The Effects of Aluminium- and Ferric-Based Chemical Phosphorus Removal on Activated Sludge Digestibility and Dewaterability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Activated Sludge Digestibility and Dewaterability Sampling
2.2. Digestibility Tests
2.3. Dewaterability Tests
3. Results and Discussion
3.1. Effects of Aluminium and Ferric Dosing on Biogas Production
3.2. Effects of Aluminium and Ferric Dosing on Sludge Dewaterability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ojo, P.; Ifelebuegu, A.O. The Impact of Aluminium Salt for Chemical Phosphorus Removal on the Settleability of Activated Sludge. Environments 2018, 5, 88. [Google Scholar] [CrossRef]
- Ojo, P.; Ifelebuegu, A.O. The Impact of Alum on the Bulking of a Full Scale Activated Sludge Plant. Environ. Eng. 2016, 3, 6–10. [Google Scholar]
- Ojo, P.; Ifelebuegu, A.O. Effect of Aluminium Salt Dosing on Activated Sludge Settleability Indicators: A New Settleability Model Development. Water 2019, 11, 179. [Google Scholar] [CrossRef]
- Wilfert, P.; Kumar, P.S.; Korving, L.; Witkamp, G.J.; van Loosdrecht, M.C.M. The relevance of phosphorus and iron chemistry to the recovery of phosphorus. Environ. Sci. Technol. 2015, 49, 9400–9414. [Google Scholar] [CrossRef]
- Yeoman, S.; Stephenson, T.; Lester, J.N.; Perry, R. The removal of phosphorus during wastewater treatment: a review. Environ. Pollut. 1988, 49, 183–233. [Google Scholar] [CrossRef]
- Sawatdeenarunat, C.; Surendra, K.C.; Takara, D.; Oechsner, H.; Khanal, S.K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour. Technol. 2015, 78, 178–186. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Jahng, D. Biogas from anaerobic digestion processes: Research updates. Renew. Energy 2016, 98, 108–119. [Google Scholar] [CrossRef]
- Romero-Güiza, M.S.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.M.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, W.; Wanga, D.; Chen, Y.; Chen, R. Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants. Bioresour. Technol. 2013, 144, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wang, Q.; Jiang, G.; Zhang, X.; Yuan, Z. Improving dewaterability of waste activated sludge by combined conditioning with zero-valent iron and hydrogen peroxide. Bioresour. Technol. 2014, 174, 103–107. [Google Scholar] [CrossRef]
- Haandel, A.C.V.; Lubbe, J.G.M.V. Handbook of Biological Wastewater Treatment: Design and Optimisation of Activated Sludge System, 2nd ed.; IWA Publishing: London, UK, 2012. [Google Scholar]
- Smith, J.A.; Carliell-Marquet, C.M. The digestibility of iron-dosed activated sludge. Bioresour. Technol. 2008, 99, 8585–8592. [Google Scholar] [CrossRef]
- Smith, J.A.; Carliell-Marquet, C.M. A novel laboratory method to determine the biogas potential of iron-dosed activated sludge. Bioresour. Technol. 2009, 100, 1767–1774. [Google Scholar] [CrossRef]
- Lee, C.H.; Liu, J.C. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res. 2000, 34, 4430–4436. [Google Scholar] [CrossRef]
- Lotito, V.; Spinosa, L.; Mininni, G.; Antonacci, R. The rheology of sewage sludge at different steps of treatment. Water Sci. Technol. 1997, 36, 79–85. [Google Scholar] [CrossRef]
- Keiding, K.; Wybrandt, L.; Nielson, P.H. Remember the water: Comment on EPS colligative properties. Water Sci. Technol. 2001, 43, 17–23. [Google Scholar] [CrossRef]
- Mowla, D.; Tran, H.N.; Allen, G.D. A Review of the properties of biosludge and its relevance to enhanced dewatering processes. Biomass Bioenergy 2013, 58, 365–378. [Google Scholar] [CrossRef]
- Ruiz-Hernando, M.; Martinez-Elorza, G.; Labanda, J.; Llorens, J. Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments. Chem. Eng. 2013, 230, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.G.; Yang, H.Z.; Gu, G.W. Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Res. 2001, 35, 2615–2620. [Google Scholar] [CrossRef]
- Tony, M.A.; Zhao, Y.Q.; Fu, J.F.; Tayeb, M. Conditioning of aluminum-based water treatment sludge with Fenton’s reagent: Effectiveness and optimising study to improve dewaterability. Chemosphere 2008, 72, 673–677. [Google Scholar] [CrossRef]
- Ye, F.; Liu, X.; Li, Y. Effects of potassium ferrate on extracellular polymeric substances (EPS) and physicochemical properties of excess activated sludge. J. Hazard. Mater. 2012, 199–200, 158–163. [Google Scholar] [CrossRef]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; Wiley-Interscience: Hoboken, NJ, USA, 2003; pp. 51–57. [Google Scholar]
- Triton Ltd. 2017 Type 304 B CST Device. Available online: http://www.tritonel.com/product/type-304-cst/ (accessed on 8 May 2016).
- Scholz, M. Review of recent trends in capillary suction time CST dewaterability testing research. Ind. Eng. Chem. Res. 2005, 44, 8157–8163. [Google Scholar] [CrossRef]
- Sawalha, O.; Scholz, M. Assessment of capillary suction time (CST) test methodologies. Environ. Technol. 2007, 28, 1377–1386. [Google Scholar] [CrossRef]
- Kindzierski, W.; Hrudey, S. Effects of phosphorus removal chemicals upon methane production during anaerobic sludge digestion. Can. Civ. Eng. 1986, 13, 33–38. [Google Scholar] [CrossRef]
- Yeoman, S.; Lester, J.; Perry, R. The effects of chemical phosphorus precipitation on anaerobic digestion. Environ. Technol. 1990, 11, 709–720. [Google Scholar] [CrossRef]
- Dentel, S.K.; Gosset, J.M. Effect of chemical coagulation on anaerobic digestibility of organic materials. Water Res. 1982, 16, 707–718. [Google Scholar] [CrossRef]
- Johnson, D.K.; Carliell-Marquet, C.M.; Forster, C.F. An examination of the treatment of iron-dosed waste activated sludge by anaerobic digestion. Environ. Technol. 2003, 24, 937–945. [Google Scholar] [CrossRef]
- Ofverstrom, S.; Sapkaite, I.; Dauknys, R. An investigation of impact of iron and aluminium addition on the anaerobic digestion process. In Proceedings of the Linnaeus Eco-Tech 10, Kalmar, Sweden, 22–24 November 2010. [Google Scholar]
- Park, C.; Muller, C.D.; Abu-Orf, M.M.; Novak, J.T. The effect of wastewater cations on activated sludge characteristics: Effects of aluminium and iron in floc. Water Environ. Res. 2006, 78, 31–40. [Google Scholar] [CrossRef]
- Sawalha, O.; Scholz, M. Modeling the relationship between capillary suction time and specific resistance to filtration. J. Environ. Eng. 2010, 136, 983–991. [Google Scholar] [CrossRef]
- Feng, X.; Deng, J.; Lei, H.; Bai, T.; Fan, Q.; Li, Z. Dewatering of waste activated sludge with ultrasonic conditioning. Bioresour Technol. 2009, 100, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Laspidou, C.S.; Rittmann, B.E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Resour. 2002, 36, 2711–2720. [Google Scholar] [CrossRef]
- Liu, X.M.; Sheng, G.P.; Yu, H.Q.; Luo, H.W.; Zhang, F.; Yuan, S.J. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ. Sci. Technol. 2010, 44, 4355–4360. [Google Scholar] [CrossRef]
- Vaxelaire, J.; Cezac, P. Moisture distribution in activated sludges: A review. Water Res. 2004, 38, 2215–2230. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Lin, J.L.; Kang, S.F.; Liang, C.L. Acidification and alkalization of textile chemical sludge: Volume/solid reduction, dewaterability, and Al (III) recovery. Sep. Purif. Technol. 2005, 42, 31–37. [Google Scholar] [CrossRef]
- Dursun, D.; Turkmen, M.; Abu-Orf, M.; Dental, S.K. Enhanced sludge conditioning by enzyme pre-treatment: Comparison of laboratory and pilot scale dewatering results. Water Sci. Technol. 2006, 54, 33–41. [Google Scholar] [CrossRef]
- Higgins, M.J.; Chen, Y.; Murthy, S.N. Understanding Factors Affecting Polymer Demand for Conditioning and Dewatering; IWA Publishing: London, UK, 2006; ISBN 1-84339-726-9. [Google Scholar]
- Houghton, J.; Quarmby, J.; Stephenson, T. Municipal wastewater sludge dewatering and the presence of microbial extracellular polymer. Water Sci. Technol. 2001, 44, 373–379. [Google Scholar] [CrossRef]
- Novak, J.T.; Muller, C.D.; Murthy, S.N. Floc structure and the role of cations. Water Sci. Technol. 2001, 44, 209–213. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. 2003, 98, 51–67. [Google Scholar] [CrossRef]
Fe3+-Dosed SAS (Control) | Al3+-Dosed SAS (Control) | |
---|---|---|
Cumulative biogas (mL) after 12 days | 22.46 ± 1.5 (34.91 ± 1.3) | 24.85 ± 1.3 (31.56 ± 2.3) |
% Biogas reduction | 35.7% | 21.3% |
Coagulant Concentration (mg/L) | CST (s) | % CST Reduction | ||
---|---|---|---|---|
Fe3+ | Al3+ | Fe3+ | Al3+ | |
0 | 18.0 ± 3.04 | 18.0 ± 3.04 | - | - |
20 | 16.26 ± 2.22 | 16.83 ± 3.95 | 9.67 | 6.50 |
30 | 15.29 ± 1.77 | 16.24 ± 4.54 | 15.10 | 9.75 |
40 | 14.39 ± 1.84 | 15.66 ± 5.18 | 20.10 | 13.00 |
50 | 13.49 ± 2.18 | 15.07 ± 5.86 | 25.10 | 16.25 |
Coagulant Concentration (mg/L) | CST (s) | % CST Increase | ||
---|---|---|---|---|
Fe3+ | Al3+ | Fe3+ | Al3+ | |
0 | 33.17 ± 2.04 | 33.17 ± 2.04 | - | - |
20 | 43.7 ± 1.76 | 47.97 ± 1.37 | 31.75 | 44.62 |
30 | 47.91 ± 2.77 | 52.49 ± 0.71 | 44.46 | 58.26 |
40 | 51.23 ± 4.87 | 55.57 ± 2.56 | 54.47 | 67.54 |
50 | 54.33 ± 4.87 | 57.37 ± 5.60 | 63.82 | 72.96 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojo, P.; Ifelebuegu, A.O. The Effects of Aluminium- and Ferric-Based Chemical Phosphorus Removal on Activated Sludge Digestibility and Dewaterability. Processes 2019, 7, 228. https://doi.org/10.3390/pr7040228
Ojo P, Ifelebuegu AO. The Effects of Aluminium- and Ferric-Based Chemical Phosphorus Removal on Activated Sludge Digestibility and Dewaterability. Processes. 2019; 7(4):228. https://doi.org/10.3390/pr7040228
Chicago/Turabian StyleOjo, Peter, and Augustine Osamor Ifelebuegu. 2019. "The Effects of Aluminium- and Ferric-Based Chemical Phosphorus Removal on Activated Sludge Digestibility and Dewaterability" Processes 7, no. 4: 228. https://doi.org/10.3390/pr7040228
APA StyleOjo, P., & Ifelebuegu, A. O. (2019). The Effects of Aluminium- and Ferric-Based Chemical Phosphorus Removal on Activated Sludge Digestibility and Dewaterability. Processes, 7(4), 228. https://doi.org/10.3390/pr7040228