Content of Phytomelatonin in Acorns (Quercus sp.) in Its Possible Use as a Phytogenic in Animal Nutrition
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Climatological Conditions
2.4. Phytomelatonin Extraction
2.5. Phytomelatonin Analysis by Liquid Chromatography with Fluorimetric Detection (LC-FLUO)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Acorn Morphological Characteristics
3.2. Distribution of Acorn Masses: Pericarp and Seed
3.3. Phytomelatonin Content in Acorns
3.4. Relationship Between Phytomelatonin Contents and Morpho-Physiological Parameters
4. Conclusions
- •
- The Maamora ecotype (QM) was distinguished by larger heavier acorns, and a higher proportion of pericarp than Bouhachem (QB) ecotype, confirming the influence of ecological factors on morphology and mass distribution.
- •
- Phytomelatonin content also varied significantly between ecotypes and between fruit compartments (seed vs. pericarp), with overall higher levels in seeds, particularly those of the QM ecotype.
- •
- Correlation analysis revealed a high degree of consistency between morphological dimensions and the fresh and dry masses of acorn organs, reflecting proportional growth between length, width, thickness, and biomass. In contrast, phytomelatonin content in the pericarp was negatively correlated with most morphometric and weight traits, suggesting an inverse regulatory mechanism linked to tissue development. Conversely, phytomelatonin content in seeds showed a slightly positive correlation with some variables, possibly reflecting an accumulation associated with the reserve functions of embryonic tissue.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Biswas, S.; Ahn, J.M.; Kim, I.H. Assessing the Potential of Phytogenic Feed Additives: A Comprehensive Review on Their Effectiveness as a Potent Dietary Enhancement for Nonruminant in Swine and Poultry. J. Anim. Physiol. Anim. Nutr. 2024, 108, 711–723. [Google Scholar] [CrossRef]
- Yang, C.; Chowdhury, M.A.K.; Huo, Y.; Gong, J. Phytogenic Compounds as Alternatives to In-Feed Antibiotics: Potentials and Challenges in Application. Pathogens 2015, 4, 137–156. [Google Scholar] [CrossRef]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of Phytogenic Products as Feed Additives for Swine and Poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, G.R.; Syed, B.; Haldar, S.; Pender, C. Phytogenic Feed Additives as an Alternative to Antibiotic Growth Promoters in Broiler Chickens. Front. Vet. Sci. 2015, 2, 21. [Google Scholar] [CrossRef]
- Latek, U.; Chłopecka, M.; Karlik, W.; Mendel, M. Phytogenic Compounds for Enhancing Intestinal Barrier Function in Poultry–A Review. Planta Medica 2022, 88, 218–236. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Kim, S.J.; Kim, I.H. Effects of Gel-Based Phytogenic Feed Supplement on Growth Performance, Nutrient Digestibility, Blood Characteristics and Intestinal Morphology in Weanling Pigs. J. Appl. Anim. Res. 2016, 44, 384–389. [Google Scholar] [CrossRef]
- Bié, J.; Sepodes, B.; Fernandes, P.C.B.; Ribeiro, M.H.L. Polyphenols in Health and Disease: Gut Microbiota, Bioaccessibility, and Bioavailability. Compounds 2023, 3, 40–72. [Google Scholar] [CrossRef]
- Campigotto, G.; Jaguezeski, A.M.; Alba, D.F.; Giombelli, L.C.D.; da Rosa, G.; Souza, C.F.; Baldissera, M.D.; Petrolli, T.G.; da Silva, A.S. Microencapsulated Phytogenic in Dog Feed Modulates Immune Responses, Oxidative Status and Reduces Bacterial (Salmonella and Escherichia Coli) Counts in Feces. Microb. Pathog. 2021, 159, 105113. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, H.H.; Elasbali, A.M.; Alanazi, M.K.; El Azab, E.F. Medicinal Herbs: Promising Immunomodulators for the Treatment of Infectious Diseases. Molecules 2023, 28, 8045. [Google Scholar] [CrossRef]
- Kępińska-Pacelik, J.; Biel, W. Herbal Support for the Nervous System: The Impact of Adaptogens in Humans and Dogs. Appl. Sci. 2025, 15, 5402. [Google Scholar] [CrossRef]
- Gantner, G.; Spiess, D.; Randecker, E.; Quack Lötscher, K.C.; Simões-Wüst, A.P. Use of Herbal Medicines for the Treatment of Mild Mental Disorders and/or Symptoms During Pregnancy: A Cross-Sectional Survey. Front. Pharmacol. 2021, 12, 729724. [Google Scholar] [CrossRef]
- Mahima, M.; Rahal, A.; Deb, R.; Latheef, S.K.; Samad, H.A.; Tiwari, R.; Verma, A.K.; Kumar, A.; Dhama, K. Immunomodulatory and Therapeutic Potentials of Herbal, Traditional/Indigenous and Ethnoveterinary Medicines. Pak. J. Biol. Sci. 2012, 15, 754–774. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Gómez-Salazar, J.A.; Jaime-Patlón, M.; Sosa-Morales, M.E.; Lorenzo, J.M. Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants 2021, 10, 181. [Google Scholar] [CrossRef]
- Tan, D.X.; Zanghi, B.M.; Manchester, L.C.; Reiter, R.J. Melatonin Identified in Meats and Other Food Stuffs: Potentially Nutritional Impact. J. Pineal Res. 2014, 57, 213–218. [Google Scholar] [CrossRef]
- Dhama, K.; Latheef, S.K.; Mani, S.; Samad, H.A.; Karthik, K.; Tiwari, R.; Khan, R.U.; Alagawany, M.; Farag, M.R.; Alam, G.M.; et al. Multiple Beneficial Applications and Modes of Action of Herbs in Poultry Health and Production-A Review. Int. J. Pharmacol. 2015, 11, 152–176. [Google Scholar] [CrossRef]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.-M. Potential of Essential Oils for Poultry and Pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cortés, P.; Cívico, A.; de la Fuente, M.A.; Sánchez, N.N.; Blanco, F.P.; Marín, A.L.M. Effects of Dietary Concentrate Composition and Linseed Oil Supplementation on the Milk Fatty Acid Profile of Goats. Animal 2018, 12, 2310–2317. [Google Scholar] [CrossRef]
- Moreno-Fernandez, J.; Diaz-Castro, J.; Alférez, M.J.M.; Nestares, T.; Ochoa, J.J.; Sánchez-Alcover, A.; López-Aliaga, I. Fermented Goat Milk Consumption Improves Melatonin Levels and Influences Positively the Antioxidant Status during Nutritional Ferropenic Anemia Recovery. Food Funct. 2016, 7, 834–842. [Google Scholar] [CrossRef]
- Tretter, S.; Mueller, R.S. The Influence of Topical Unsaturated Fatty Acids and Essential Oils on Normal and Atopic Dogs. J. Am. Anim. Hosp. Assoc. 2011, 47, 236–240. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Zabermawi, N.M.; Zabermawi, N.M.; Burollus, M.A.; Shafi, M.E.; Alagawany, M.; Yehia, N.; Askar, A.M.; Alsafy, S.A.; Noreldin, A.E.; et al. Nutritional Aspects and Health Benefits of Bioactive Plant Compounds against Infectious Diseases: A Review. Food Rev. Int. 2021, 39, 2138–2160. [Google Scholar] [CrossRef]
- Atuahene, D.; Mukarram, S.A.; Balouei, F.; Antwi, A. Gut Health Optimization in Canines and Felines: Exploring the Role of Probiotics and Nutraceuticals. Pets 2024, 1, 135–151. [Google Scholar] [CrossRef]
- Bobeck, E.A. Nutrition And Health: Companion Animal Applications: Functional Nutrition in Livestock and Companion Animals to Modulate the Immune Response. J. Anim. Sci. 2020, 98, skaa035. [Google Scholar] [CrossRef]
- García-Conesa, M.T.; Larrosa, M. Polyphenol-Rich Foods for Human Health and Disease. Nutrients 2020, 12, 400. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of Melatonin, the Pineal Gland Factor That Lightens Melanocytes. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
- Lerner, A.B.; Case, J.D.; Heinzelman, R.V. Structure of Melatonin. J. Am. Chem. Soc. 1959, 81, 6084–6085. [Google Scholar] [CrossRef]
- Arnao, M.B. Phytomelatonin: Discovery, Content, and Role in Plants. Adv. Bot. 2014, 2014, 815769. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. The Potential of Phytomelatonin as a Nutraceutical. Molecules 2018, 23, 238. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X.; Burkhardt, S.; Manchester, L.C. Melatonin in Plants. Nutr. Rev. 2001, 59, 286–290. [Google Scholar] [CrossRef]
- Reiter, R.J. The Melatonin Rhythm: Both a Clock and a Calendar. Experientia 1993, 49, 654–664. [Google Scholar] [CrossRef]
- Cruz-Sanabria, F.; Bruno, S.; Crippa, A.; Frumento, P.; Scarselli, M.; Skene, D.J.; Faraguna, U. Optimizing the Time and Dose of Melatonin as a Sleep-Promoting Drug: A Systematic Review of Randomized Controlled Trials and Dose−Response Meta-Analysis. J. Pineal Res. 2024, 76, e12985. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin as a Chemical Substance or as Phytomelatonin Rich-Extracts for Use as Plant Protector and/or Biostimulant in Accordance with EC Legislation. Agronomy 2019, 9, 570. [Google Scholar] [CrossRef]
- Dhole, A.M.; Shelat, H.N. Phytomelatonin: A Plant Hormone for Management of Stress. J. Anal. Pharm. Res. 2018, 7, 188–190. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Phytomelatonin, Natural Melatonin from Plants as a Novel Dietary Supplement: Sources, Activities and World Market. J. Funct. Foods 2018, 48, 37–42. [Google Scholar] [CrossRef]
- Ghorbani, A.; Pishkar, L.; Saravi, K.V.; Chen, M. Melatonin-Mediated Endogenous Nitric Oxide Coordinately Boosts Stability through Proline and Nitrogen Metabolism, Antioxidant Capacity, and Na+/K+ Transporters in Tomato under NaCl Stress. Front. Plant Sci. 2023, 14, 1135943. [Google Scholar] [CrossRef]
- Rosales-Corral, S.A.; Acuña-Castroviejo, D.; Coto-Montes, A.; Boga, J.A.; Manchester, L.C.; Fuentes-Broto, L.; Korkmaz, A.; Ma, S.; Tan, D.; Reiter, R.J. Alzheimer’s Disease: Pathological Mechanisms and the Beneficial Role of Melatonin. J. Pineal Res. 2012, 52, 167–202. [Google Scholar] [CrossRef]
- Alghamdi, B.S. The Neuroprotective Role of Melatonin in Neurological Disorders. J. Neurosci. Res. 2018, 96, 1136–1149. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Phyto-Melatonin: A Natural Substance from Plants with Interesting Nutraceutical Properties. In Nutraceuticals: Prospects, Sources and Role in Health and Disease; Motohashi, N., Ed.; Food Science and Technology; NOVA Science Publ.: New York, NY, USA, 2017; pp. 123–157. ISBN 1978-1-53611-804-9. [Google Scholar]
- Reiter, R.J.; Tan, D.X.; Galano, A. Melatonin: Exceeding Expectations. Physiology 2014, 39, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Galano, A.; Reiter, R.J. Melatonin and Its Metabolites vs Oxidative Stress: From Individual Actions to Collective Protection. J. Pineal Res. 2018, 65, e12514. [Google Scholar] [CrossRef]
- Mehrzadi, S.; Sheibani, M.; Koosha, F.; Alinaghian, N.; Pourhanifeh, M.H.; Tabaeian, S.A.P.; Reiter, R.J.; Hosseinzadeh, A. Protective and Therapeutic Potential of Melatonin against Intestinal Diseases: Updated Review of Current Data Based on Molecular Mechanisms. Expert Rev. Gastroenterol. Hepatol. 2023, 17, 1011–1029. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Hernández-Ruiz, J. Phytomelatonin: An Unexpected Molecule with Amazing Performances in Plants. J. Exp. Bot. 2022, 73, 5779–5800. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: A New Plant Hormone and/or a Plant Master Regulator? Trends Plant Sci. 2019, 24, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Aghdam, M.S.; Mukherjee, S.; Flores, F.B.; Arnao, M.B.; Luo, Z.; Corpas, F.J. Functions of Melatonin During Postharvest of Horticultural Crops. Plant Cell Physiol. 2021, 63, 1764–1786. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin as a Regulatory Hub of Plant Hormone Levels and Action in Stress Situations. Plant Biol. 2021, 23, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Giraldo Acosta, M.; Cano, A.; Hernández-Ruiz, J.; Arnao, M.B. Melatonin as a Possible Natural Safener in Crops. Plants 2022, 11, 890. [Google Scholar] [CrossRef]
- Ruiz-Cano, D.; Sánchez-Carrasco, G.; El-Mihyaoui, A.; Arnao, M.B. Essential Oils and Melatonin as Functional Ingredients in Dogs. Animals 2022, 12, 2089. [Google Scholar] [CrossRef]
- Cano, A.; Hernández-Ruiz, J.; Arnao, M.B. Current State of the Natural Melatonin: The Phytomelatonin Market. Melatonin Res. 2024, 7, 242–248. [Google Scholar] [CrossRef]
- Ghosh, S. Phyto-Melatonin and Immunity: A Review. Glob. J. Sci. Front. Res. 2021, 21, 23–30. [Google Scholar]
- Moreno-Jimenez, M.R.; Trujillo-Esquivel, F.; Gallegos-Corona, M.A.; Reynoso-Camacho, R.; González-Laredo, R.F.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E.; Ramos-Gomez, M. Antioxidant, Anti-Inflammatory and Anticarcinogenic Activities of Edible Red Oak (Quercus spp.) Infusions in Rat Colon Carcinogenesis Induced by 1,2-Dimethylhydrazine. Food Chem. Toxicol. 2015, 80, 144–153. [Google Scholar] [CrossRef]
- Mayo, J.C.; Sainz, R.M.; Tan, D.X.; Hardeland, R.; León, J.; Rodriguez, C.; Reiter, R.J. Anti-Inflammatory Actions of Melatonin and Its Metabolites, N1-Acetyl-N2-Formyl-5-Methoxykynuramine (AFMK) and N1-Acetyl-5-Methoxykynuramine (AMK), in Macrophages. J. Neuroimmunol. 2005, 165, 139–149. [Google Scholar] [CrossRef]
- Peña-Delgado, V.; Carvajal-Serna, M.; Fondevila, M.; Martín-Cabrejas, M.A.; Aguilera, Y.; Álvarez-Rivera, G.; Abecia, J.A.; Casao, A.; Pérez-Pe, R. Improvement of the Seminal Characteristics in Rams Using Agri-Food By-Products Rich in Phytomelatonin. Animals 2023, 13, 905. [Google Scholar] [CrossRef]
- Mitjana, O.; Ausejo, R.; Mendoza, N.; Miguel, J.; Tejedor, M.T.; Garrido, A.M.; Falceto, M.V. Photoperiod and Melatonin Supplementation: Variable Effects on the Quality of Chilled Dog Semen. Front. Vet. Sci. 2022, 9, 956630. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, K.; Zhou, Y.; Zhao, J.; Wang, J.; Lu, W. Role of Melatonin in Bovine Reproductive Biotechnology. Molecules 2023, 28, 4940. [Google Scholar] [CrossRef]
- Makris, A.; Alevra, A.I.; Exadactylos, A.; Papadopoulos, S. The Role of Melatonin to Ameliorate Oxidative Stress in Sperm Cells. Int. J. Mol. Sci. 2023, 24, 15056. [Google Scholar] [CrossRef]
- Martinez-Rodriguez, J.A.; Carbajal, F.J.; Martinez-De-Anda, R.; Alcantar-Rodriguez, A.; Medrano, A. Melatonin Added to Freezing Diluent Improves Canine (Bulldog) Sperm Cryosurvival. Reprod. Fertil. 2020, 1, 11–19. [Google Scholar] [CrossRef]
- Divar, M.R.; Azari, M.; Mogheiseh, A.; Ghahramani, S. Supplementation of Melatonin to Cooling and Freezing Extenders Improves Canine Spermatozoa Quality Measures. BMC Vet. Res. 2022, 18, 86. [Google Scholar] [CrossRef]
- Bonmatí-Carrión, M.-Á.; Rol, M.-A. Melatonin as a Mediator of the Gut Microbiota–Host Interaction: Implications for Health and Disease. Antioxidants 2024, 13, 34. [Google Scholar] [CrossRef]
- Konturek, S.J.; Konturek, P.C.; Brzozowski, T.; Bubenik, G.A. Role of Melatonin in Upper Gastrointestinal Tract. J. Physiol. Pharmacol. 2007, 58, 23–52. [Google Scholar]
- Zhai, X.; Wang, N.; Jiao, H.; Zhang, J.; Li, C.; Ren, W.; Reiter, R.J.; Su, S. Melatonin and Other Indoles Show Antiviral Activities against Swine Coronaviruses in Vitro at Pharmacological Concentrations. J. Pineal Res. 2021, 71, e12754. [Google Scholar] [CrossRef]
- Xia, S.; Gao, W.; Li, Y.; Ma, J.; Gong, S.; Gao, Z.; Tang, W.; Tian, W.; Tang, S. Effects of Melatonin on Intestinal Function and Bacterial Compositions in Sucking Piglets. J. Anim. Physiol. Anim. Nutr. 2022, 106, 1139–1148. [Google Scholar] [CrossRef]
- Sánchez, A.B.; Clares, B.; Rodríguez-Lagunas, M.J.; Fábrega, M.J.; Calpena, A.C. Study of Melatonin as Preventive Agent of Gastrointestinal Damage Induced by Sodium Diclofenac. Cells 2020, 9, 180. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Chen, Q.; Liu, S.; Xu, W.; Shang, W.; Wang, L.; Yu, J. Melatonin Alleviates Glucose and Lipid Metabolism Disorders in Guinea Pigs Caused by Different Artificial Light Rhythms. J. Diabetes Res. 2020, 2020, 4927403. [Google Scholar] [CrossRef]
- Fragua, V.; González-Ortiz, G.; Villaverde, C.; Hervera, M.; Mariotti, V.M.; Manteca, X.; Baucells, M.D. Preliminary Study: Voluntary Food Intake in Dogs during Tryptophan Supplementation. Br. J. Nutr. 2011, 106 (Suppl. 1), S162–S165. [Google Scholar] [CrossRef]
- Ashley, P.F.; Frank, L.A.; Schmeitzel, L.P.; Bailey, E.M.; Oliver, J.W. Effect of Oral Melatonin Administration on Sex Hormone, Prolactin, and Thyroid Hormone Concentrations in Adult Dogs. J. Am. Vet. Med. Assoc. 1999, 215, 1111–1115. [Google Scholar] [CrossRef]
- Nieto, J.; Leite, A.; Vasconcelos, L.; Plaza, J.; Abecia, J.-A.; Revilla, I.; Palacios, C.; Teixeira, A. Effect of Melatonin Implants on Carcass Characteristics and Meat Quality of Slow-Growing Chickens. Poult. Sci. 2025, 104, 104913. [Google Scholar] [CrossRef]
- Relić, R.; Škrbić, Z.; BožičkoviĆ, I.; LukiĆ, M.; PetričeviĆ, V.; DeliĆ, N.; Bondžić, A.; ViToroviĆ, D. Effects of Dietary Melatonin on Broiler Chicken Exposed to Continuous Lighting during the First Two Weeks of Life. Ank. Univ. Vet. Fak. Derg. 2022, 69, 361–366. [Google Scholar] [CrossRef]
- Ruiz-Cano, D.; Sánchez-Carrasco, G.; Arnao, M.B. Food Supplements in Pet Food: An Example in Dogs with Essential Oils and Melatonin as Functional Ingredients. All Pet Food Mag. 2022, 4, 8–12. [Google Scholar]
- Vinha, A.F.; Barreira, J.C.M.; Costa, A.S.G.; Oliveira, M.B.P.P. A New Age for Quercus spp. Fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns. Compr. Rev. Food Sci. Food Saf. 2016, 15, 947–981. [Google Scholar] [CrossRef]
- Rezaie, M.; Semnaninejad, H. Effects of Different Levels of Raw and Processed Oak Acorn (Quercus castaneifolia) on Performance, Small Intestine Morphology, Ileal Digestibility of Nutrients, Carcass Characteristics and Some Blood Parameters in Broiler Chickens. Poult. Sci. J. 2016, 4, 127–138. [Google Scholar] [CrossRef]
- Tejerina, D.; García-Torres, S.; Cabeza de Vaca, M.; Vázquez, F.M.; Cava, R. Acorns (Quercus rotundifolia Lam.) and Grass as Natural Sources of Antioxidants and Fatty Acids in the “Montanera” Feeding of Iberian Pig: Intra- and Inter-Annual Variations. Food Chem. 2011, 124, 997–1004. [Google Scholar] [CrossRef]
- Rakić, S.; Povrenović, D.; Tešević, V.; Simić, M.; Maletić, R. Oak Acorn, Polyphenols and Antioxidant Activity in Functional Food. J. Food Eng. 2006, 74, 416–423. [Google Scholar] [CrossRef]
- Díaz-Fernández, P.M.; Climent, J.; Gil, L. Biennial Acorn Maturation and Its Relationship with Flowering Phenology in Iberian Populations of Quercus suber. Trees 2004, 18, 615–621. [Google Scholar] [CrossRef]
- Merouani, H.; Apolinário, L.M.; Almeida, M.-H.; Pereira, J.S. Morphological and Physiological Maturation of Acorns of Cork Oak (Quercus suber L.). Seed Sci. Technol. 2003, 31, 111–124. [Google Scholar] [CrossRef]
- Cantos, E.; Espín, J.C.; López-Bote, C.; De La Hoz, L.; Ordóñez, J.A.; Tomás-Barberán, F.A. Phenolic Compounds and Fatty Acids from Acorns (Quercus spp.), the Main Dietary Constituent of Free-Ranged Iberian Pigs. J. Agric. Food Chem. 2003, 51, 6248–6255. [Google Scholar] [CrossRef]
- Cava, R.; Ventanas, J.; Florencio Tejeda, J.; Ruiz, J.; Antequera, T. Effect of Free-Range Rearing and α-Tocopherol and Copper Supplementation on Fatty Acid Profiles and Susceptibility to Lipid Oxidation of Fresh Meat from Iberian Pigs. Food Chem. 2000, 68, 51–59. [Google Scholar] [CrossRef]
- Bouderoua, K.; Selselet-Attou, G. Fatty Acid Composition of Abdominal Adipose Tissue in Broilers Fed Green-Oak (Quercus ilex), Cork Oak Acorn (Quercus suber L.) Based Diets. Anim. Res. 2003, 52, 377–382. [Google Scholar] [CrossRef]
- Bouderoua, K.; Mourot, J.; Selselet-Attou, G. The Effect of Green Oak Acorn (Quercus ilex) Based Diet on Growth Performance and Meat Fatty Acid Composition of Broilers. Asian-Australas. J. Anim. Sci. 2009, 22, 843–848. [Google Scholar] [CrossRef]
- Houshmand, M.; Hojati, F.; Parsaie, S. Dietary Nutrient Manipulation to Improve the Performance and Tibia Characteristics of Broilers Fed Oak Acorn (Quercus brantii Lindl). Rev. Bras. Cienc. Avic. 2015, 17, 17–24. [Google Scholar] [CrossRef]
- Melo, A.; Afonso, T.B.; Pedrosa, M.C.; Carvalho, M.; Rodrigues, C.; Dias, M.I.; Ribeiro, T.; Machado, M.; Tavaria, F.; Carocho, M.; et al. Phenolic Profile and Antioxidant and Biological Activities of Plant Extracts Rich in Hydrolyzable Tannins. ACS Agric. Sci. Technol. 2024, 4, 988–1001. [Google Scholar] [CrossRef]
- Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.-K.; Rocha, J.M. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants 2023, 12, 1217. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Assessment of Different Sample Processing Procedures Applied to the Determination of Melatonin in Plants. Phytochem. Anal. 2009, 20, 14–18. [Google Scholar] [CrossRef]
- Cano, A.; Hernández-Ruiz, J.; Arnao, M.B. Common Methods of Extraction and Determination of Phytomelatonin in Plants. In ROS Signaling in Plants: Methods and Protocols; Corpas, F.J., Palma, J.M., Eds.; Springer: New York, NY, USA, 2024; pp. 161–181. ISBN 978-1-07-163826-2. [Google Scholar]
- Arnao, M.B.; Giraldo-Acosta, M.; Castejón-Castillejo, A.; Losada-Lorán, M.; Sánchez-Herrerías, P.; El Mihyaoui, A.; Cano, A.; Hernández-Ruiz, J. Melatonin from Microorganisms, Algae, and Plants as Possible Alternatives to Synthetic Melatonin. Metabolites 2023, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Arend, L.S.; Knox, R.V. Fertility Responses of Melatonin-Treated Gilts before and during the Follicular and Early Luteal Phases When There Are Different Temperatures and Lighting Conditions in the Housing Area. Anim. Reprod. Sci. 2021, 230, 106769. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Cai, X.; Li, J.; Huang, Y.; Liu, H.; He, J.; Fang, Z.; Feng, B.; Tang, J.; Lin, Y.; et al. Effects of Melatonin Supplementation during Pregnancy on Reproductive Performance, Maternal–Placental–Fetal Redox Status, and Placental Mitochondrial Function in a Sow Model. Antioxidants 2021, 10, 1867. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Quercus suber L. | |
---|---|---|
Parameter | Ecotype 1 (Maamora) | Ecotype 2 (Bouhachem) |
GPS coordinates | 34°6′44.01′′ N | 35°11′59.4168′′ N |
6°37′51.1896′′ W | 5°21′7.6644′′ W | |
Ecosystem type | Plain | Mountain |
Region | Maamora Forest (Rabat-Salé-Kénitra, Morocco) | Bouhachem Forest (Tanger-Tetouan-Al Hoceïma, Morocco) |
Approximate altitude | Low, <200 m | High, >600 m) |
Acorn size | Large | Small |
Acorn taste | Sweet | Bitter |
Traditional use | Edible human food | Forage use |
Years | 2022/2023 | 2023/2024 | ||
---|---|---|---|---|
Ecotypes | QM | QB | QM | QB |
Length (mm) | 46.36 ± 0.61 a | 30.97 ± 0.66 b | 46.12 ± 0.81 a | 30.18 ± 0.41 b |
Width (mm) | 19.87 ± 0.21 a | 16.12 ± 0.62 b | 18.70 ± 0.30 a | 15.25 ± 0.17 b |
Thickness (mm) | 19.23 ± 0.23 a | 16.02 ± 0.62 b | 18.50 ± 0.30 a | 15.11 ± 0.16 b |
Fresh weight (g) | 11.55 ± 0.33 a | 6.15 ± 1.10 b | 11.04 ± 0.49 a | 4.50 ± 0.15 b |
Dry weight (g) | 7.63 ± 0.23 a | 2.46 ± 0.10 b | 6.96 ± 0.29 a | 3.45 ± 0.39 b |
Years | 2022/2023 | 2023/2024 | ||
---|---|---|---|---|
Ecotypes | QM | QB | QM | QB |
% Pericarp | 19.48 ± 0.38 b | 15.82 ± 0.28 d | 21.85 ± 0.47 a | 17.28 ± 0.40 c |
% Seed | 80.52 ± 0.38 c | 84.18 ± 0.28 a | 78.14 ± 0.47 d | 82.73 ± 0.40 b |
FPW (g) | 2.19 ± 0.06 a | 0.65 ± 0.02 b | 2.37 ± 0.11 a | 0.76 ± 0.02 b |
FSW (g) | 9.36 ± 0.28 a | 5.49 ± 1.10 bc | 8.66 ± 0.40 ab | 3.75 ± 0.13 c |
DPW (g) | 1.64 ± 0.04 a | 0.46 ± 0.02 b | 1.56 ± 0.06 a | 0.95 ± 0.38 ab |
DSW (g) | 5.99 ± 0.19 a | 1.99 ± 0.09 b | 5.40 ± 0.24 a | 2.50 ± 0.08 b |
Years | Ecotype | Organ | Phytomelatonin (ng/g DW) | Total Phytomelatonin Content (ng/g DW) |
---|---|---|---|---|
2022/2023 | QM | Pericarp | 1.01 ± 0.04 e | 10.95 ± 0.28 a |
Seed | 9.94 ± 0.24 a | |||
QB | Pericarp | 1.86 ± 0.31 e | 6.74 ± 0.44 b | |
Seed | 4.88 ± 0.13 c | |||
2023/2024 | QM | Pericarp | 6.67 ± 0.43 b | 7.98 ± 0.51 b |
Seed | 1.31 ± 0.08 e | |||
QB | Pericarp | 3.09 ± 0.33 d | 7.46 ± 0.39 b | |
Seed | 4.37 ± 0.06 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaabi, S.; El Bouzdoudi, B.; Kbiach, M.L.E.; Cano, A.; Hernández-Ruiz, J.; Arnao, M.B. Content of Phytomelatonin in Acorns (Quercus sp.) in Its Possible Use as a Phytogenic in Animal Nutrition. Processes 2025, 13, 2202. https://doi.org/10.3390/pr13072202
Kaabi S, El Bouzdoudi B, Kbiach MLE, Cano A, Hernández-Ruiz J, Arnao MB. Content of Phytomelatonin in Acorns (Quercus sp.) in Its Possible Use as a Phytogenic in Animal Nutrition. Processes. 2025; 13(7):2202. https://doi.org/10.3390/pr13072202
Chicago/Turabian StyleKaabi, Soundouss, Brahim El Bouzdoudi, Mohammed L’bachir El Kbiach, Antonio Cano, Josefa Hernández-Ruiz, and Marino B. Arnao. 2025. "Content of Phytomelatonin in Acorns (Quercus sp.) in Its Possible Use as a Phytogenic in Animal Nutrition" Processes 13, no. 7: 2202. https://doi.org/10.3390/pr13072202
APA StyleKaabi, S., El Bouzdoudi, B., Kbiach, M. L. E., Cano, A., Hernández-Ruiz, J., & Arnao, M. B. (2025). Content of Phytomelatonin in Acorns (Quercus sp.) in Its Possible Use as a Phytogenic in Animal Nutrition. Processes, 13(7), 2202. https://doi.org/10.3390/pr13072202