Identifying Clean and Contaminated Atomic-Sized Gold Contacts Under Ambient Conditions Using a Clustering Algorithm
Abstract
1. Introduction
2. Materials and Methods
2.1. Molecular Electronics Based on BJ Experiments
2.2. Classification Method: Use of the DBSCAN Algorithm
3. Results
3.1. Data Raw Atomic-Sized Contacts of Gold at Room Conditions
3.2. Automated Selection of Optimal DBSCAN Parameters for Trace Classification
3.3. Clustering Based on DBSCAN to Identify Pure Metallic Atomic-Scale Gold Contacts and Traces with Contamination
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCBJ | Mechanical Controllable Break Junctions |
DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
References
- Agraït, N.; Yeyati, A.L.; Van Ruitenbeek, J.M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81–279. [Google Scholar] [CrossRef]
- Cuevas, J.C.; Scheer, E. Molecular Electronics, 2nd ed.; World Scientific: Singapore, 2017. [Google Scholar] [CrossRef]
- Evers, F.; Korytár, R.; Tewari, S.; van Ruitenbeek, J.M. Advances and challenges in single-molecule electron transport. Rev. Mod. Phys. 2020, 92, 035001–035065. [Google Scholar] [CrossRef]
- Pascual, J.I.; Méndez, J.; Gómez-Herrero, J.; Baró, A.M.; García, N.; Binh, V.T. Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 1993, 71, 1852–1855. [Google Scholar] [CrossRef] [PubMed]
- Krans, J.M.; Muller, C.J.; Yanson, I.K.; Govaert, T.C.M.; Hesper, R.; van Ruitenbeek, J.M. One-atom point contacts. Phys. Rev. B 1993, 48, 14721–14724. [Google Scholar] [CrossRef] [PubMed]
- Krans, J.M.; van Ruitenbeek, J.M. Subquantum conductance steps in atom-sized contacts of the semimetal Sb. Phys. Rev. B 1994, 50, 17659–17661. [Google Scholar] [CrossRef]
- Krans, J.M.; van Ruitenbeek, J.M.; Fisun, V.V.; Yanson, I.K.; de Jongh, L.J. The signature of conductance quantization in metallic point contacts. Nature 1995, 375, 767–769. [Google Scholar] [CrossRef]
- Landauer, R. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM J. Res. Dev. 1957, 1, 223–231. [Google Scholar] [CrossRef]
- van Wees, B.J.; van Houten, H.; Beenakker, C.W.J.; Williamson, J.G.; Kouwenhoven, L.P.; van der Marel, D.; Foxon, C.T. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 1988, 60, 848–850. [Google Scholar] [CrossRef]
- Agraït, N.; Rodrigo, J.G.; Vieira, S. Conductance steps and quantization in atomic-size contacts. Phys. Rev. B 1993, 47, 12345–12348. [Google Scholar] [CrossRef]
- Pan, X.; Qian, C.; Chow, A.; Wang, L.; Kamenetska, M. Atomically precise binding conformations of adenine and its variants on gold using single molecule conductance signatures. J. Chem. Phys. 2022, 157, 234201. [Google Scholar] [CrossRef]
- Smit, R.H.M.; Noat, Y.; Untiedt, C.; Lang, N.D.; van Hemert, M.C.; van Ruitenbeek, J.M. Measurement of the conductance of a hydrogen molecule. Nature 2002, 419, 906–909. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Pietsch, T.; Erbe, A.; Belzig, W.; Scheer, E. Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor. Nano Lett. 2011, 11, 3734–3738. [Google Scholar] [CrossRef] [PubMed]
- Tewari, S.; Sabater, C.; van Ruitenbeek, J. Identification of vibration modes in single-molecule junctions by strong inelastic signals in noise. Nanoscale 2019, 11, 19462–19467. [Google Scholar] [CrossRef]
- Reed, M.; Zhou, C.; Muller, C.; Burgin, T.; Tour, J. Conductance of a molecular junction. Science 1997, 278, 252–254. [Google Scholar] [CrossRef]
- Xu, B.; Tao, N.J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 2003, 301, 1221–1223. [Google Scholar] [CrossRef] [PubMed]
- Herrer, I.L.; Ismael, A.K.; Milán, D.C.; Vezzoli, A.; Martín, S.; González-Orive, A.; Grace, I.; Lambert, C.; Serrano, J.L.; Nichols, R.J.; et al. Unconventional Single-Molecule Conductance Behavior for a New Heterocyclic Anchoring Group: Pyrazolyl. J. Phys. Chem. Lett. 2018, 9, 5364–5372. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Pohlhammer, N.; Sánchez-de Armas, R.; Calzado, C.J.; Borges-Martínez, M.; Cárdenas-Jirón, G. A photo-induced spin crossover based molecular switch and spin filter operating at room temperature. Dalton Trans. 2021, 50, 6578–6587. [Google Scholar] [CrossRef]
- de Ara, T.; Hsu, C.; Martinez-Garcia, A.; Baciu, B.C.; Bronk, P.J.; Ornago, L.; van der Poel, S.; Lombardi, E.B.; Guijarro, A.; Sabater, C.; et al. Evidence of an Off-Resonant Electronic Transport Mechanism in Helicenes. J. Phys. Chem. Lett. 2024, 15, 8343–8350. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Martin, K.; Mastropasqua Talamo, M.; Houssin, A.; Vanthuyne, N.; Avarvari, N.; Tal, O. Single-molecule junctions map the interplay between electrons and chirality. Nat. Commun. 2025, 16, 1759. [Google Scholar] [CrossRef]
- Cabosart, D.; El Abbassi, M.; Stefani, D.; Frisenda, R.; Calame, M.; van der Zant, H.S.J.; Perrin, M.L. A reference-free clustering method for the analysis of molecular break-junction measurements. Appl. Phys. Lett. 2019, 114, 143102. [Google Scholar] [CrossRef]
- Liu, B.; Murayama, S.; Komoto, Y.; Tsutsui, M.; Taniguchi, M. Dissecting Time-Evolved Conductance Behavior of Single Molecule Junctions by Nonparametric Machine Learning. J. Phys. Chem. Lett. 2020, 11, 6567–6572. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Tang, C.; Dong, G.; Chen, Z.; Pan, Z.; Liu, J.; Yang, Y.; Shi, J.; Ji, R.; Hong, W. Spectral Clustering to Analyze the Hidden Events in Single-Molecule Break Junctions. J. Phys. Chem. C 2021, 125, 3623–3630. [Google Scholar] [CrossRef]
- Bro-Jørgensen, W.; Hamill, J.M.; Bro, R.; Solomon, G.C. Trusting our machines: Validating machine learning models for single-molecule transport experiments. Chem. Soc. Rev. 2022, 51, 6875–6892. [Google Scholar] [CrossRef]
- Komoto, Y.; Ryu, J.; Taniguchi, M. Machine learning and analytical methods for single-molecule conductance measurements. Chem. Commun. 2023, 59, 6796–6810. [Google Scholar] [CrossRef] [PubMed]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Ester, M. Chapter 5—Density-Based Clustering. In Data Clustering, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014; p. 17. [Google Scholar]
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM Trans. Database Syst. (TODS) 2017, 42, 1–21. [Google Scholar] [CrossRef]
- Ornago, L. Complexity of Electron Transport in Nanoscale Molecular Junctions. Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands, 2023. [Google Scholar]
- Cuenca, J.P.; de Ara, T.; Martinez-Garcia, A.; Guzman, F.; Sabater, C. Exploring Three-Atom-Thick Gold Structures as a Benchmark for Atomic-Scale Calibration of Break-Junction Systems. arXiV 2025. [Google Scholar] [CrossRef]
- Gimzewski, J.K.; Möller, R. Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. Phys. Rev. B 1987, 36, 1284–1287. [Google Scholar] [CrossRef]
- Untiedt, C.; Caturla, M.J.; Calvo, M.R.; Palacios, J.J.; Segers, R.C.; van Ruitenbeek, J.M. Formation of a Metallic Contact: Jump to Contact Revisited. Phys. Rev. Lett. 2007, 98, 206801. [Google Scholar] [CrossRef]
- Sabater, C.; Caturla, M.J.; Palacios, J.J.; Untiedt, C. Understanding the structure of the first atomic contact in gold. Nanoscale Res. Lett. 2013, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- de Ara, T.; Sabater, C.; Borja-Espinosa, C.; Ferrer-Alcaraz, P.; Baciu, B.C.; Guijarro, A.; Untiedt, C. Signature of adsorbed solvents for molecular electronics revealed via scanning tunneling microscopy. Mater. Chem. Phys. 2022, 291, 126645. [Google Scholar] [CrossRef]
- Martinez-Garcia, A.; de Ara, T.; Pastor-Amat, L.; Untiedt, C.; Lombardi, E.B.; Dednam, W.; Sabater, C. Unraveling the Interplay between Quantum Transport and Geometrical Conformations in Monocyclic Hydrocarbons’ Molecular Junctions. J. Phys. Chem. C 2023, 127, 23303–23311. [Google Scholar] [CrossRef] [PubMed]
Combination | Clusters | Outliers | Clean Traces | Contaminated Traces | ||
---|---|---|---|---|---|---|
1 | 1.733 | 7 | 2 | 76 | 4188 | 760 |
2 | 1.733 | 6 | 2 | 71 | 4188 | 765 |
3 | 4.456 | 7 | 2 | 1 | 4188 | 835 |
4 | 4.456 | 6 | 2 | 1 | 4188 | 835 |
Combination | Clusters | Outliers | Clean Traces | Contaminated Traces | ||
---|---|---|---|---|---|---|
1 | 0.644 | 6 | 2 | 1103 | 3077 | 6 |
2 | 3.400 | 7 | 2 | 218 | 3912 | 56 |
3 | 5.000 | 6 | 2 | 91 | 4087 | 8 |
Total Traces | Clean Traces (%) | Contaminated Traces (%) |
---|---|---|
5024 | 3912 (77.8%) | 1112 (22.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellicer, G.; Sabater, C. Identifying Clean and Contaminated Atomic-Sized Gold Contacts Under Ambient Conditions Using a Clustering Algorithm. Processes 2025, 13, 2061. https://doi.org/10.3390/pr13072061
Pellicer G, Sabater C. Identifying Clean and Contaminated Atomic-Sized Gold Contacts Under Ambient Conditions Using a Clustering Algorithm. Processes. 2025; 13(7):2061. https://doi.org/10.3390/pr13072061
Chicago/Turabian StylePellicer, Guillem, and Carlos Sabater. 2025. "Identifying Clean and Contaminated Atomic-Sized Gold Contacts Under Ambient Conditions Using a Clustering Algorithm" Processes 13, no. 7: 2061. https://doi.org/10.3390/pr13072061
APA StylePellicer, G., & Sabater, C. (2025). Identifying Clean and Contaminated Atomic-Sized Gold Contacts Under Ambient Conditions Using a Clustering Algorithm. Processes, 13(7), 2061. https://doi.org/10.3390/pr13072061