Effect of Heating Oxidation on the Surface/Interface Properties and Floatability of Anthracite Coal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Heating Oxidation Process
2.2. SEM
2.3. FTIR
2.4. XPS
2.5. Induction Time Test
2.6. Bubble-Particle Wrap Angle Experiment
3. Results and Discussion
3.1. Effect of Heating Oxidation at 200 °C on Surface Morphology and Functional Groups of Anthracite Coal
3.2. Effect of Heating Oxidation at 200 °C on the Floatability of Anthracite Coal
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xing, Y.; Gui, X.; Cao, Y.; Wang, D.; Zhang, H. Clean low-rank-coal purification technique combining cyclonic-static microbubble flotation column with collector emulsification. J. Clean. Prod. 2017, 153, 657–672. [Google Scholar] [CrossRef]
- Ozkan, S.G. Further investigations on simultaneous ultrasonic coal flotation. Minerals 2017, 7, 177. [Google Scholar] [CrossRef]
- Xing, Y.; Gui, X.; Pan, L.; Pinchasik, B.E.; Cao, Y.; Liu, J.; Kappl, M.; Butt, H.J. Recent experimental advances for understanding bubble–particle attachment in flotation. Adv. Colloid Interface Sci. 2017, 246, 105–132. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, B.; Zhao, P.; Duan, C.; Zhao, Y.; Zhang, Z.; Yan, G.; Zhu, X.; Ding, W.; Rao, Z. Upgrading low-quality oil shale using high-density gas-solid fluidized bed. Fuel 2019, 252, 666–674. [Google Scholar] [CrossRef]
- Li, E.; Lu, Y.; Cheng, F.; Wang, X.; Miller, J.D. Effect of oxidation on the wetting of coal surfaces by water: Experimental and molecular dynamics simulation studies. Physicochem. Probl. Miner. Process. 2018, 54, 1039–1051. [Google Scholar]
- Armed, H.A.; Drzymala, J. Effect of flotation procedure and composition of reagents on yield of a difficult-to-float coal. Physicochem. Probl. Miner. Process. 2004, 38, 53–63. [Google Scholar]
- Bolat, E.; Saglam, S.; Piskin, S. The effect of oxidation on the flotation properties of a Turkish bituminous coal. Fuel Process. Technol. 1998, 55, 101–105. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Diao, J. Characterization of coal oxidation and coal wetting behavior by film flotation. Coal Prep. 1992, 10, 1–17. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Yang, G.; Laskowski, J.S. Oxidation phenomena in coal flotation part I. Correlation between oxygen functional group concentration, immersion wettability and salt flotation response. Coal Prep. 1987, 4, 161–182. [Google Scholar] [CrossRef]
- Sarikaya, M. Flotation test as a method for studying coal weathering. Int. J. Miner. Process. 1995, 43, 31–35. [Google Scholar] [CrossRef]
- Xia, W.; Xie, G. Changes in the hydrophobicity of anthracite coals before and after high temperature heating process. Powder Technol. 2014, 264, 31–35. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, X.; Peng, Y. Understanding and improving the flotation of coals with different degrees of surface oxidation. Powder Technol. 2017, 321, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Gui, X.; Xing, Y.; Wang, T.; Cao, Y.; Miao, Z.; Xu, M. Intensification mechanism of oxidized coal flotation by using oxygen-containing collector α-furanacrylic acid. Powder Technol. 2017, 305, 109–116. [Google Scholar] [CrossRef]
- Jia, R.; Harris, G.H.; Fuerstenau, D.W. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int. J. Miner. Process. 2000, 58, 99–118. [Google Scholar] [CrossRef]
- Ozdemir, O.; Ersoy, O.F.; Guven, O.; Turgut, H.; Cinar, M.; Çelik, M.S. Improved flotation of heat treated lignite with saline solutions containing mono and multivalent ions. Physicochem. Probl. Miner. Process. 2018, 54, 1070–1082. [Google Scholar]
- Sokolovic, J.M.; Stanojlovic, R.D.; Markovic, Z.S. Activation of oxidized surface of anthracite waste coal by attrition. Physicochem. Probl. Miner. Process. 2012, 48, 5–18. [Google Scholar]
- Xia, W. The effect of heating on the wettability of lignite. Energy Sources Part A 2016, 38, 3521–3526. [Google Scholar] [CrossRef]
- Çinar, M. Floatability and desulfurization of a low-rank (Turkish) coal by low-temperature heat treatment. Fuel Process. Technol. 2009, 90, 1300–1304. [Google Scholar] [CrossRef]
- Ye, Y.; Jin, R.; Miller, J.D. Thermal treatment of low-rank coal and its relationship to flotation response. Int. J. Coal Prep. Util. 1988, 6, 1–16. [Google Scholar] [CrossRef]
- Çelik, M.S.; Seyhan, K. Effect of heat treatment on the flotation of Turkish lignites. Int. J. Coal Prep. Util. 1995, 16, 65–79. [Google Scholar] [CrossRef]
- Xu, M.; Xing, Y.; Cao, Y.; Gui, X. Effect of dodecane and oleic acid on the attachment between oxidized coal and bubbles. Minerals 2018, 8, 29. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, R.; Xing, Y.; Gui, X. Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study. Fuel 2019, 235, 687–695. [Google Scholar] [CrossRef]
- Chu, P.; Mirnwzami, M.; Finch, J.A. Quantifying particle pick up at a pendant bubble: A study of non-hydrophobic particle–bubble interaction. Miner. Eng. 2014, 55, 162–164. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, L.; Zhang, R.; Yang, Z.; Xing, Y.; Gui, X.; Cao, Y.; Sun, W. Enhancement of flotation response of fine low-rank coal using positively charged microbubbles. Fuel 2019, 245, 505–513. [Google Scholar] [CrossRef]
- Wang, B.; Peng, Y.; Vink, S. Diagnosis of the surface chemistry effects on fine coal flotation using saline water. Energy Fuels 2013, 27, 4869–4874. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Li, G.; Liao, Y.; Xing, Y.; Gui, X. Combined effect of chemical composition and spreading velocity of collector on flotation performance of oxidized coal. Powder Technol. 2018, 325, 1–10. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, Z.; Zhang, R.; Xing, Y.; Gui, X. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: An experimental and molecular dynamics simulation study. Fuel 2019, 239, 145–152. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, G.; Xu, M.; Wang, D.; Gui, X.; Xing, Y. Effect of Heating Oxidation on the Surface/Interface Properties and Floatability of Anthracite Coal. Processes 2019, 7, 345. https://doi.org/10.3390/pr7060345
Rong G, Xu M, Wang D, Gui X, Xing Y. Effect of Heating Oxidation on the Surface/Interface Properties and Floatability of Anthracite Coal. Processes. 2019; 7(6):345. https://doi.org/10.3390/pr7060345
Chicago/Turabian StyleRong, Guoqiang, Mengdi Xu, Dongyue Wang, Xiahui Gui, and Yaowen Xing. 2019. "Effect of Heating Oxidation on the Surface/Interface Properties and Floatability of Anthracite Coal" Processes 7, no. 6: 345. https://doi.org/10.3390/pr7060345
APA StyleRong, G., Xu, M., Wang, D., Gui, X., & Xing, Y. (2019). Effect of Heating Oxidation on the Surface/Interface Properties and Floatability of Anthracite Coal. Processes, 7(6), 345. https://doi.org/10.3390/pr7060345