Simulation and Experimental Analysis of Shelf Temperature Effects on the Primary Drying Stage of Cordyceps militaris Freeze-Drying
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Numerical Modeling of the Heat and Mass Transfer Process
2.3. Method for Determining the Glass Transition and Collapse Temperatures
2.4. Experimental Method
2.4.1. The Experimental Freeze-Drying
2.4.2. Method for Determining Volume Shrinkage
2.4.3. Method for Determining Rehydration Ratio
2.4.4. Method for Determining Water Activity in Dried Cordyceps militaris
2.4.5. Method for Evaluating Color Difference in Cordyceps militaris
2.4.6. Method for Determining Cordycepin and Adenosine Content in Cordyceps militaris
3. Results and Discussion
3.1. Numerical Simulation of Heat and Mass Transfer During Freeze-Drying of Cordyceps militaris
3.2. Determination of Glass Transition and Collapse Temperatures
3.3. Shrinkage of Cordyceps militaris During Drying
3.4. Evaluation of Product Quality
3.4.1. Color Changes
3.4.2. Water Activity
3.4.3. Water Rehydration Capacity
3.4.4. Cordycepin and Adenosine Contents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Developing Mathematical Models of Heat and Mass Transfer
- ✓
- Heat transfer equations in the freeze-drying process of Cordyceps militaris:
- ✓
- Moisture transfer equation in the freeze-drying process of Cordyceps militaris:
Appendix B
Symbol | Significance | Units |
---|---|---|
r | Radius | m |
rs | Radius of fiber | m |
rsub | Radius of sublimation front | m |
Asub | Sublimation area | m2 |
aw | Water activity | - |
aw,avg | Average water activity | - |
Ls | Length of fiber | m |
Lsub | Latent heat of sublimation | J/kg |
Tconde | Temperature of condenser | °C or K |
Ts | Temperature of surface fiber | °C or K |
Tfroze | Temperature of frozen region | °C or K |
Tsub | Temperature of sublimation front | °C or K |
Tshelf | Temperature of shelf | °C or K |
Tdry | Temperature of the dried region | °C or K |
Tg | Glass transition temperature | °C or K |
Cdry | Specific heat capacity | J/kg·K |
ρdry | Density of dried region | kg/m3 |
ρice,eff | Density of ice | kg/m3 |
kdry | Thermal conductivity of the dry region | W/m·K |
cw | Concentration of water | kg/m3 |
MR0 | Moisture content initial | kg/kgdb |
MRend | Moisture content end | kg/kgdb |
Cdry | Specific heat capacity | J/kg·K |
ρdry | Density of dried region | kg/m3 |
ρice,eff | Density of ice | kg/m3 |
kdry | Thermal conductivity of the dry region | W/m·K |
cw | Concentration of water | kg/m3 |
Mw | Molecular weight of water | kg/kmol |
Rg | Gas constant | J/kmol.K |
Pw = Psat(T) | Saturation pressure | Pa |
Pchamb | Pressure at drying chamber | Pa |
Rcont | Contact heat transfer resistance | K/W |
Rcond | Conduct heat transfer resistance | K/W |
Rcond,sub | Conduct heat transfer resistance of dried region | K/W |
Rcond,tr | Conduct heat transfer resistance between tray and fiber | K/W |
Rrad,tr | Radiation heat transfer resistance between tray and fiber | K/W |
Rrad | Radiation heat transfer resistance between fiber and condenser | K/W |
Udry | Internal energy of the dry region | J |
Deff | Mass diffusivity coefficient | m2/s |
Jw | Mass flux | kg/m2·s |
Mass flux | kg/s | |
Vfr | Volume of fresh Cordyceps militaris | mL |
Vdry | Volume of dried Cordyceps militaris | mL |
ΔV | Volume shrinkage | % |
ΔCp | Change in specific heat capacity | J/kg·K |
xi | Mass fraction | - |
Rw | Rehydration capacity | % |
Rw,avg | Average rehydration capacity | % |
mr | Recovered moisture mass | g |
msub | Sublimated moisture mass | g |
L*0 | Lightness of fresh Cordyceps militaris | |
L*0 | Lightness of dried Cordyceps militaris | s |
a*0 | Red–green coordinate of fresh Cordyceps militaris | - |
a* | Red–green coordinate of dried Cordyceps militaris | - |
b*0 | Yellow–blue coordinate of fresh Cordyceps militaris | - |
b* | Yellow–blue coordinate of dried Cordyceps militaris | - |
ΔE | Total color difference | - |
τ | Time | s |
References
- Wu, X.-F.; Zhang, M.; Li, Z. Influence of infrared drying on the drying kinetics, bioactive compounds and flavor of Cordyceps militaris. LWT 2019, 111, 790–798. [Google Scholar] [CrossRef]
- Wu, W.; Li, H.; Chen, Y.; Luo, Y.; Zeng, J.; Huang, J.; Gao, T. Recent advances in drying processing technologies for aquatic products. Processes 2024, 12, 942. [Google Scholar] [CrossRef]
- Chimsook, T.; Hamontree, C. Effect of freeze drying and hot air drying methods on quality of cordycepin production. MATEC Web Conf. 2018, 192, 03001. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Yang, H.; Wang, J.; Chen, H. Assessment of drying methods on the physiochemical property and antioxidant activity of Cordyceps militaris. J. Food Meas. Charact. 2018, 13, 513–520. [Google Scholar] [CrossRef]
- Wu, X.-F.; Zhang, M.; Bhandari, B. A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris. Innov. Food Sci. Emerg. Technol. 2019, 54, 34–42. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, M.; Bhandari, B.; Li, Z. Effects of microwave-assisted pulse-spouted bed freeze-drying (MPSFD) on volatile compounds and structural aspects of Cordyceps militaris. J. Sci. Food Agric. 2018, 98, 4634–4643. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Jakubczyk, E. The freeze-drying of foods—The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef] [PubMed]
- Welti-Chanes, J.; Vergara-Balderas, F.; Pérez-Pérez, E.; Reyes-Herrera, A. Fundamentals and new tendencies of freeze-drying foods. J. Food Eng. 2005, 67, 113–128. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Devi, A.; Singh, K.K.; Bosco, S.J.D.; Mohite, A.M. Application of glass transition in food processing. Crit. Rev. Food Sci. Nutr. 2014, 56, 919–936. [Google Scholar] [CrossRef] [PubMed]
- Krokida, M.K.; Karathanos, V.T.; Maroulis, Z.B. Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. J. Food Eng. 1998, 35, 369–380. [Google Scholar] [CrossRef]
- Ratti, C. Freeze drying for food powder production. In Handbook of Food Powders: Processes and Properties; Woodhead Publishing: Cambridge, UK, 2013; pp. 57–84. [Google Scholar]
- Bhatta, S.; Janezic, T.S.; Ratti, C. Freeze-drying of plant-based foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Meister, E.; Gieseler, H. A significant comparison between collapse and glass transition temperatures. Eur. Pharm. Rev. 2008, 13, 73–77. [Google Scholar]
- Pikal, M.J. Use of Laboratory Data in Freeze-Drying Process Design: Heat and Mass Transfer Coefficients and the Computer Simulation of Freeze-Drying. PDA J. Pharm. Sci. Technol. 1985, 39, 115–139. [Google Scholar]
- Hubble, D.; Patel, S.M.; Searles, J.A. A Comparison of 0D, 1D and 3D Numerical Models for Simulation of Heat Transfer during Lyophilization. J. Pharm. Sci. 2021, 110, 331–342. [Google Scholar] [CrossRef]
- Trelea, I.C.; Delalonde, M.; Fonseca, F.; Marin, M. Analysis of Heat and Mass Transfer in Freeze-Drying: Modeling and Simulation of Drying Kinetics in Vials and Pellets. Chem. Eng. Process. 2009, 48, 408–417. [Google Scholar] [CrossRef]
- Nguyen, P.V.; Nguyen, A.N. Numerical and Experimental Study of Primary Drying Stage in Freeze-Drying of Cordyceps militaris. Edelweiss Appl. Sci. Technol. 2025, 9, 1905–1917. [Google Scholar] [CrossRef]
- Ravnik, J.; Trček, D.; Zadravec, M. Experimental and Stochastic Analysis of Lyophilisation. Eur. J. Pharm. Biopharm. 2021, 163, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Katkov, I.I.; Levine, F. Prediction of the glass transition temperature of water solutions: Comparison of different models. Cryobiology 2004, 49, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, I.; Blanshard, J.M.V.; Izzard, M.J.; Lillford, P.J.; Ablett, S. Calorimetric study of the glass transition occurring in aqueous glucose: Fructose solutions. J. Sci. Food Agric. 1993, 63, 177–188. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Howes, T. Implication of glass transition for the drying and stability of dried foods. J. Food Eng. 1999, 40, 71–79. [Google Scholar] [CrossRef]
- Caparino, O.A.; Sablani, S.S.; Tang, J.; Syamaladevi, R.M.; Nindo, C.I. Water sorption, glass transition, and microstructures of refractance window– and freeze-dried mango (Philippine “Carabao” Var.) powder. Dry. Technol. 2013, 31, 1969–1978. [Google Scholar] [CrossRef]
- Khalloufi, S.; Ratti, C. Quality deterioration of freeze-dried foods as explained by their glass transition temperature and internal structure. J. Food Sci. 2003, 68, 892–903. [Google Scholar] [CrossRef]
- Khalloufi, S.; El-Maslouhi, Y.; Ratti, C. Mathematical model for prediction of glass transition temperature of fruit powders. J. Food Sci. 2000, 65, 842–848. [Google Scholar] [CrossRef]
- Jaya, S.; Das, H. Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders. Food Bioprocess Technol. 2009, 2, 89–95. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Nguyen, A.N.; Le, N.C. Design and fabrication of a freeze dryer for Cordyceps militaris and seafood. J. Fish. Sci. Technol. Nha Trang Univ. 2023, 1, 59–68. [Google Scholar] [CrossRef]
- Wu, X.-F.; Zhang, M.; Li, Z. Dehydration modeling of Cordyceps militaris in mid-infrared-assisted convection drying system: Using low-field nuclear magnetic resonance with the aid of ELM and PLSR. Dry. Technol. 2019, 37, 2072–2086. [Google Scholar] [CrossRef]
- Vilas, C.; Alonso, A.A.; Balsa-Canto, E.; López-Quiroga, E.; Trelea, I.C. Model-based real time operation of the freeze-drying process. Processes 2020, 8, 325. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Lee, K.-S. Comparative numerical study of freeze drying of solution and spray-frozen particles in trays and vials. Numer. Heat Transf. Part A Appl. 2008, 54, 406–425. [Google Scholar] [CrossRef]
- Dadali, G.; Apar, D.K.; Ozbek, B. Color change kinetics of okra undergoing microwave drying. Dry. Technol. 2007, 25, 925–936. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chem. 2016, 197, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Quy, N.N.; Nhut, P.T.; Nhi, T.T.Y.; Tien, N.M.; Chung, D.D.; Van Thanh, L.; Phuong, T.T.M. Effect of Time and Temperature on the Extraction of Cordyceps militaris in Pilot Scale. Conf. Ser. Mater. Sci. Eng. 2021, 1092, 012079. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, N.T.; Nguyen, T.T.H. Evaluation of the Impact of Freeze-Drying Method and the Ability to Extract Cordycepin and Adenosine from Cordyceps militaris Using Water Solvent. Ind. Trade Mag. 2022, 374, 10–15. [Google Scholar]
- Valdez-Solana, M.A.; Corral-Guerrero, I.A.; Téllez-Valencia, A.; Avitia-Domínguez, C.; Meza-Velázquez, J.A.; de Casa, A.G.; Sierra-Campos, E. Cordyceps militaris Inhibited Angiotensin-Converting Enzyme through Molecular Interaction between Cordycepin and ACE C-Domain. Life 2022, 12, 1450. [Google Scholar] [CrossRef] [PubMed]
- Linnenkugel, S.; Paterson, A.H.; Huffman, L.M.; Bronlund, J.E. Prediction of the glass transition temperature of low molecular weight components and polysaccharide mixtures. J. Food Eng. 2021, 292, 110345. [Google Scholar] [CrossRef]
- Yin, F.; Lin, P.; Yu, W.-Q.; Shen, N.; Li, Y.; Guo, S.-D. The Cordyceps militaris-derived polysaccharide CM1 alleviates atherosclerosis in LDLR(−/−) mice by improving hyperlipidemia. Front. Mol. Biosci. 2021, 8, 783807. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Yu, W.-Q.; Li, Y.; Sun, Y.-L.; Guo, S.-D. Structural elucidation and activities of Cordyceps militaris-derived polysaccharides: A review. Front. Nutr. 2022, 9, 898674. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, X.; Zheng, K.; Wang, Y.; Li, M.; Zhang, Y.; Cui, Y.; Deng, S.; Liu, S.; Zhang, G.; et al. Cordyceps Polysaccharides: A Review of Their Immunomodulatory Effects. Molecules 2024, 29, 5107. [Google Scholar] [CrossRef] [PubMed]
- Özen, S.; Ünlü, A.; Özbek, H.N.; Göğüş, F. β-glucan extraction from hull-less barley by a novel approach: Microwave-assisted pressurized CO2/H2O. Food Bioprocess Technol. 2024, 17, 4781–4793. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Jiao, X.; Qin, X. Analysis of heat and mass transfer mechanism of vacuum freeze-drying in the primary drying. J. Adv. Chem. 2007, 3, 183–191. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Tran, H.L.; Pham, Q.D.; Le, M.T. Assessing the Effects of Various Drying Techniques on the Nutritional and Antioxidant Properties of Cordyceps militaris. J. Food Process. Preserv. 2025, 49, 9911661. [Google Scholar] [CrossRef]
- Radojčin, M.; Pavkov, I.; Kovačević, D.B.; Putnik, P.; Wiktor, A.; Stamenković, Z.; Kešelj, K.; Gere, A. Effect of selected drying methods and emerging drying intensification technologies on the quality of dried fruit: A review. Processes 2021, 9, 132. [Google Scholar] [CrossRef]
- Raponi, F.; Moscetti, R.; Monarca, D.; Colantoni, A.; Massantini, R. Monitoring and optimization of the process of drying fruits and vegetables using computer vision: A review. Sustainability 2017, 9, 2009. [Google Scholar] [CrossRef]
- Zhu, S.-J.; Pan, J.; Zhao, B.; Liang, J.; Ze-Yu, W.; Yang, J.-J. Comparisons on enhancing the immunity of fresh and dry Cordyceps militaris in vivo and in vitro. J. Ethnopharmacol. 2013, 149, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Bergman, T.L. Fundamentals of Heat and Mass Transfer, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
No | Symbol | Units | Value |
---|---|---|---|
1 | rs | m | 0.00259 |
2 | Ls | m | 0.079 |
3 | MR0 | kg/kgDb | 3.762 |
4 | MRend | kg/kgDb | 0.074 |
5 | Mw | kg/kmol | 18 |
6 | Rg | J/(kmol∙K) | 8314 |
7 | Lsub | J/kg | 3,195,667 |
8 | Tfroze | °C | −30.6 |
9 | Tsub | °C | −30.6 |
10 | Tshelf | °C | 0 |
11 | Tconde | °C | −32 |
12 | Pchamb | Pa | 35 |
13 | ρdry | kg/m3 | 277.08 |
14 | ρice,eff | kg/m3 | 832.22 |
15 | Cdry | J/(kg∙K) | 1850 |
16 | Deff | m2/s | 4.52·10−3 |
17 | Rrad | K/W | 3400.75 |
18 | Rcont | K/W | 78.5 |
Parameter | Symbol | Value | Description |
---|---|---|---|
Freezing temperature | Tfroze | −30.6 °C | The starting temperature of the material during primary drying |
Shelf temperature | Tshelf | −10 °C, −5 °C, 0 °C, 5 °C, 10 °C | Simulated at five experimental conditions |
Condenser temperature | Tconde | −32 °C | Maintained during primary drying stage |
Chamber pressure | Pchamb | 35 Pa |
No | Components | Tgi, [K] | ΔCpi, [kJ/kg·K] |
---|---|---|---|
1 | Polysaccharide | 398.2 | 0.43 |
2 | Sucrose | 335 | 0.57 |
3 | Moisture | 136 | 1.94 |
4 | Other | - | - |
Parameter | Heating Shelf Temperature in Different Drying Modes | ||||
---|---|---|---|---|---|
−10 °C | −5 °C | 0 °C | 5 °C | 10 °C | |
Ts, max, °C | −16.54 | −13.37 | −10.3 | −6.76 | −3.00 |
ΔT = Tc − Ts, max, °C | 14.94 | 11.77 | 8.70 | 5.16 | 1.39 |
>3 | >3 | >3 | >3 | <3 | |
Assessment | Safe | Safe | Safe | Safe | Risk of shrinkage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van, P.N.; Nguyen, A.N. Simulation and Experimental Analysis of Shelf Temperature Effects on the Primary Drying Stage of Cordyceps militaris Freeze-Drying. Processes 2025, 13, 2269. https://doi.org/10.3390/pr13072269
Van PN, Nguyen AN. Simulation and Experimental Analysis of Shelf Temperature Effects on the Primary Drying Stage of Cordyceps militaris Freeze-Drying. Processes. 2025; 13(7):2269. https://doi.org/10.3390/pr13072269
Chicago/Turabian StyleVan, Phuc Nguyen, and An Nguyen Nguyen. 2025. "Simulation and Experimental Analysis of Shelf Temperature Effects on the Primary Drying Stage of Cordyceps militaris Freeze-Drying" Processes 13, no. 7: 2269. https://doi.org/10.3390/pr13072269
APA StyleVan, P. N., & Nguyen, A. N. (2025). Simulation and Experimental Analysis of Shelf Temperature Effects on the Primary Drying Stage of Cordyceps militaris Freeze-Drying. Processes, 13(7), 2269. https://doi.org/10.3390/pr13072269