Clove as a Versatile Resource: CuO Nanoparticles and Their Catalytic Role in Eugenol-Based Triazole Synthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Clove Extract
2.2.1. Clove Extract for CuO Nanoparticles Synthesis
2.2.2. Eugenol Extract from Clove as Precursor
2.3. Synthesis of Copper Oxide Nanoparticles
2.4. Synthesis of 1,2,3-Triazoles
2.5. Characterization Techniques
3. Results and Discussion
3.1. Characterization of CuO NPs
3.1.1. FTIR Analysis
3.1.2. XRD Analysis
- Determination of the average crystallite size
3.1.3. SEM and EDX Analysis
3.2. The Role and Mechanism of Clove Extract in CuO Nanoparticle Formation
- Activation Phase: In this initial phase, metal ions (e.g., Cu2+) are reduced by plant metabolites possessing inherent reducing capabilities. These metabolites interact with copper salt precursors, facilitating the transition of copper ions to a zero-valent state and initiating the nucleation of condensed metal atoms [46,47].
- Growth Phase: Following nucleation, a continued bioreduction of residual metal ions supports the growth and self-assembly of nanoparticles into defined morphologies. In the case of clove-mediated synthesis, this results in predominantly spherical copper nanoparticles [32].
- Stabilization Phase: In the final stage, plant metabolites cap the nanoparticle surfaces, thereby enhancing their stability and preventing agglomeration [48].
3.3. Structural Characterization of 1,2,3 Triazoles Derivatives
3.3.1. FTIR Analysis
3.3.2. NMR Analysis
- 1H NMR spectrum
- 13C NMR spectrum
3.4. Cu-Based Azide–Alkyne Cycloaddition Catalyst Comparison
3.5. Influence of Bromoalkene Chain Length on the CuACC Reactions
3.6. Reuse of the CuO Nanoparticles Catalyst
3.7. Comparative Evaluation of Reported Copper-Catalyzed Triazole Syntheses
Product | Solvent | Condition | Catalyst | Yield (%) | Reference |
---|---|---|---|---|---|
DMF/Water | 23 h, at room temperature. | Copper (II) sulfate pentahydrate and ascorbic acid | 92 | [15] | |
t-BuOH/H2O | 3 h | Copper (II) sulfate pentahydrate and sodium ascorbate | 65 | [51] | |
EtOH/H2O | 24–48 h, at 50 °C | Copper (II) sulfate pentahydrate, sodium ascorbate | 60,5 | [21] | |
THF | 12 h, at room temperature. | Copper iodide | 87 | [18] | |
DMF/ H2O | 3 h, 90 °C | Cu2O microbeads 20 mg/mL | 70 | [50] | |
DMF/ H2O | 2 h, 90 °C | CuO nanoparticles 2 mg/mL | 95.25 | Our work |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CuO | Copper oxide |
NPs | Nanoparticles |
CuAAC | Copper-catalyzed azide–alkyne cycloaddition |
XRD | X-ray diffraction |
FTIR | Fourier transform infrared spectroscopy |
SEM-EDX | Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy |
Et2O | Diethyl ether |
References
- Samuelsson, G. Drugs of Natural Origin; Apotekarsocieteten: Stockholm, Sweden, 1999. [Google Scholar]
- Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004, 67, 2141–2153. [Google Scholar] [CrossRef]
- Sinha, K.; Chowdhury, S.; Banerjee, S.; Mandal, B.; Mandal, M.; Majhi, S.; Brahmachari, G.; Ghosh, J.; Sil, P.C. Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics. Heliyon 2019, 5, e02107. [Google Scholar] [CrossRef]
- Maier, M.E. Design and synthesis of analogues of natural products. Org. Biomol. Chem. 2015, 13, 5302–5343. [Google Scholar] [CrossRef]
- Serhan, M.; Jackemeyer, D.; Long, M.; Sprowls, M.; Perez, I.D.; Maret, W.; Chen, F.; Tao, N.; Forzani, E. Total iron measurement in human serum with a smartphone. In AIChE Annual Meeting, Conference Proceedings; American Institute of Chemical Engineers: New York, NY, USA, 2019; Available online: https://asu.elsevierpure.com/en/publications/total-iron-measurement-in-human-serum-with-a-smartphone (accessed on 23 July 2025).
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef]
- Guo, Z. The modification of natural products for medical use. Acta Pharm. Sin. B 2017, 7, 119–136. [Google Scholar] [CrossRef]
- Ameziane El Hassani, I.; Rouzi, K.; Ameziane El Hassani, A.; Karrouchi, K.; Ansar, M. Recent Developments Towards the Synthesis of Triazole Derivatives: A Review. Organics 2024, 5, 450–471. [Google Scholar] [CrossRef]
- Vaishnani, M.J.; Bijani, S.; Rahamathulla, M.; Baldaniya, L.; Jain, V.; Thajudeen, K.Y.; Ahmed, M.M.; Farhana, S.A.; Pasha, I. Biological importance and synthesis of 1,2,3-triazole derivatives: A review. Green Chem. Lett. Rev. 2024, 17, 2307989. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, C.H.; Xia, Z.H.; Zhao, H.Q. Novel quinoxalinone-1,2,3-triazole derivatives as potential antifungal agents for plant anthrax disease: Design, synthesis, antifungal activity and SAR study. Adv. Agrochem 2024, 3, 222–228. [Google Scholar] [CrossRef]
- Evangelista, R.S.; Pereira, L.; de Souza, L.; Costa, A.; da Silva, D.; de Oliveira, F.; Vaz, B.; Bressan, G.; Fietto, J.; Teixeira, R. Synthesis and Evaluation of the Antileishmanial Activity of Novel Eugenol Analogs Containing 1,2,3-Triazole Fragments against Intracellular Leishmania braziliensis. J. Braz. Chem. Soc. 2023, 34, 1810–1824. [Google Scholar] [CrossRef]
- Wang, X.; Dai, Z.-C.; Chen, Y.-F.; Cao, L.-L.; Yan, W.; Li, S.-K.; Wang, J.-X.; Zhang, Z.-G.; Ye, Y.-H. Synthesis of 1,2,3-triazole hydrazide derivatives exhibiting anti-phytopathogenic activity. Eur. J. Med. Chem. 2017, 126, 171–182. [Google Scholar] [CrossRef]
- Rossetti, A.; Sacchetti, A.; Meneghetti, F.; Colombo Dugoni, G.; Mori, M.; Castellano, C. Synthesis and Characterization of New Triazole-Bispidinone Scaffolds and Their Metal Complexes for Catalytic Applications. Molecules 2023, 28, 6351. [Google Scholar] [CrossRef]
- Hazarika, P.K.; Gogoi, P.; Sarmah, S.; Das, B.; Deori, K.; Sarma, D. Sustainable synthesis of 1,4-disubstituted and N-unsubstituted 1,2,3-triazoles using reusable ZnO-CTAB nanocrystals. RSC Sustain. 2024, 2, 1782–1796. [Google Scholar] [CrossRef]
- Ardiansah, B.; Farhan, A.; Firdaus, A.; Ariyani, T.; Nasution, M.A.F.; Fadlan, A.; Cahyana, A.H.; Prabandari, E.E.; Menéndez, J.C. Eugenol derivatives containing 1,2,3-triazole-chalcone hybrids for shikimate kinase inhibition. J. Saudi Chem. Soc. 2024, 28, 101826. [Google Scholar] [CrossRef]
- Hernández-Romero, D.; Rosete-Luna, S.; Méndez-Bolaina, E.; Herrera-Cogco, E.D.L.C.; Amador-Gómez, L.P.; Soto-Contreras, A.; Rivera-Villanueva, J.M.; Colorado-Peralta, R. Importance of the CuAAC Reaction in the Synthesis of Platinum Complexes with 1,4-Disubstituted-1H-1,2,3-triazoles: A Review of Their Anticancer Activity. Reactions 2024, 5, 947–983. [Google Scholar] [CrossRef]
- Mohamed, Y.M.A.; Abdel-Hafez, S.H.; Elsayed, H.; Taha, M.; Attia, Y.A. Efficient one-pot synthesis of 1,4-disubstituted-1,2,3-triazoles catalysed by NiO/Cu2O/CuO nanocomposites under microwave irradiation. Chem. Pap. 2024, 78, 7865–7876. [Google Scholar] [CrossRef]
- Buduma, K.; A, N.K.; KVN, S.S.; J, K.K.; Chinde, S.; Domatti, A.K.; Kumar, Y.; Grover, P.; Tiwari, A.; Khan, F. Synthesis and bioactivity evaluation of eugenol hybrids obtained by Mannich and 1,3 dipolar cycloaddition reactions. J. Heterocycl. Chem. 2021, 58, 2078–2089. [Google Scholar] [CrossRef]
- de Souza, T.B.; Caldas, I.S.; Paula, F.R.; Rodrigues, C.C.; Carvalho, D.T.; Dias, D.F. Synthesis, activity, and molecular modeling studies of 1,2,3-triazole derivatives from natural phenylpropanoids as new trypanocidal agents. Chem. Biol. Drug Des. 2020, 95, 124–129. [Google Scholar] [CrossRef]
- de Magalhães, L.S.; Reis, A.C.C.; Nakao, I.A.; Péret, V.A.C.; Reis, R.C.F.M.; Silva, N.C.; Dias, A.L.T.; Carvalho, D.T.; Dias, D.F.; Brandão, G.C.; et al. Glucosyl-1,2,3-triazoles derived from eugenol and analogues: Synthesis, anti-Candida activity, and molecular modeling studies in CYP-51. Chem. Biol. Drug Des. 2021, 98, 903–913. [Google Scholar] [CrossRef]
- Almeida Lima, Â.M.; Moreira, L.C.; Gazolla, P.R.; Oliveira, M.B.; Teixeira, R.R.; Queiroz, V.T.; Rocha, M.R.; Moraes, W.B.; dos Santos, N.A.; Romão, W.; et al. Design and Synthesis of Eugenol Derivatives Bearing a 1,2,3-Triazole Moiety for Papaya Protection against Colletotrichum gloeosporioides. J. Agric. Food Chem. 2024, 72, 12459–12468. [Google Scholar] [CrossRef]
- Kumar Singh, P.; Kumar, P.; Hussain, M.; Kumar Das, A.; Nayak, G.C. Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process. Bull. Mater. Sci. 2016, 39, 469–478. [Google Scholar] [CrossRef]
- Mallik, M.; Monia, S.; Gupta, M.; Ghosh, A.; Toppo, M.P.; Roy, H. Synthesis and characterization of Cu2O nanoparticles. J. Alloys Compd. 2020, 829, 154623. [Google Scholar] [CrossRef]
- Muñoz, A.J.; Espínola, F.; Moya, M.; Martín, C.; Ruiz, E. Cu(II) Biosorption and Synthesis of CuO Nanoparticles by Staphylococcus epidermidis CECT 4183: Evaluation of the Biocidal Effect. Appl. Sci. 2024, 14, 7623. [Google Scholar] [CrossRef]
- Madji, S.; Belmedani, M.; Mekatel, E.; Zouaoui, S.; Lebouachera, S.E.I. The Development of a New Bi12ZnO20/AgI Heterosystem for the Degradation of Dye-Contaminated Water by Photocatalysis Under Solar Irradiation: Synthesis, Characterization and Kinetics. Processes 2025, 13, 1342. [Google Scholar] [CrossRef]
- Al-Darwesh, M.Y.; Ibrahim, S.S.; Mohammed, M.A. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. Results Chem. 2024, 7, 101368. [Google Scholar] [CrossRef]
- Essa, W.K. Methylene Blue Removal by Copper Oxide Nanoparticles Obtained from Green Synthesis of Melia azedarach: Kinetic and Isotherm Studies. Chemistry 2024, 6, 249–263. [Google Scholar] [CrossRef]
- Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc. Biosyst. Eng. 2009, 32, 79–84. [Google Scholar] [CrossRef]
- Kale, A.; Bao, Y.; Zhou, Z.; Prevelige, P.E.; Gupta, A. Directed self-assembly of CdS quantum dots on bacteriophage P22 coat protein templates. Nanotechnology 2013, 24, 045603. [Google Scholar] [CrossRef]
- Neiva, J.; Benzarti, Z.; Carvalho, S.; Devesa, S. Green Synthesis of CuO Nanoparticles—Structural, Morphological, and Dielectric Characterization. Materials 2024, 17, 5709. [Google Scholar] [CrossRef]
- Djemoui, B.; Gharbi, S.; Bendeddouche, C.K.; Taibi, Z.; Mazari, M.M.; Zoukel, A.; Karkachi, N.; Adjdir, M. Green synthesis of ZnO-doped cerium oxide nanocomposite using clove extract: Enhanced photocatalytic methylene blue degradation and antibacterial properties. React. Kinet. Mech. Catal. 2024, 137, 1771–1787. [Google Scholar] [CrossRef]
- Rajesh, K.M.; Ajitha, B.; Reddy, Y.A.K.; Suneetha, Y.; Reddy, P.S. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 2018, 154, 593–600. [Google Scholar] [CrossRef]
- De, A.; Das, R.; Jain, P.; Kaur, H. Green chemistry-assisted synthesis of CuO nanoparticles: Reaction optimization, DNA cleavage, and DNA binding studies. Mater. Today Proc. 2020, 49, 3122–3125. [Google Scholar] [CrossRef]
- Ali, D.A.; Ismael, M.A.; Hashem, M.A.; Akl, M.A. Antibacterial activity of ecofriendly biologically synthesized copper oxide nanoparticles. Egypt. J. Chem. 2021, 64, 4099–4104. [Google Scholar] [CrossRef]
- Bokuniaeva, A.O.; Vorokh, A.S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J. Phys. Conf. Ser. 2019, 1410, 012057. [Google Scholar] [CrossRef]
- Luna, I.Z.; Hilary, L.N.; Chowdhury, A.M.S.; Gafur, M.A.; Khan, N.; Khan, R.A. Preparation and Characterization of Copper Oxide Nanoparticles Synthesized via Chemical Precipitation Method. OAlib 2015, 02, 1–8. [Google Scholar] [CrossRef]
- Philip, D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E Low Dimens. Syst. Nanostruct. 2010, 42, 1417–1424. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Westerhoff, P.; Hristovski, K.; Crittenden, J.C. Stability of commercial metal oxide nanoparticles in water. Water Res. 2008, 42, 2204–2212. [Google Scholar] [CrossRef]
- Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. J. Environ. Qual. 2010, 39, 1909–1924. [Google Scholar] [CrossRef]
- Song, J.Y.; Kwon, E.Y.; Kim, B.S. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst. Eng. 2010, 33, 159–164. [Google Scholar] [CrossRef]
- Qais, F.A.; Samreen; Ahmad, I. Green Synthesis of Metal Nanoparticles: Characterization and their Antibacterial Efficacy. In Antibacterial Drug Discovery to Combat MDR; Springer: Singapore, 2019; pp. 635–680. [Google Scholar] [CrossRef]
- Marshall, A.T.; Haverkamp, R.G.; Davies, C.E.; Parsons, J.G.; Gardea-Torresdey, J.L.; van Agterveld, D. Accumulation of Gold Nanoparticles in Brassic Juncea. Int. J. Phytoremediat. 2007, 9, 197–206. [Google Scholar] [CrossRef]
- Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Fatma, A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces 2010, 81, 81–86. [Google Scholar] [CrossRef]
- Jha, A.K.; Prasad, K. Mechanistic Plethora of Biogenetic Nanosynthesis: An Evaluation. In Exploring the Realms of Nature for Nanosynthesis; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–24. [Google Scholar] [CrossRef]
- Edison, T.J.I.; Sethuraman, M.G. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 2012, 47, 1351–1357. [Google Scholar] [CrossRef]
- Rahimzadeh, C.Y.; Barzinjy, A.A.; Mohammed, A.S.; Hamad, S.M. Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles. PLoS ONE 2022, 17, e0268184. [Google Scholar] [CrossRef]
- Baran, A.; Baran, M.F.; Keskin, C.; Hatipoğlu, A.; Yavuz, Ö.; Kandemir, S.I.; Adican, M.T.; Khalilov, R.; Mammadova, A.; Ahmadian, E.; et al. Investigation of Antimicrobial and Cytotoxic Properties and Specification of Silver Nanoparticles (AgNPs) Derived From Cicer arietinum L. Green Leaf Extract. Front. Bioeng. Biotechnol. 2022, 10, 855136. [Google Scholar] [CrossRef]
- Mondal, S.; Roy, N.; Laskar, R.A.; Sk, I.; Basu, S.; Mandal, D.; Begum, N.A. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf. B Biointerfaces 2011, 82, 497–504. [Google Scholar] [CrossRef]
- Uddin, M.J.; Yeasmin, M.S.; Muzahid, A.A.; Rahman, M.; Rana, G.M.; Chowdhury, T.A.; Amin, A.; Wakib, K.; Begum, S.H. Morphostructural studies of pure and mixed metal oxide nanoparticles of Cu with Ni and Zn. Heliyon 2024, 10, e30544. [Google Scholar] [CrossRef]
- Abdelbaki, H.; Djemoui, A.; Souli, L.; Souadia, A.; Ouahrani, M.R.; Djemoui, B.; Lahrech, M.B.; Messaoudi, M.; Ben Amor, I.; Benarfa, A.; et al. Plant mediated synthesis of flower-like Cu2O microbeads from Artimisia campestris L. extract for the catalyzed synthesis of 1,4-disubstituted 1,2,3-triazole derivatives. Front. Chem. 2023, 11, 1342988. [Google Scholar] [CrossRef]
- Addo, J.K.; Owusu-Ansah, E.; Dayie, N.T.K.D.; Cheseto, X.; Torto, B. Synthesis of 1,2,3-triazole-thymol derivatives as potential antimicrobial agents. Heliyon 2022, 8, e10836. [Google Scholar] [CrossRef]
Entry | Catalyst | Temperature (°C) | Time | Solvent | Yield (%) |
---|---|---|---|---|---|
1 | 2 mg/mL Green CuO NPs | RT | 2 | DMF/H2O (8:2) | 0 |
2 | 2 mg/mL Green CuO NPs | 90 | 2 | DMF/H2O (8:2) | 98 |
3 | 2 mg/mL Commercial CuO | RT | 2 | DMF/H2O (8:2) | 0 |
4 | 2 mg/mL Commercial CuO | 90 | 2 | DMF/H2O (8:2) | 0 |
5 | 20 mg/mL Commercial CuO | RT | 2 | DMF/H2O (8:2) | 0 |
6 | 20 mg/mL Commercial CuO | 90 | 14 | DMF/H2O (8:2) | 39 |
7 | 20 mg/mL CuI | 75 | 96 | CH3CN | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouaoui, S.; Djemoui, B.; Mazari, M.M.; Miele, M.; Pace, V.; Houicha, H.; Madji, S.; Bendeddouche, C.K.; Adjdir, M.; Lebouachera, S.E.I. Clove as a Versatile Resource: CuO Nanoparticles and Their Catalytic Role in Eugenol-Based Triazole Synthesis. Processes 2025, 13, 2378. https://doi.org/10.3390/pr13082378
Zouaoui S, Djemoui B, Mazari MM, Miele M, Pace V, Houicha H, Madji S, Bendeddouche CK, Adjdir M, Lebouachera SEI. Clove as a Versatile Resource: CuO Nanoparticles and Their Catalytic Role in Eugenol-Based Triazole Synthesis. Processes. 2025; 13(8):2378. https://doi.org/10.3390/pr13082378
Chicago/Turabian StyleZouaoui, Sarra, Brahim Djemoui, Miloud Mohamed Mazari, Margherita Miele, Vittorio Pace, Haroun Houicha, Sérine Madji, Choukry Kamel Bendeddouche, Mehdi Adjdir, and Seif El Islam Lebouachera. 2025. "Clove as a Versatile Resource: CuO Nanoparticles and Their Catalytic Role in Eugenol-Based Triazole Synthesis" Processes 13, no. 8: 2378. https://doi.org/10.3390/pr13082378
APA StyleZouaoui, S., Djemoui, B., Mazari, M. M., Miele, M., Pace, V., Houicha, H., Madji, S., Bendeddouche, C. K., Adjdir, M., & Lebouachera, S. E. I. (2025). Clove as a Versatile Resource: CuO Nanoparticles and Their Catalytic Role in Eugenol-Based Triazole Synthesis. Processes, 13(8), 2378. https://doi.org/10.3390/pr13082378