Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication of Self-Degradable Interpenetrating Double-Network Gel (SSG)
2.3. Characterization
2.4. Evaluation of Gel Properties of SSG
- (1)
- Swelling Behavior
- (2)
- Viscoelastic Properties
- ①
- Linear Viscoelastic Region (LVR) Determination
- ②
- Frequency Sweep
- (3)
- Mechanical Properties
- ①
- Compressive Strength
- ②
- Tensile Strength
- (4)
- Thermal Degradability
- (5)
- Impact of SSG on Drilling Fluid Performance
- ①
- Rheological Property Modification
- ②
- Plugging Performance Evaluation
3. Results and Discussion
3.1. FT-IR Spectroscopy
3.2. TGA
3.3. Gel Properties of SSG
3.3.1. Evaluation of Swelling Performance of SSG
3.3.2. Viscoelastic Evaluation of SSG
3.3.3. Evaluation of Mechanical Properties of SSG
3.3.4. Degradability Evaluation of SSG
3.3.5. Influence of SSG on Rheological Properties of Drilling Fluid
- (6)
- Evaluation of plugging performance of SSG
4. Conclusions
- (1)
- A self-degradable temporary plugging agent (SSG) was successfully developed for deep coalbed methane (CBM) reservoirs through the construction of a semi-interpenetrating polymer network gel composed of acrylamide and ionic polymers. The synthesis strategy combined free radical polymerization with structural crosslinking, enabling precise control over the gel’s functional responsiveness under reservoir conditions.
- (2)
- The SSG gel exhibited a favorable balance between migration and expansion. Its moderate swelling behavior in deionized water ensures good injectability and transportability within formation pathways, while its thermal stability in simulated formation water at 120 °C enables it to function effectively during the drilling window. The onset of degradation after 40 h, with a degradation ratio exceeding 90% at 136 h, supports its self-removal capability, thereby minimizing long-term damage to the reservoir.
- (3)
- Mechanical testing confirmed that SSG possesses sufficient compressive and tensile strength to withstand downhole stresses, and rheological analysis demonstrated that the gel maintains good viscoelasticity after thermal aging. Its structural resilience ensures physical stability within microfractures, and the shallow penetration into the sand bed validates its effective plugging performance with minimal fluid invasion.
- (4)
- The multifunctional design of SSG—integrating controlled swelling, mechanical integrity, and programmed degradation—offers a promising solution to temporary plugging challenges in deep CBM drilling. This system advances the concept of intelligent plugging agents by aligning operational effectiveness with post-drilling formation protection, paving the way for safer and more efficient exploitation of unconventional gas reservoirs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palmer, I.; Moschovidis, Z.; Cameron, J. Coal Failure and Consequences for Coalbed Methane Wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 9–12 October 2005. [Google Scholar]
- Li, S.; Qin, Y.; Tang, D.; Shen, J.; Wang, J.; Chen, S. A comprehensive review of deep coalbed methane and recent developments in China. Int. J. Coal Geol. 2023, 279, 104369. [Google Scholar] [CrossRef]
- Guo, W.; Deng, S.; Sun, Y. Recent advances on shale oil and gas exploration and development technologies. Adv. Geo-Energy Res. 2024, 11, 81–87. [Google Scholar] [CrossRef]
- Han, J.; Xu, J.; Sun, J.; Lv, K.; Ren, K.; Jin, J.; Li, H.; Long, Y.; Wu, Y. Study on Wellbore Instability Mechanism and High-Performance Water-Based Drilling Fluid for Deep Coal Reservoir. Processes 2025, 13, 1262. [Google Scholar] [CrossRef]
- Bi, R.; Guo, M.; Wang, S.; Zhang, Y.; Si, X.; Chen, X.; Zhang, L. Theories, Techniques and Materials for Sealing Coalbed Methane Extraction Boreholes in Underground Mines: A Review. Processes 2024, 12, 2022. [Google Scholar] [CrossRef]
- Li, C.; Sun, L.; Zhao, Z.; Zhang, J.; Li, Y.; Meng, Y.; Wang, L. A Method for Evaluating Coalbed Methane Reservoir Productivity Considering Drilling Fluid Damage. Energies 2024, 17, 1686. [Google Scholar] [CrossRef]
- Keerthana, S.; Arnepalli, D.N. Arnepalli, Hydraulic performance of polymer-modified bentonites for development of modern geosynthetic clay liners: A review. Int. J. Geosynth. Ground Eng. 2022, 8, 24. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, X.; Li, L.; Zhang, J.; Shi, X.; Hu, G. Research progress of high-temperature resistant functional gel materials and their application in oil and gas drilling. Gels 2022, 9, 34. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, L.; Wang, J.; Jiang, H. Evaluation of Self-Degradation and Plugging Performance of Temperature-Controlled Degradable Polymer Temporary Plugging Agent. Polymers 2023, 15, 3732. [Google Scholar] [CrossRef]
- Jin, J.; Sun, J.; Lv, K.; Hou, Q.; Guo, X.; Liu, K.; Deng, Y.; Song, L. Catalytic pyrolysis of oil shale using tailored Cu@zeolite catalyst and molecular dynamic simulation. Energy 2023, 278, 127858. [Google Scholar] [CrossRef]
- Song, K.H.; Highley, C.B.; Rouff, A.; Burdick, J.A. Complex 3D—Printed microchannels within cell-degradable hydrogels. Adv. Funct. Mater. 2018, 28, 1801331. [Google Scholar] [CrossRef]
- Martens, P.; Holland, T.; Anseth, K.S. Synthesis and characterization of degradable hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer 2002, 43, 6093–6100. [Google Scholar] [CrossRef]
- Fadl, A.M.; Abdou, M.I.; Moustafa, H.Y.; Ahmed, A.E.-S.I.; Anter, E.-S.; Ahmed, H.E.-S. A New Comparative Evaluation for the Rheological and Filtration Properties of Water-Based Drilling Fluids Utilizing Sodium Salt of Linear and Cross-Linked Acrylate Polymer Hydrogels. Arab. J. Sci. Eng. 2021, 46, 6989–7017. [Google Scholar] [CrossRef]
- Dragan, E.S.; Perju, M.M.; Dinu, M.V. Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr. Polym. 2012, 88, 270–281. [Google Scholar] [CrossRef]
- Sahiner, M.; Sagbas, S.; Bitlisli, B.O. p(AAm/TA)-Based IPN hydrogel films with antimicrobial and antioxidant properties for biomedical applications. J. Appl. Polym. Sci. 2015, 132, 41876. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, W.; Zhu, M.; Zhang, Y.; Wang, Q.; Sun, H.; She, J. Mechanical Strength Degradation in Deep Coal Seams Due to Drilling Fluid Invasion. Processes 2025, 13, 1222. [Google Scholar] [CrossRef]
- Liu, P.; Wang, M.; Fu, Y.; Du, J.; Chen, X.; Liu, J.; Huang, C.; Lou, F.; Li, C.; Wang, G. Preparation and performance of an environmental-friendly degradable semi-interpenetrating network temporary plugging agent for acidification. Pet. Sci. Technol. 2025, 43, 508–534. [Google Scholar] [CrossRef]
- ASTM D412; Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension. ASTM International: West Conshohocken, PA, USA, 2021.
- Jin, J.; Deng, Y.; Song, L.; Sun, J.; Lv, K.; Xu, J.; Ren, K.; He, Z.; You, Z. Nanozeolite Encapsulated Single-Atom Catalysts: Synergetic In-Situ Conversion of Oil Shale Using Supercritical CO2. SPE J. 2025, 1–12. [Google Scholar] [CrossRef]
- Buch, V. Molecular structure and OH-stretch spectra of liquid water surface. J. Phys. Chem. B 2005, 109, 17771–17774. [Google Scholar] [CrossRef]
- Yang, H.-B.; Jiang, H.-Z.; Xu, Z.; Zhang, X.; Wang, T.; Liu, H.-N.; Ma, X.; Zhu, J.-J.; Zhang, X.-F.; Kang, W.-L. Development and evaluation of organic/metal ion double crosslinking polymer gel for anti-CO2 gas channeling in high temperature and low permeability reservoirs. Pet. Sci. 2025, 22, 724–738. [Google Scholar] [CrossRef]
- Jin, J.; Sun, J.; Lv, K.; Guo, X.; Hou, Q.; Liu, J.; Wang, J.; Bai, Y.; Huang, X. Oxygen vacancy BiO2-x/Bi2WO6 synchronous coupling with Bi metal for phenol removal via visible and near-infrared light irradiation. J. Colloid Interface Sci. 2022, 605, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Lv, K.; Sun, J.; Zhang, J.; Hou, Q.; Guo, X.; Liu, K. Robust superhydrophobic TiO2@carbon nanotubes inhibitor with bombax structure for strengthening wellbore in water-based drilling fluid. J. Mol. Liq. 2023, 370, 120946. [Google Scholar] [CrossRef]
- Gang, W.; Honghai, F.; Jie, F.; Wanjun, L.; Yu, Y.; Xiangji, K.; Yingying, L.; Jitong, L.; Chenchao, L.; Haijun, Y. Performance and application of high-strength water-swellable material for reducing lost circulation under high temperature. J. Pet. Sci. Eng. 2020, 189, 106957. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. Expression of normal stress difference and relaxation modulus for ternary nanocomposites containing biodegradable polymers and carbon nanotubes by storage and loss modulus data. Compos. Part B Eng. 2019, 158, 162–168. [Google Scholar] [CrossRef]
- Dike, H.N.; Chibueze, L.N.; Ipinsokan, S.; Adewumi, C.N.; Olabode, O.; Olaniyan, D.D.; Pius, I.E.; Oke, M.A. An Evaluation of the Rheological and Filtration Properties of Cow Bone Powder and Calcium Carbonate as Fluid-Loss Additives in Drilling Operations. Processes 2025, 13, 2205. [Google Scholar] [CrossRef]
- Zhao, H.; Hao, S.; Fu, Q.; Zhang, X.; Meng, L.; Xu, F.; Yang, J. Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors. Chem. Mater. 2022, 34, 5258–5272. [Google Scholar] [CrossRef]
- Permana, A.D.; Utomo, E.; Pratama, M.R.; Amir, M.N.; Anjani, Q.K.; Mardikasari, S.A.; Sumarheni, S.; Himawan, A.; Arjuna, A.; Usmanengsi, U.; et al. Bioadhesive-thermosensitive in situ vaginal gel of the gel flake-solid dispersion of itraconazole for enhanced antifungal activity in the treatment of vaginal candidiasis. ACS Appl. Mater. Interfaces 2021, 13, 18128–18141. [Google Scholar] [CrossRef] [PubMed]
Concentration/% | AV/(mPa·s) | PV/(mPa·s) | YP/Pa | G10″/G10′ |
---|---|---|---|---|
0 | 2.5 | 2 | 0.5 | 0.5/0.25 |
0.5 | 4.5 | 4 | 0.5 | 0.5/0.5 |
1.0 | 14 | 13.5 | 0.5 | 2/2 |
2.0 | 28 | 21.5 | 7 | 2.5/3 |
3.0 | 42 | 40 | 2 | 1/1 |
Concentration/% | Invasion Depth/cm |
---|---|
0.5 | 11.7 |
1.0 | 10.4 |
2.0 | 2.85 |
3.0 | 2.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; He, Z.; Lin, J.; Ren, K.; Zhao, Z.; Lv, K.; Liu, Y.; Jin, J. Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane. Processes 2025, 13, 2453. https://doi.org/10.3390/pr13082453
Wang B, He Z, Lin J, Ren K, Zhao Z, Lv K, Liu Y, Jin J. Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane. Processes. 2025; 13(8):2453. https://doi.org/10.3390/pr13082453
Chicago/Turabian StyleWang, Bo, Zhanqi He, Jin Lin, Kang Ren, Zhengyang Zhao, Kaihe Lv, Yiting Liu, and Jiafeng Jin. 2025. "Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane" Processes 13, no. 8: 2453. https://doi.org/10.3390/pr13082453
APA StyleWang, B., He, Z., Lin, J., Ren, K., Zhao, Z., Lv, K., Liu, Y., & Jin, J. (2025). Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane. Processes, 13(8), 2453. https://doi.org/10.3390/pr13082453