RMS (%) | 3.07 | 3.44 | 4.58 | 4.81 | 4.74 | 5.73 | 7.12 | 6.30 | 6.79 |
R2 (%) | 89.96 | 88.76 | 90.10 | 91.93 | 90.08 | 92.24 | 86.97 | 91.76 | 90.19 |
Temperature | Ea | K | ∆G0 | ∆H0 | ∆S0 | γ | |
---|---|---|---|---|---|---|---|
(°C) | (kJ/mol) | (kJ/mol) | (kJ/mol) | (K/Jmol) | |||
ChA | 30 | 5.85 | 2.53 | −3.55 | 3.33 | 22.69 | 1.062 |
40 | 3.13 | −3.78 | |||||
50 | 4.19 | −4.01 | |||||
FA | 30 | 6.46 | 1.40 | −5.67 | 1.98 | 25.23 | 1.122 |
40 | 1.90 | −5.92 | |||||
50 | 3.23 | −6.17 | |||||
SA | 30 | 7.59 | 1.71 | −3.87 | 3.39 | 23.98 | 1.080 |
40 | 2.08 | −4.13 | |||||
50 | 2.80 | −4.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jevtovic, V.; Alabbosh, K.F.S.; Alyami, R.A.; Alreshidi, M.A.; Alshammari, M.R.; Alshammari, B.; Mitić, J.; Mitić, M. Optimization and Kinetic Modelling of Hydroxycinnamic Acid Extraction from Anethum graveolens Leaves. Processes 2025, 13, 1297. https://doi.org/10.3390/pr13051297
Jevtovic V, Alabbosh KFS, Alyami RA, Alreshidi MA, Alshammari MR, Alshammari B, Mitić J, Mitić M. Optimization and Kinetic Modelling of Hydroxycinnamic Acid Extraction from Anethum graveolens Leaves. Processes. 2025; 13(5):1297. https://doi.org/10.3390/pr13051297
Chicago/Turabian StyleJevtovic, Violeta, Khulood Fahad Saud Alabbosh, Reem Ali Alyami, Maha Awjan Alreshidi, Maha Raghyan Alshammari, Badriah Alshammari, Jelena Mitić, and Milan Mitić. 2025. "Optimization and Kinetic Modelling of Hydroxycinnamic Acid Extraction from Anethum graveolens Leaves" Processes 13, no. 5: 1297. https://doi.org/10.3390/pr13051297
APA StyleJevtovic, V., Alabbosh, K. F. S., Alyami, R. A., Alreshidi, M. A., Alshammari, M. R., Alshammari, B., Mitić, J., & Mitić, M. (2025). Optimization and Kinetic Modelling of Hydroxycinnamic Acid Extraction from Anethum graveolens Leaves. Processes, 13(5), 1297. https://doi.org/10.3390/pr13051297