Use of Biodried Organic Waste as a Soil Amendment: Positive Effects on Germination and Growth of Lettuce (Lactuca sativa L., var. Buttercrunch) as a Model Crop
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physicochemical Characterization of Substrates
3.2. Toxicity Test on Seeds of Lactuca sativa L. var. Buttercrunch
3.3. Growth of L. sativa L. var. Buttercrunch
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grilli, S.; Giordano, A.; Spagni, A. Stabilisation of biodried municipal solid waste fine fraction in landfill bioreactor. Waste Manag. 2012, 32, 1678–1684. [Google Scholar] [CrossRef] [PubMed]
- Velis, C.A.; Longhurst, P.J.; Drew, G.H.; Smith, R.; Pollard, S.J.T. Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering. Bioresour. Technol. 2009, 100, 2747–2761. [Google Scholar] [CrossRef]
- Heyer, K.U.; Hupe, K.; Stegmann, R. Methane emissions from MBT landfills. Waste Manag. 2013, 33, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Pantini, S.; Verginelli, I.; Lombardi, F.; Scheutz, C.; Kjeldsen, P. Assessment of biogas production from MBT waste under different operating conditions. Waste Manag. 2015, 43, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Colomer-Mendoza, F.J.; Herrera-Prats, L.; Robles-Martínez, F.; Gallardo-Izquierdo, A.; Piña-Guzmán, A.B. Effect of airflow on biodrying of gardening wastes in reactors. J. Environ. Sci. 2013, 25, 865–872. [Google Scholar] [CrossRef]
- Mutala, M.; Ismail, O.; Ertan, D. Bio-drying of green waste with high moisture content. Process Saf. Environ. Prot. 2017, 111, 420–427. [Google Scholar]
- Orozco-Álvarez, C.; Gervacio-Hernández, A.; Moreno-Rivera, M.L.; Piña-Guzmán, B.; Robles-Martínez, F. Microbiological and physicochemical characterization during biodrying of organic solid waste. Processes 2025, 13, 78. [Google Scholar] [CrossRef]
- Mehta, C.M.; Sirari, K. Comparative study of aerobic and anaerobic composting for better understanding of organic waste management: A mini review. Plant Arch. 2018, 18, 44–48. [Google Scholar]
- Bilgin, M.; Tulun, S. Biodrying for municipal solid waste: Volume and weight reduction. Environ. Technol. 2015, 36, 1691–1697. [Google Scholar] [CrossRef]
- Jalil, N.A.; Basri, H.; Basri, A.; Abushammala, M.F.M. Biodrying for municipal solid waste under different ventilation periods. Environ. Eng. Res. 2016, 21, 145–151. [Google Scholar] [CrossRef]
- Johan, P.D.; Ahmed, O.H.; Omar, L.; Hasbullah, N.A. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy 2021, 11, 2010. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lazcano, C.; Domínguez, J. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 2008, 70, 436–444. [Google Scholar] [CrossRef]
- Román, P.; Martínez, M.M.; Pantoja, A. Manual del Compostaje del Agricultor, 3rd ed.; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Santiago de Chile, Chile, 2013; pp. 154–196. [Google Scholar]
- Lee, S.M.; Radhakrishnan, R.; Kang, S.M.; Kim, J.H.; Lee, I.Y.; Moon, B.K.; Yoon, B.W.; Lee, I.J. Phytotoxic mechanisms of bur cucumber seed extracts on lettuce with special reference to analysis of chloroplast proteins, phytohormones, and nutritional elements. Ecotoxicol. Environ. Safe 2015, 122, 230–237. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Seedling Emergence and Seedling Growth; OCSPP 850.4100; EPA: Washington, DC, USA, 2012. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/P100IRBM.txt?ZyActionD=ZyDocument&Client=EPA&Index=2011%20Thru%202015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5CZYFILES%5CINDEX%20DATA%5C11THRU15%5CTXT%5C00000010%5CP100IRBM.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1 (accessed on 2 July 2025).
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef]
- DOF. NORMA Oficial Mexicana NOM-021-RECNAT-2000; DOF: Mexico City, Mexico, 2002. [Google Scholar]
- Razo, I.; Carrizales, L.; Castro, J.; Díaz-Barriga, F.; Monroy, M. Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut. 2004, 152, 129–152. [Google Scholar] [CrossRef]
- Sobrero, M.C.; Ronco, A. Ensayo de Toxicidad Aguda con semillas de lechuga (Lactuca sativa L). In Ensayos Toxicológicos y Métodos de Evaluación de Calidad de Aguas, 2nd ed.; IDRC-IMTA, Ed.; IDRC: Ottawa, ON, Canada, 2004; Chapter 4; pp. 71–79. [Google Scholar]
- Silva, A.; Ponce de León, J.; García, F.; Durán, A. Aspectos metodológicos en la determinación de la capacidad de retener agua en los suelos del Uruguay. Bol. Investig. 1988, 10, 567–591. [Google Scholar]
- Kalra, Y.P. Handbook of Reference Methods for Plant Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 129–156. [Google Scholar]
- Aciego-Pietri, J.C.; Brookes, P.C. Nitrogen mineralization along a pH gradient of a silty loam UK soil. Soil Biol. Biochem. 2008, 40, 797–802. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 4th ed.; International Potash Institute (IPI): Berne-Worblaufen, Switzerland, 1987; pp. 567–591. [Google Scholar]
- Amuah, E.E.Y.; Fei-Baffoe, B.; Sackey, L.N.A.; Douti, N.B.; Kazapoe, R.W. A review of the principles of composting: Under-standing the processes, methods, merits, and demerits. Org. Agric. 2022, 12, 547–562. [Google Scholar] [CrossRef]
- DOF. NORMA Ambiental NADF-020-AMBT-2011; DOF: Mexico City, Mexico, 2012. [Google Scholar]
- Tom, A.P.; Pawels, R.; Haridas, A. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. Waste Manag. 2016, 49, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Alzate, L.M.; Cardona, B.L.; Hincapié, S.; Londoño-Londoño, J.; Jiménez-Cartagena, C. La deshidratación como una alternativa en el aprovechamiento de residuos de repollo y lechuga para su utilización en alimento animal. J. Agric. Anim. Sci. 2015, 4, 34–48. [Google Scholar]
- Femenia, A.; Bestard, M.J.; Sanjuan, N.; Roselló, C.; Mulet, A. Effect of rehydration temperature on the cell wall components of broccoli (Brassica oleracea L. var. itálica) plants tissues. J. Food Eng. 2000, 46, 157–163. [Google Scholar]
- Garau, M.C.; Simal, S.; Roselló, C.; Femenia, A. Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. J. Food Chem. 2007, 104, 1014–1024. [Google Scholar] [CrossRef]
- Ravindran, B.; Lee, S.R.; Chang, S.W.; Nguyen, D.D.; Chung, W.J.; Balasubramanian, B.; Mupambwa, H.A.; Arasu, M.V.; Al-Dhabi, N.A.; Sekaran, G. Positive effects of compost and vermicompost produced from tannery waste animal fleshing on the growth and yield of commercial crop-tomato (Lycopersicon esculentum L.) plant. J. Environ. Manag. 2019, 234, 154–158. [Google Scholar] [CrossRef]
- Arancon, N.Q.; Edwards, C.A.; Babenko, A.; Cannon, J.; Galvis, P.; Metzger, J.D. Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Appl. Soil Ecol. 2008, 39, 91–99. [Google Scholar] [CrossRef]
- Barbazán, M. Análisis de Plantas y Síntomas Visuales de Deficiencia de Nutrientes, 3rd ed.; Universidad de la República: Montevideo, Uruguay, 1998; pp. 154–196. [Google Scholar]
- Casas, A.; Casas, E. Análisis de Suelo-Agua-Planta y su Aplicación en la Nutrición de Cultivos Hortícolas en la Zona Peninsular, 2nd ed.; Caja Rural de Almería: Almería, Spain, 1999; 249p. [Google Scholar]
- Stevenson, F.J.; Cole, M.A. The phosphorous cycle. In Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1999; pp. 279–329. [Google Scholar]
- Dourado, N.M.; Camargo, N.A.A.; Souza, S.D.; Araujo, L.W. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. Biomed. Res. Int. 2015, 39, 1–9. [Google Scholar]
- Xu, D.; Raza, W.; Yu, G.; Zhao, Q.; Shen, Q.; Huang, Q. Phytotoxicity analysis of extracts from compost and their ability to inhibit soil-borne pathogenic fungi and reduce root-knot nematodes. World J. Microb. Biot. 2012, 28, 1193–1201. [Google Scholar] [CrossRef]
- Wu, L.; Ma, L.Q.; Martínez, G.A. Comparison of methods for evaluating stability and maturity of biosolids compost. J. Environ. Qual. 2000, 29, 424–429. [Google Scholar] [CrossRef]
- López-Diazguerrero, N.E.; González, P.V.Y.; Hernández-Bautista, R.J.; Alarcón-Aguilar, A.; Luna-López, A.; Königsberg, F.M. Hormésis: Lo que no mata, fortalece. Gac. Médica México 2013, 149, 438–447. [Google Scholar]
- Brotons, J.M.; Manera, J.; Conesa, A.; Porras, I. A fuzzy approach to the loss of green color in lemon (Citrus lemon L. Burns. f) rind during ripening. Comput. Electron. Agric. 2013, 98, 222–232. [Google Scholar] [CrossRef]
- Cambróm-Sandoval, V.H.; España-Boquera, M.L.; Sánchez-Vargasm, N.; Sáenz-Romero, C.; Vargas-Hernández, J.J.; Herrerías-Diego, Y. Producción de clorofila en Pinus pseudostrobus en etapas juveniles bajo diferentes ambientes de desarrollo. Rev. Chapingo Ser. Cienc. For. Ambiente 2011, 17, 253–260. [Google Scholar]
- Da Silva, J.M.; Ongarelli, M.G.; Saavedra, A.J.; Sasaki, F.F.; Kluge, R.A. Métodos de determinaçao de clorofila em alface e cebolinha minimamente processadas. Rev. Iberoam. Tecnol. Postcosecha 2007, 8, 53–59. [Google Scholar]
- Ali, M.; Griffiths, A.J.; Williams, K.P.; Jones, D.L. Evaluating the growth characteristics of lettuce in vermicompost and green waste compost. Eur. J. Soil Biol. 2007, 43, 316–319. [Google Scholar] [CrossRef]
- Valdez-Pérez, M.A.; Fernández-Luqueño, F.; Franco-Hernandez, O.; Flores Cotera, L.B.; Dendooven, L. Cultivation of beans (Phaseolus vulgaris L.) in limed or unlimed wastewater sludge, vermicompost or inorganic amended soil. Sci. Hortic. 2011, 28, 380–387. [Google Scholar] [CrossRef]
- Argenta, G.; Ferreira, P.; Bortolini, C.; Forsthofer, E.L.; Strieder, M.L. Relação da leitura do colorofilometrocom os teores de clorofila extraível e de nitrogênio na folha de milho. Rev. Bras. Fisiol. Veg. 2001, 13, 134–139. [Google Scholar] [CrossRef]
- Zotarelli, L.; García, C.; Piccinin, J.L.; Urquiaga, S.; Boddey, R.M.; Torres, E.; Rodrigues, B.J. Calibração do medidor de clorofila minolta SPAD 502 para avaliação du conteúdo de nitrogênio do milho. Pesqui. Agropecuária Bras. 2003, 38, 1117–1122. [Google Scholar] [CrossRef]
Treatment * | Composition (%) | ||
---|---|---|---|
Soil | BM | CO | |
S control (−) | 100 | 0 | 0 |
B-10 | 90 | 10 | 0 |
B-20 | 80 | 20 | 0 |
B-30 | 70 | 30 | 0 |
CO-30 control (+) | 70 | 0 | 30 |
Variable | Soil | BM | CO |
---|---|---|---|
Water content (%) | 12.1 ± 0.22 | 9 ± 0.03 | 10 ± 0.012 |
FC (g kg−1 soil) | 81.6 ± 1.49 | 201.2 ± 3.04 | 183.2 ± 2.39 |
CEC | 15.63 ± 0.17 | 16.76 ± 0.93 | 23.49 ± 1.02 |
EC (dS m−1) | 0.0075 ± 0.87 | 0.26 ± 0.624 | 0.67 ± 0.012 |
NO3− (mg kg−1) | 1.07 ± 0.14 | 3.9 ± 0.19 | 7.7 ± 0.17 |
NH4+ (mg kg−1) | 176.4 ± 21.0 | 14,645.3 ± 66.2 | 15,074.3 ± 111.02 |
N (%) | 0.16 ± 0.2 | 1.26 ± 0.03 | 2.01 ± 0.11 |
P (mg P-PO4−3 kg−1) | 36.1 ± 1.85 | 64.9 ± 1.61 | 73.0 ± 6.9 |
pH | 5.3 ± 0.06 | 8.0 ± 0.04 | 7.6 ± 0.0 |
C (%) | 5.86 ± 0.05 | 28.06 ± 0.71 | 13.01 ± 3.2 |
C/N | 36.64 | 22.23 | 10.75 |
OM (%) | 10.10 ± 0.05 | 48.38 ± 0.71 | 22.42 ± 3.2 |
K (mg kg−1) | 1023 ± 6.65 | 8223.6 ± 190 | 11,913.3 ± 180 |
Ca (mg kg−1) | 2583.55 ± 230 | 18,052.52 ± 684.2 | 19,502.52 ± 209.9 |
Fe (mg kg−1) | 13,778 ± 46.02 | 3829 ± 32.8 | 2579 ± 92.8 |
Mg (mg kg−1) | 1609.68 ± 196.2 | 2715.74 ± 236.2 | 4004 ± 85.4 |
Zn (mg kg−1) | 94.85 ± 7.4 | 71.48 ± 16.04 | 97.31 ± 9.85 |
Cu (mg kg−1) | 34.45 ± 34.4 | 32.64 ± 9.4 | 30.16 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Cisneros, R.M.; Robles-Martínez, F.; Franco-Hernández, M.O.; Piña-Guzmán, A.B. Use of Biodried Organic Waste as a Soil Amendment: Positive Effects on Germination and Growth of Lettuce (Lactuca sativa L., var. Buttercrunch) as a Model Crop. Processes 2025, 13, 2285. https://doi.org/10.3390/pr13072285
Contreras-Cisneros RM, Robles-Martínez F, Franco-Hernández MO, Piña-Guzmán AB. Use of Biodried Organic Waste as a Soil Amendment: Positive Effects on Germination and Growth of Lettuce (Lactuca sativa L., var. Buttercrunch) as a Model Crop. Processes. 2025; 13(7):2285. https://doi.org/10.3390/pr13072285
Chicago/Turabian StyleContreras-Cisneros, Rosa María, Fabián Robles-Martínez, Marina Olivia Franco-Hernández, and Ana Belem Piña-Guzmán. 2025. "Use of Biodried Organic Waste as a Soil Amendment: Positive Effects on Germination and Growth of Lettuce (Lactuca sativa L., var. Buttercrunch) as a Model Crop" Processes 13, no. 7: 2285. https://doi.org/10.3390/pr13072285
APA StyleContreras-Cisneros, R. M., Robles-Martínez, F., Franco-Hernández, M. O., & Piña-Guzmán, A. B. (2025). Use of Biodried Organic Waste as a Soil Amendment: Positive Effects on Germination and Growth of Lettuce (Lactuca sativa L., var. Buttercrunch) as a Model Crop. Processes, 13(7), 2285. https://doi.org/10.3390/pr13072285