Rapid Joule-Heating Synthesis of Efficient Low-Crystallinity Ru-Mo Oxide Catalysts for Alkaline Hydrogen Evolution Reaction
Abstract
1. Introduction
2. Experimental
2.1. Synthesis of Ru1Mo1-JH Catalyst
2.2. Characterizations
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Structural Characterization of Ru1Mo1-JH
3.2. HER Electrochemical Performance of Ru1Mo1-JH
3.3. Practical Water Splitting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sust. Energ Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Zhang, E.; Song, W. Review-Self-Supporting Electrocatalysts for HER in Alkaline Water Electrolysis. J. Electrochem. Soc. 2024, 171, 052503. [Google Scholar] [CrossRef]
- Xiong, H.; Zhuang, R.; Cheng, B.; Liu, D.; Du, Y.; Wang, H.; Liu, Y.; Xu, F.; Wang, H. Self-Supported Metallic Alkaline Hydrogen Evolution Electrocatalysts Tolerant for Ampere-Level Current Densities. Adv. Energy Mater. 2025, 15, 2404077. [Google Scholar] [CrossRef]
- Huang, L.; Wei, M.; Jadoon, S.; Ali, A.; Xia, B.Y. Well-connection of micro-platinum and cobalt oxide flower array with optimized water dissociation and hydrogen recombination for efficient overall water splitting. Chem. Eng. J. 2020, 398, 125669. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, L.; Zhou, S.; Niu, C.; Isimjan, T.T.; Yang, X. Electronic regulation of hcp-Ru by d-d orbital coupling for robust electrocatalytic hydrogen oxidation in alkaline electrolytes. J. Colloid Interface Sci. 2025, 677, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lao, M.; Yu, Y.; Ma, M.; Li, M.; Fei, Z.; Dyson, P.J.; Wang, S.; Min, D. Manipulation of the Electronic Structure of Ruthenium Nanoclusters by Ni-N4 Sites Enhances the Alkaline Hydrogen Evolution Reaction. Adv. Funct. Mater. 2025, 35, 2416071. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Chen, Z.; Dai, Q.; Dong, C.-L.; Yang, B.; Li, Z.; Hu, X.; Lei, L.; Hou, Y. Theory-guided design of electron-deficient ruthenium cluster for ampere-level current density electrochemical hydrogen evolution. Nano Energy 2023, 115, 108694. [Google Scholar] [CrossRef]
- Wang, L.; Ma, M.; Zhang, C.; Chang, H.-H.; Zhang, Y.; Li, L.; Chen, H.-Y.; Peng, S. Manipulating the Microenvironment of Single Atoms by Switching Support Crystallinity for Industrial Hydrogen Evolution. Angew. Chem. Int. Edit. 2024, 63, e202317220. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, C.; Deng, Q.; Zhou, Y.; Mao, C.; Song, Y.; Zhu, M.; Zhang, Y. Bi-Porphyrins MOF with confinement and ion-attracting effects in concert with RuO2-doped CNT as efficient electrocatalysts for HER in acidic and alkaline media. Appl. Surf. Sci. 2023, 612, 155870. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, J.; Liu, Y.; Huang, G.; Yuan, S.; Li, X.; Li, N. Boosted hydrogen evolution reaction based on synergistic effect of RuO2@MoS2 hybrid electrocatalyst. Appl. Surf. Sci. 2021, 538, 148019. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, Z.; Li, Z.; Zhang, Z.; Zhang, R.; Meng, X. Ultrafast carbothermal shocking fabrication of cation vacancy-rich Mo doped Ru nanoparticles on carbon nanotubes for high-performance water/seawater electrolysis. J. Mater. Chem. A 2023, 11, 22430–22440. [Google Scholar] [CrossRef]
- Kandel, M.R.; Pan, U.N.; Paudel, D.R.; Dhakal, P.P.; Kim, N.H.; Lee, J.H. Hybridized bimetallic phosphides of Ni–Mo, Co–Mo, and Co–Ni in a single ultrathin-3D-nanosheets for efficient HER and OER in alkaline media. Compos. Part B Eng. 2022, 239, 109992. [Google Scholar] [CrossRef]
- Li, W.; Liu, R.; Yu, G.; Chen, X.; Yan, S.; Ren, S.; Chen, J.; Chen, W.; Wang, C.; Lu, X. Rationally Construction of Mn-Doped RuO2 Nanofibers for High-Activity and Stable Alkaline Ampere-Level Current Density Overall Water Splitting. Small 2024, 20, 2307164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, R.; Wang, C.; Zhao, Y.; Qi, L. Electronic and Vacancy Engineering of Mo-RuCoOx Nanoarrays for High-Efficiency Water Splitting. Adv. Funct. Mater. 2023, 33, 2303073. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, J.P.; Li, X.; Li, X.; Zhang, Z.; Meng, X. Joule heating synthesis of NiFe alloy/MoO2 and in-situ transformed (Ni,Fe) OOH/MoO2 heterostructure as effective complementary electrocatalysts for overall splitting in alkaline seawater. Appl. Catal. B-Environ. Energy 2024, 340, 123277. [Google Scholar] [CrossRef]
- Du, W.; Shi, Y.M.; Zhou, W.; Yu, Y.; Zhang, B. Unveiling the In Situ Dissolution and Polymerization of Mo in Ni4Mo Alloy for Promoting the Hydrogen Evolution Reaction. Angew. Chem. Int. Edit. 2021, 60, 7051–7055. [Google Scholar] [CrossRef]
- Jakšić, M.M. Electrocatalysis of hydrogen evolution in the light of the brewer—Engel theory for bonding in metals and intermetallic phases. Electrochim. Acta 1984, 29, 1539–1550. [Google Scholar] [CrossRef]
- Fan, L.; Li, Q.; Wang, D.; Meng, T.; Yan, M.; Xing, Z.; Wang, E.; Yang, X. Electrospun Ru-RuO2/MoO3 carbon nanorods with multi-active components: A Pt-like catalyst for the hydrogen evolution reaction. Chem. Commun. 2020, 56, 739–742. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437. [Google Scholar] [CrossRef]
- Sun, Y.K.; Sun, W.Y.; Li, G.C.; Wang, L.; Huang, J.; Meng, A.; Li, Z. Interface, vacancy, and morphology engineering synergistically improve In2S3@Cu2S electrocatalytic performance for pH-universal HER. J. Mater. Chem. A 2023, 11, 2262–2272. [Google Scholar] [CrossRef]
- Yin, J.W.; Lu, T.Y.; Li, J.; Liu, J.; Lin, Y.; Sun, D.; Xu, L.; Zhao, Q.; Pang, H.; Zhang, S.; et al. Synergistic Alkaline Hydrogen Evolution Catalysis over MoC Triggered by Doping Single Ru Atoms. Adv. Funct. Mater. 2025, 35, 2417034. [Google Scholar] [CrossRef]
- Xiang, L.J.; Li, N.; Zhao, L.; Wang, K.; Pang, B.; Liu, Z.; Guo, J. Boosting alkaline hydrogen evolution via in-plane heterostructure construction with Ultra-Exposed heterointerfaces. Chem. Eng. J. 2024, 499, 155833. [Google Scholar] [CrossRef]
- Peng, C.L.; Zhao, W.P.; Li, Z.X.; Kuang, Z.; Cheng, G.; Miller, J.T.; Sun, S.; Chen, H. Eutectic molten salt assisted synthesis of highly defective and flexible ruthenium oxide for efficient overall water splitting. Chem. Eng. J. 2021, 425, 131707. [Google Scholar] [CrossRef]
- Gao, X.Y.; Li, B.; Sun, X.Z.; Wu, B.; Hu, Y.; Ning, Z.; Li, J.; Wang, N. Engineering heterostructure and crystallinity of Ru/RuS2 nanoparticle composited with N-doped graphene as electrocatalysts for alkaline hydrogen evolution. Chin. Chem. Lett. 2021, 32, 3591–3595. [Google Scholar] [CrossRef]
- Zai, S.F.; Dong, A.Q.; Li, J.; Wen, Z.; Yang, C.C.; Jiang, Q.Q. Low-crystallinity mesoporous NiGaFe hydroxide nanosheets on macroporous Ni foam for high-efficiency oxygen evolution electrocatalysis. J. Mater. Chem. A 2021, 9, 6223–6231. [Google Scholar] [CrossRef]
- Qin, Y.Q.; Du, K.C.; Wang, Y.Q.; Jiang, S.; Miao, L.; Lu, M.; Wang, P. Support Regulation Strategy Synergistic with Ru Single-Atom Catalyst for Energy-Saving Hydrogen Production Assisted by Green Electrosynthesis of Azotetrazolate. Inorg. Chem. 2025, 64, 4544–4554. [Google Scholar] [CrossRef]
- Guo, K.L.; Jia, J.Z.; Wu, H.X. Electrochemical activation-induced Co-Ni-Mo-O nanosheets with low crystallinity and abundant active sites for efficient and ultra-stable hydrogen generation. Dalton Trans. 2023, 52, 9138–9147. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Q.; Pang, D.W.; Wang, C.J.; Fu, Z.; Liu, N.; Liu, J.; Wu, H.; Jia, B.; Guo, Z.; Fan, X.; et al. Vacancy and Dopant Co-Constructed Active Microregion in Ru-MoO3-x/Mo2AlB2 for Enhanced Acidic Hydrogen Evolution. Angew. Chem. Int. Edit. 2025, 64, e202504084. [Google Scholar] [CrossRef]
- Yang, L.; Pang, H.; Ren, W.; Wang, X.; Wei, Y.; Lu, P.; Chen, J.; Tian, W.; Huang, M.; Wang, H. Joule Heating Driven Graphitization Regulation and Ni Single-Atom Modification in Hard Carbon for Low-Voltage and High-Rate Potassium-Ion Storage. Adv. Funct. Mater. 2025, e16237. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, T.; Li, X.; Chena, Y.; Meng, X. Progress and perspectives of rapid Joule heating for the preparation of highly efficient catalysts. Mater. Horiz. 2025, 12, 734–759. [Google Scholar] [CrossRef]
- Ji, D.X.; Peng, S.J.; Lu, J.; Li, L.; Yang, S.; Yang, G.; Qin, X.; Srinivasand, X.; Ramakrishna, S. Design and synthesis of porous channel-rich carbon nanofibers for self-standing oxygen reduction reaction and hydrogen evolution reaction bifunctional catalysts in alkaline medium. J. Mater. Chem. A 2017, 5, 7507–7515. [Google Scholar] [CrossRef]
- Inoue, A.; Kato, A.; Zhang, T.; Kim, S.G.; Masumoto, T. Mg-Cu-Y Amorphous-Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method. Mater. Trans. JIM 1991, 32, 609–616. [Google Scholar] [CrossRef]
- Senkov, O.N.; Scott, J.M.; Miracle, D.B. Development of low density Ca-Mg-Al-based bulk metallic glasses. Mater. Trans. 2007, 48, 1610–1616. [Google Scholar] [CrossRef]
- Ma, D.; Stoica, A.D.; Wang, X.L. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 2009, 8, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.Y.; Wang, W.; Hong, Y.L.; Zheng, Y.; Ren, X.; Du, W.; Chen, Y.; Tan, S.; Zhang, W. Ru Nanoparticle-Anchored MoO2 Nanoflowers as Electrocatalysts for the Hydrogen Evolution Reaction. ACS Appl. Nano Mater. 2023, 6, 13926–13934. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Liu, Y.N.; Dai, Q.; Chen, Z.; Yang, X.; Luo, Y.; Li, Z.; Yang, B.; Zheng, M.; et al. Electron Redistribution of Ru Site on MoO2@NiMoO4 Support for Efficient Ampere-Level Current Density Electrolysis of Alkaline Seawater. Small 2024, 20, 2311477. [Google Scholar] [CrossRef]
- Chang, Y.N.; Kong, L.Y.; Xu, D.D.; Lu, X.; Wang, S.; Li, Y.; Bao, J.; Wang, Y.; Liu, Y. Mo Migration-Induced Crystalline to Amorphous Conversion and Formation of RuMo/NiMoO4 Heterogeneous Nanoarray for Hydrazine-Assisted Water Splitting at Large Current Density. Angew. Chem. Int. Edit. 2025, 64, e202414234. [Google Scholar] [CrossRef]
- Liu, J.; Liu, W.; Li, Z.; Wang, J.; Fan, R.; Liu, C.; Gao, B.; Zou, Z.; Li, Z. Mitigating Hydrogen Poisoning for Robust Ammonia-to-Hydrogen Conversion over Photothermal Catalysts. ACS Catal. 2025, 15, 10470–10479. [Google Scholar] [CrossRef]
- Zhu, S.; Qin, X.; Xiao, F.; Yang, S.; Xu, Y.; Tan, Z.; Li, J.; Yan, J.; Chen, Q.; Chen, M.; et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711–718. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Rui, K.; Dou, S.X.; Sun, W. Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28, 1803291. [Google Scholar] [CrossRef]
- Cao, D.; Xu, H.X.; Li, H.L.; Feng, C.; Zeng, J.; Cheng, D. Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nat. Commun. 2022, 13, 5843. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.Q.; Li, C.; Jang, H.; Kim, M.K.; Jiang, J.-Z.; Cho, J.; Liu, S.; Liu, X. Rationally Designed Mo/Ru-Based Multi-Site Heterogeneous Electrocatalyst for Accelerated Alkaline Hydrogen Evolution Reaction. Adv. Mater. 2024, 36, 2410039. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Q.; Zhu, L.P.; Tang, Z.; Wang, Z.L. Spin-selected electron transfer in liquid-solid contact electrification. Nat. Commun. 2022, 13, 5230. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, T.; Huang, X.; Zhao, Z.; Li, Z.; Huang, K.; Meng, X. Rapid Joule-Heating Synthesis of Efficient Low-Crystallinity Ru-Mo Oxide Catalysts for Alkaline Hydrogen Evolution Reaction. Processes 2025, 13, 2594. https://doi.org/10.3390/pr13082594
Shi T, Huang X, Zhao Z, Li Z, Huang K, Meng X. Rapid Joule-Heating Synthesis of Efficient Low-Crystallinity Ru-Mo Oxide Catalysts for Alkaline Hydrogen Evolution Reaction. Processes. 2025; 13(8):2594. https://doi.org/10.3390/pr13082594
Chicago/Turabian StyleShi, Tao, Xiaoling Huang, Zhan Zhao, Zizhen Li, Kelei Huang, and Xiangchao Meng. 2025. "Rapid Joule-Heating Synthesis of Efficient Low-Crystallinity Ru-Mo Oxide Catalysts for Alkaline Hydrogen Evolution Reaction" Processes 13, no. 8: 2594. https://doi.org/10.3390/pr13082594
APA StyleShi, T., Huang, X., Zhao, Z., Li, Z., Huang, K., & Meng, X. (2025). Rapid Joule-Heating Synthesis of Efficient Low-Crystallinity Ru-Mo Oxide Catalysts for Alkaline Hydrogen Evolution Reaction. Processes, 13(8), 2594. https://doi.org/10.3390/pr13082594