Suppression of Sulphur-Reducing Bacteria in Formation Water by Sonoplasma Treatment
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, W.L.; Zhou, B.B.; Issakhov, M.; Gabdullin, M. Advances in enhanced oil recovery technologies for low permeability reservoirs. Pet. Sci. 2022, 19, 1622–1640. [Google Scholar] [CrossRef]
- Hao, O.J.; Chen, J.M.; Huang, L.; Buglass, R.L. Sulphate-reducing bacteria. Crit. Rev. Environ. Sci. Technol. 1996, 26, 155–187. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, C.; Yang, Y.; Zhang, Z.; Tang, Y.; Su, P.; Lin, Z. A review of sulphate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment. J. Clean. Prod. 2022, 376, 134109. [Google Scholar] [CrossRef]
- Cord-Ruwisch, R.; Kleinitz, W.; Widdel, F. Sulphate-reducing bacteria and their activities in oil production. J. Pet. Technol. 1987, 39, 97–106. [Google Scholar] [CrossRef]
- Ma, H.; Cheng, X.; Li, G.; Chen, S.; Quan, Z.; Zhao, S.; Niu, L. The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros. Sci. 2000, 42, 1669–1683. [Google Scholar] [CrossRef]
- Khoma, M.S.; Vasyliv, K.B.; Chuchman, M.R. Influence of the hydrogen sulfide concentration on the corrosion and hydrogenation of pipe steels (A Survey). Mater. Sci. 2021, 57, 308–318. [Google Scholar] [CrossRef]
- Parker, C.H.J. The Influence of Sulphate-Reducing Bacteria on Hydrogen Absorption by Steel During Microbial Corrosion; Cranfield University: Cranfield, UK, 1990; Available online: https://dspace.lib.cranfield.ac.uk/handle/1826/19712 (accessed on 14 July 2025).
- Lv, M.; Chen, X.; Li, Z.; Du, M. Effect of sulphate-reducing bacteria on hydrogen permeation and stress corrosion cracking behavior of 980 high-strength steel in seawater. J. Mater. Sci. Technol. 2021, 92, 109–119. [Google Scholar] [CrossRef]
- Castaneda, H.; Benetton, X.D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros. Sci. 2008, 50, 1169–1183. [Google Scholar] [CrossRef]
- Chen, S.; Wang, P.; Zhang, D. Corrosion behavior of copper under biofilm of sulphate-reducing bacteria. Corros. Sci. 2014, 87, 407–415. [Google Scholar] [CrossRef]
- Vakili, M.; Koutnik, P.; Kohout, J. Addressing hydrogen sulfide corrosion in oil and gas industries: A sustainable perspective. Sustainability 2024, 16, 1661. [Google Scholar] [CrossRef]
- Jiang, G.; Gutierrez, O.; Yuan, Z. The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms. Water Res. 2011, 45, 3735–3743. [Google Scholar] [CrossRef]
- Souza, P.M.D.; Goulart, F.R.D.V.; Marques, J.M.; Bizzo, H.R.; Blank, A.F.; Groposo, C.; Seldin, L. Growth inhibition of sulphate-reducing bacteria in produced water from the petroleum industry using essential oils. Molecules 2017, 22, 648. [Google Scholar] [CrossRef]
- Voskuhl, L.; Brusilova, D.; Brauer, V.S.; Meckenstock, R.U. Inhibition of sulphate-reducing bacteria with formate. FEMS Microbiol. Ecol. 2022, 98, fiac003. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, K.; Guo, H.; Tian, L.; He, Y.; Wang, X.; Liu, Y. Potassium permanganate-based advanced oxidation processes for wastewater decontamination and sludge treatment: A review. Chem. Eng. J. 2023, 452, 139529. [Google Scholar] [CrossRef]
- Gao, P.; Fan, K. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: A review. Arch. Microbiol. 2023, 205, 162. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Schwarze, M.; Borchardt, S.; Frisch, M.L.; Collis, J.; Walter, C.; Menezes, P.W.; Tasbihi, M. Degradation of phenol via an advanced oxidation process (AOP) with immobilised commercial titanium dioxide (TiO2) photocatalysts. Nanomaterials 2023, 13, 1249. [Google Scholar] [CrossRef] [PubMed]
- You, C.S.; Kim, T.S.; Park, Y.K.; An, K.H.; Jung, S.C. Degradation of antibiotic tetracycline using H2O2/TiO2/UV/microwave system. J. Ind. Eng. Chem. 2023, 127, 261–269. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Cai, Q.Q.; Jothinathan, L.; Deng, S.H.; Ong, S.L.; Ng, H.Y.; Hu, J.Y. Fenton-and ozone-based AOP processes for industrial effluent treatment. In Advanced Oxidation Processes for Effluent Treatment Plants; Elsevier: Amsterdam, The Netherlands, 2021; pp. 199–254. [Google Scholar] [CrossRef]
- Ikehata, K.; Li, Y. Ozone-based processes. In Advanced Oxidation Processes for Waste Water Treatment; Academic Press: New York, NY, USA, 2018; pp. 115–134. [Google Scholar] [CrossRef]
- Derco, J.; Gotvajn, A.Ž.; Čižmárová, O.; Dudáš, J.; Sumegová, L.; Šimovičová, K. Removal of Micropollutants by Ozone-Based Processes. Processes 2021, 9, 1013. [Google Scholar] [CrossRef]
- Wang, B.; Zeng, T.; Shang, J.; Tao, J.; Liu, Y.; Yang, T.; Hu, G. Bubble dynamics model and its revelation of ultrasonic cavitation behavior in advanced oxidation processes: A review. J. Water Process Eng. 2024, 63, 105470. [Google Scholar] [CrossRef]
- Fedorov, K.; Dinesh, K.; Sun, X.; Soltani, R.D.C.; Wang, Z.; Sonawane, S.; Boczkaj, G. Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon—A review. Chem. Eng. J. 2022, 432, 134191. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Zhang, H.; Shi, W.; Xiong, M.; Gao, C.; Cui, M. Hydrodynamic cavitation and its application in water treatment combined with ozonation: A review. J. Ind. Eng. Chem. 2022, 114, 33–51. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Xia, B.; Zuo, W. Phenol oxidation by combined cavitation water jet and hydrogen peroxide. Chin. J. Chem. Eng. 2012, 20, 760–767. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2020, 12, 102. [Google Scholar] [CrossRef]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Yang, L. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef]
- Cao, G.M.; Sheng, M.; Niu, W.F.; Fei, Y.L.; Li, D. Regeneration and reuse of iron catalyst for Fenton-like reactions. J. Hazard. Mater. 2009, 172, 1446–1449. [Google Scholar] [CrossRef]
- Cesaro, A.; Naddeo, V.; Belgiorno, V. Wastewater treatment by combination of advanced oxidation processes and conventional biological systems. J. Bioremed. Biodegrad. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Hajalifard, Z.; Mousazadeh, M.; Khademi, S.; Khademi, N.; Jamadi, M.H.; Sillanpää, M. The efficacious of AOP-based processes in concert with electrocoagulation in abatement of CECs from water/wastewater. NPJ Clean Water 2023, 6, 30. [Google Scholar] [CrossRef]
- Abramov, V.O.; Abramova, A.V.; Cravotto, G.; Nikonov, R.V.; Fedulov, I.S.; Ivanov, V.K. Flow-mode water treatment under simultaneous hydrodynamic cavitation and plasma. Ultrason. Sonochem. 2020, 70, 105323. [Google Scholar] [CrossRef]
- Bethge, P.O. On the volumetric determination of hydrogen sulfide and soluble sulfides. Anal. Chim. Acta 1953, 9, 129–139. [Google Scholar] [CrossRef]
- Postgate, J.R. Versatile medium for the enumeration of sulfate-reducing bacteria. Appl. Microbiol. 1963, 11, 265–267. [Google Scholar] [CrossRef]
- Linga Reddy, E.; Karuppiah, J.; Subrahmanyam, C. Kinetics of hydrogen sulfide decomposition in a DBD plasma reactor operated at high temperature. J. Energy Chem. 2013, 22, 382–386. [Google Scholar] [CrossRef]
- Zevnik, J.; Dular, M. Cavitation bubble interaction with compliant structures on a microscale: A contribution to the understanding of bacterial cell lysis by cavitation treatment. Ultrason. Sonochem. 2022, 87, 106053. [Google Scholar] [CrossRef] [PubMed]
- Krystynik, P. Advanced oxidation processes (AOPs)—Utilization of hydroxyl radical and singlet oxygen. In Reactive Oxygen Species; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Nakamura, K.; Yamada, Y.; Ikai, H.; Kanno, T.; Sasaki, K.; Niwano, Y. Bactericidal action of photoirradiated gallic acid via reactive oxygen species formation. J. Agric. Food Chem. 2012, 60, 10048–10054. [Google Scholar] [CrossRef] [PubMed]
- Toki, T.; Nakamura, K.; Kurauchi, M.; Kanno, T.; Katsuda, Y.; Ikai, H.; Hayashi, E.; Egusa, H.; Sasaki, K.; Niwano, Y. Synergistic interaction between wavelength of light and concentration of H2O2 in bactericidal activity of photolysis of H2O2. J. Biosci. Bioeng. 2015, 119, 358–362. [Google Scholar] [CrossRef]
- Ikai, H.; Nakamura, K.; Shirato, M.; Kanno, T.; Iwasawa, A.; Sasaki, K.; Kohno, M. Photolysis of hydrogen peroxide, an effective disinfection system via hydroxyl radical formation. Antimicrob. Agents Chemother. 2010, 54, 5086–5091. [Google Scholar] [CrossRef]
- Mikhalev, E.; Kamler, A.; Bayazitov, V.; Sozarukova, M.; Nikonov, R.; Fedulov, I.; Mel’nik, E.; Ildyakov, A.; Smirnov, D.; Volkov, M.; et al. Sonoplasma Frequency Tuning of Electric Pulses to Modulate and Maximise Reactive Oxygen Species Generation. Water 2024, 16, 2753. [Google Scholar] [CrossRef]
- Tang, J.; Shao, Y.; Guo, J.; Zhang, T.; Meng, G.; Wang, F. The effect of H2S concentration on the corrosion behavior of carbon steel at 90 °C. Corros. Sci. 2010, 6, 2050–2058. [Google Scholar] [CrossRef]
No. | Amount of Treatment Cycles | pH | Density, g/mL |
---|---|---|---|
1 | 0, control | 7.10 ± 0.05 | 1.06 ± 0.01 |
2 | 1 | 7.10 ± 0.05 | 1.06 ± 0.01 |
3 | 2 | 7.47 ± 0.05 | 1.06 ± 0.01 |
4 | 3 | 7.57 ± 0.05 | 1.06 ± 0.01 |
Mode 1, 70 kHz, 2.6 kW | Mode 2, 60 kHz, 2.9 kW | Mode 3, 50 kHz, 3.5 kW | Mode 4, 40 kHz, 4.0 kW | Mode 5, 30 kHz, 4.5 kW | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | Before | After | |
pH | 7.97 | 7.96 | 7.89 | 7.87 | 7.89 | 7.88 | 7.95 | 7.93 | 7.95 | 7.88 |
H2S, mg/L | 347.61 | 315.24 | 366.04 | 313.02 | 379.52 | 303.88 | 378.06 | 315.53 | 440.54 | 293.79 |
SO42−, mg/dm3 | 384.4 | 489.8 | 312.4 | 423.7 | 305.9 | 536.5 | 338.9 | 541.6 | 375.3 | 562.1 |
SiO2, mg/dm3 | 146.13 | 141.87 | 137.27 | 139.62 | 131.09 | 145.91 | 136.45 | 138.95 | 128.18 | 139.85 |
Ca2+, mg/dm3 | 24.1 | 28.1 | 25.5 | 26.1 | 28.1 | 28.1 | 31.3 | 31.1 | 27.1 | 26.1 |
Mg2+, mg/dm3 | 20.1 | 17.1 | 19.6 | 18.9 | 18.3 | 18.9 | 16.5 | 15.8 | 18.9 | 17.7 |
Cl−, mg/dm3 | 232.7 | 135 | 232.8 | 117.3 | 232.8 | 81.7 | 232.6 | 81.7 | 232.7 | 90.6 |
K+ + Na+, mg/dm3 | 1101.7 | 1071.8 | 1121.5 | 1012 | 1064.9 | 1090.2 | 1087.6 | 940.7 | 1147.7 | 1046.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhalev, E.S.; Kamler, A.V.; Bayazitov, V.M.; Nikonov, R.V.; Fedulov, I.S.; Abramova, I.O.; Cravotto, G. Suppression of Sulphur-Reducing Bacteria in Formation Water by Sonoplasma Treatment. Processes 2025, 13, 2653. https://doi.org/10.3390/pr13082653
Mikhalev ES, Kamler AV, Bayazitov VM, Nikonov RV, Fedulov IS, Abramova IO, Cravotto G. Suppression of Sulphur-Reducing Bacteria in Formation Water by Sonoplasma Treatment. Processes. 2025; 13(8):2653. https://doi.org/10.3390/pr13082653
Chicago/Turabian StyleMikhalev, Egor S., Anna V. Kamler, Vadim M. Bayazitov, Roman V. Nikonov, Igor S. Fedulov, Irina O. Abramova, and Giancarlo Cravotto. 2025. "Suppression of Sulphur-Reducing Bacteria in Formation Water by Sonoplasma Treatment" Processes 13, no. 8: 2653. https://doi.org/10.3390/pr13082653
APA StyleMikhalev, E. S., Kamler, A. V., Bayazitov, V. M., Nikonov, R. V., Fedulov, I. S., Abramova, I. O., & Cravotto, G. (2025). Suppression of Sulphur-Reducing Bacteria in Formation Water by Sonoplasma Treatment. Processes, 13(8), 2653. https://doi.org/10.3390/pr13082653